Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Plant J ; 118(4): 1119-1135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308390

RESUMO

Salicylic acid (SA) is known to enhance salt tolerance in plants. However, the mechanism of SA-mediated response to high salinity in halophyte remains unclear. Using electrophysiological and molecular biological methods, we investigated the role of SA in response to high salinity in mangrove species, Kandelia obovata, a typical halophyte. Exposure of K. obovata roots to high salinity resulted in a rapid increase in endogenous SA produced by phenylalanine ammonia lyase pathway. The application of exogenous SA improved the salt tolerance of K. obovata, which depended on the NADPH oxidase-mediated H2O2. Exogenous SA and H2O2 increased Na+ efflux and reduced K+ loss by regulating the transcription levels of Na+ and K+ transport-related genes, thus reducing the Na+/K+ ratio in the salt-treated K. obovata roots. In addition, exogenous SA-enhanced antioxidant enzyme activity and its transcripts, and the expressions of four genes related to AsA-GSH cycle as well, then alleviated oxidative damages in the salt-treated K. obovata roots. However, the above effects of SA could be reversed by diphenyleneiodonium chloride (the NADPH oxidase inhibitor) and paclobutrazol (a SA biosynthesis inhibitor). Collectively, our results demonstrated that SA-induced salt tolerance of K. obovata depends on NADPH oxidase-generated H2O2 that affects Na+/K+ and redox homeostasis in response to high salinity.


Assuntos
Homeostase , Peróxido de Hidrogênio , NADPH Oxidases , Oxirredução , Raízes de Plantas , Potássio , Ácido Salicílico , Tolerância ao Sal , Sódio , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Potássio/metabolismo , Tolerância ao Sal/genética , Sódio/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/fisiologia , Regulação da Expressão Gênica de Plantas , Rhizophoraceae/fisiologia , Rhizophoraceae/genética , Rhizophoraceae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Plant Res ; 137(3): 463-484, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38337083

RESUMO

Floral biochemistry and stress physiology is an underexplored aspect of mangroves, which should be investigated as part of preservation and restoration efforts. A thriving true mangrove tree (Bruguiera gymnorrhiza (L.) Lamk.) and a threatened mangrove-associate species (Heritiera fomes Buch. Ham.) were studied in the Sundarban region of India for seasonal variations in floral odours, non-volatile phytochemicals, antioxidant enzyme activities, and surface water chemistry in surrounding habitat. Both species were found to exhibit significant differences in floral volatilomes, protein contents, antioxidant enzyme activities, total flavonoids, and total phenolic contents between spring and autumn blooms. The bird-pollinated flowers of B. gymnorrhiza also showed considerable seasonal differences in floral anthocyanin and proline contents, indicating vulnerability of the post-anthesis open flowers to environmental factors. Contrarily to previous findings, B. gymnorrhiza floral bouquet appeared to be enriched in various classes of volatiles - dominated by sulphurous compounds in bud stage and terpenoids in open stage. Floral anthocyanins, contributing to the striking colouration of the calyx, were found to comprise cyanidin and delphinidin derivatives. Other glycosides of cyanidin and delphinidin were detected in H. fomes flowers, contributing to visual guides to potential food rewards for pollinating insects. Floral tissue in H. fomes was found to be protected by densely overlapping layers of stellate trichomes containing sesquiterpenoids as phytoprotectants. Comparison of the two floral species suggested that H. fomes flowering is optimized to oligohaline (but not freshwater) vernal conditions; whereas B. gymnorrhiza blooms are adapted for biologically enriched (including abundant herbivores and microbial growth), mesohaline forest habitats.


Assuntos
Ecossistema , Flores , Odorantes , Rhizophoraceae , Flores/fisiologia , Rhizophoraceae/fisiologia , Odorantes/análise , Índia , Antocianinas/metabolismo , Antocianinas/análise , Áreas Alagadas , Estresse Fisiológico , Estações do Ano , Polinização , Animais , Flavonoides/metabolismo , Flavonoides/análise , Antioxidantes/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/química , Fenóis/metabolismo , Fenóis/análise , Prolina/metabolismo , Prolina/análise
3.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1263-1271, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37236943

RESUMO

5-hydroxytryptamine (5-HT) participates in plant growth and development, and can also delay senescence and cope with abiotic stress. To explore the role of 5-HT in regulating the abilities of mangrove in cold resis-tance, we examined the effects of cold acclimation and the spraying of p-chlorophenylalanine (p-CPA, 5-HT synthesis inhibitor) on leaf gas exchange parameters and CO2 response curves (A/Ca), as well as the endogenous phytohormone content levels in the mangrove species Kandelia obovata seedlings under low temperature stress. The results showed that low temperature stress significantly reduced the contents of 5-HT, chlorophyll, endogenous auxin (IAA), gibberellin (GA), and abscisic acid (ABA). It weakened the CO2 utilization abilities of plants and reduced net photosynthetic rate, which ultimately reduced carboxylation efficiency (CE). Under low temperature stress, exogenous p-CPA reduced the contents of photosynthetic pigments, endogenous hormones, and 5-HT in the leaves, which aggravated the damages caused by low temperature stress on photosynthesis. By enhancing cold acclimation abilities, the endogenous IAA content in the leaves could was reduced under low temperature stress, promoted the production of 5-HT, improved the contents of photosynthetic pigments, GA, and ABA, as well as enhanced photosynthetic carbon assimilation abilities, which would increase photosynthesis in the K. obovata seedlings. Under cold acclimation conditions, the spraying of p-CPA could significantly inhibit the synthesis of 5-HT, promote the production of IAA, and reduce the contents of photosynthetic pigments, GA, ABA, and CE, which would weaken the effects of cold acclimation by improving the cold resistance of mangroves. In conclusion, cold acclimation could improve the cold resistance abilities of K. obovata seedlings by regulating photosynthetic carbon assimilation capacity and the contents of endogenous phytohormone. 5-HT synthesis is one of the necessary conditions for improving the cold resistance abilities of mangroves.


Assuntos
Rhizophoraceae , Serotonina , Serotonina/farmacologia , Plântula/fisiologia , Rhizophoraceae/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Dióxido de Carbono , Fotossíntese/fisiologia , Temperatura Baixa , Ácido Abscísico , Folhas de Planta/fisiologia , Carbono
4.
New Phytol ; 237(1): 100-112, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36156265

RESUMO

Seasonal differences in diaspore dispersal of three mangrove species, Kandelia obovata, Bruguiera gymnorrhiza and Rhizophora stylosa, suggest that respiratory energy production and demand may differ as a result of interspecific differences in temperature dependence of growth and maintenance processes during seedling establishment. We analyzed growth, temperature dependencies of respiratory O2 consumption and amounts of respiratory chain enzymes in seedlings of these species grown at various temperatures. Respiration rates measured at the low reference temperature, RREF , were highest in leaves of 15°C-grown K. obovata, whose dispersal occurs in the cold season, while root RREF of 15°C-grown R. stylosa was 60% those of the other species, possibly because of warm conditions during its establishment phase. In leaves and roots of K. obovata and leaves of R. stylosa, the overall activation energy, Eo , changed with growth temperature associated with changes in the ratios of the amount of protein in the two respiratory pathways. However, Eo of seedlings of B. gymnorrhiza, which has a long dispersal phase, were constant and independent of growth temperature. The different temperature responses of seedling respiration and growth among these three species may reflect the seasonal temperature range of seedling dispersal and establishment in each species.


Assuntos
Rhizophoraceae , Plântula , Temperatura , Rhizophoraceae/fisiologia , Folhas de Planta/fisiologia , Respiração
5.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231016

RESUMO

Mangrove ecosystems are vulnerable to rising sea levels as the plants are exposed to high salinity and tidal submergence. The ways in which these plants respond to varying salinities, immersion depths, and levels of light irradiation are poorly studied. To understand photosynthesis in response to salinity and submergence in mangroves acclimated to different tidal elevations, two-year-old seedlings of two native mangrove species, Kandelia obovata and Rhizophora stylosa, were treated at different salinity concentrations (0, 10, and 30 part per thousand, ppt) with and without immersion conditions under fifteen photosynthetic photon flux densities (PPFD µmol photon·m-2·s-1). The photosynthetic capacity and the chlorophyll fluorescence (ChlF) parameters of both species were measured. We found that under different PPFDs, electron transport rate (ETR) induction was much faster than photosynthetic rate (Pn) induction, and Pn was restricted by stomatal conductance (Gs). The Pn of the immersed K. obovata plants increased, indicating that this species is immersed-tolerant, whereas the Pn level of the R. stylosa plants is salt-tolerant with no immersion. All of the plants treated with 30 ppt salinity exhibited lower Pn but higher non-photochemical quenching (NPQ) and heat quenching (D) values, followed by increases in the excess energy and photoprotective effects. Since NPQ or D can be easily measured in the field, these values provide a useful ecological monitoring index that may provide a reference for mangrove restoration, habitat creation, and ecological monitoring.


Assuntos
Rhizophoraceae , Clorofila/farmacologia , Ecossistema , Fotossíntese , Folhas de Planta/fisiologia , Rhizophoraceae/fisiologia , Salinidade
6.
Proc Natl Acad Sci U S A ; 119(33): e2121654119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939671

RESUMO

Ecological regime shifts are expected to increase this century as climate change propagates cascading effects across ecosystems with coupled elements. Here, we demonstrate that the climate-driven salt marsh-to-mangrove transition does not occur in isolation but is linked to lesser-known oyster reef-to-mangrove regime shifts through the provision of mangrove propagules. Using aerial imagery spanning 82 y, we found that 83% of oyster reefs without any initial mangrove cover fully converted to mangrove islands and that mean (± SD) time to conversion was 29.1 ± 9.6 y. In situ assessments of mangrove islands suggest substantial changes in ecosystem structure during conversion, while radiocarbon dates of underlying reef formation indicate that such transitions are abrupt relative to centuries-old reefs. Rapid transition occurred following release from freezes below the red mangrove (Rhizophora mangle) physiological tolerance limit (-7.3 °C) and after adjacent marsh-to-mangrove conversion. Additional nonclimate-mediated drivers of ecosystem change were also identified, including oyster reef exposure to wind-driven waves. Coupling of regime shifts arises from the growing supply of mangrove propagules from preceding and adjacent marsh-to-mangrove conversion. Climate projections near the mangrove range limit on the Gulf coast of Florida suggest that regime shifts will begin to transform subtropical estuaries by 2070 if propagule supply keeps pace with predicted warming. Although it will become increasingly difficult to maintain extant oyster habitat with tropicalization, restoring oyster reefs in high-exposure settings or active removal of mangrove seedlings could slow the coupled impacts of climate change shown here.


Assuntos
Mudança Climática , Ecossistema , Estuários , Animais , Temperatura Baixa , Ostreidae , Rhizophoraceae/fisiologia , Plântula , Áreas Alagadas
7.
Plant Signal Behav ; 17(1): 2073420, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35583149

RESUMO

The changes in plant life behaviors and water status are accompanied by electrophysiological activities. In this study, the theoretical relationship between clamping force (CF) and leaf resistance (R), capacitive reactance (XC), inductive reactance (XL), impedance (Z), and capacitance (C) were exposed as 3-parameter exponential decay and linear models based on bioenergetics, respectively, for mangrove species. The intracellular water metabolism parameters and salt transport characteristics were also determined based on mechanical equations with influences of Sodium nitroprusside (SNP) and rewatering (RW). The results show that the inherent capacitance and effective thickness could better represent Aegiceras corniculatum (A. corniculatum) species, and inherent resistance and impedance show obvious effects on Kandelia obovate (K. obovate) species at different salt levels. SNP application shows positive effect on different salt-resistance capacities of A. corniculatum, while K. obovate perform better in RW phase at high salt level. These outcomes indicates that K. obovate is more salt-resistant because RW process is consistent with actual situation, and response of A. corniculatum at high salt stress is irreversible, even in RW. It is concluded that the electrophysiological parameters could be used for the determination of salt-resistant capacities, which gave more enhanced and reliable information of mangroves' life activities.


Assuntos
Primulaceae , Rhizophoraceae , Nitroprussiato/farmacologia , Primulaceae/fisiologia , Rhizophoraceae/fisiologia , Estresse Salino , Água
8.
Tree Physiol ; 42(4): 797-814, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35098315

RESUMO

We investigated how mangrove-island micro-elevation (i.e., habitat: center vs edge) affects tree physiology in a scrub mangrove forest of the southeastern Everglades. We measured leaf gas exchange rates of scrub Rhizophora mangle L. trees monthly during 2019, hypothesizing that CO2 assimilation (Anet) and stomatal conductance (gsw) would decline with increasing water levels and salinity, expecting more considerable differences at mangrove-island edges than centers, where physiological stress is greatest. Water levels varied between 0 and 60 cm from the soil surface, rising during the wet season (May-October) relative to the dry season (November-April). Porewater salinity ranged from 15 to 30 p.p.t., being higher at mangrove-island edges than centers. Anet maximized at 15.1 µmol m-2 s-1, and gsw was typically <0.2 mol m-2 s-1, both of which were greater in the dry than the wet season and greater at island centers than edges, with seasonal variability being roughly equal to variation between habitats. After accounting for season and habitat, water level positively affected Anet in both seasons but did not affect gsw. Our findings suggest that inundation stress (i.e., water level) is the primary driver of variation in leaf gas exchange rates of scrub mangroves in the Florida Everglades, while also constraining Anet more than gsw. The interaction between inundation stress due to permanent flooding and habitat varies with season as physiological stress is alleviated at higher-elevation mangrove-island center habitats during the dry season. Freshwater inflows during the wet season increase water levels and inundation stress at higher-elevation mangrove-island centers, but also potentially alleviate salt and sulfide stress in soils. Thus, habitat heterogeneity leads to differences in nutrient and water acquisition and use between trees growing in island centers versus edges, creating distinct physiological controls on photosynthesis, which likely affect carbon flux dynamics of scrub mangroves in the Everglades.


Assuntos
Rhizophoraceae , Ecossistema , Florida , Nutrientes , Fotossíntese/fisiologia , Rhizophoraceae/fisiologia , Solo , Árvores , Água
9.
Ann Bot ; 129(1): 15-28, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34508635

RESUMO

BACKGROUND AND AIMS: Mangrove plants are mostly found in tropical and sub-tropical tidal flats, and their limited distribution may be related to their responses to growth temperatures. However, the mechanisms underlying these responses have not been clarified. Here, we measured the dependencies of the growth parameters and respiration rates of leaves and roots on growth temperatures in typical mangrove species. METHODS: We grew two typical species of Indo-Pacific mangroves, Bruguiera gymnorrhiza and Rhizophora stylosa, at four different temperatures (15, 20, 25 and 30 °C) by irrigating with fresh water containing nutrients, and we measured growth parameters, chemical composition, and leaf and root O2 respiration rates. We then estimated the construction costs of leaves and roots and the respiration rates required for maintenance and growth. KEY RESULTS: The relative growth rates of both species increased with growth temperature due to changes in physiological parameters such as net assimilation rate and respiration rate rather than to changes in structural parameters such as leaf area ratio. Both species required a threshold temperature for growth (12.2 °C in B. gymnorrhiza and 18.1 °C in R. stylosa). At the low growth temperature, root nitrogen uptake rate was lower in R. stylosa than in B. gymnorrhiza, leading to a slower growth rate in R. stylosa. This indicates that R. stylosa is more sensitive than B. gymnorrhiza to low temperature. CONCLUSIONS: Our results suggest that the mangrove species require a certain warm temperature to ensure respiration rates sufficient for maintenance and growth, particularly in roots. The underground temperature probably limits their growth under the low-temperature condition. The lower sensitivity of B. gymnorrhiza to low temperature shows its potential to adapt to a wider habitat temperature range than R. stylosa. These growth and respiratory features may explain the distribution patterns of the two mangrove species.


Assuntos
Rhizophoraceae , Ecossistema , Folhas de Planta/fisiologia , Respiração , Rhizophoraceae/fisiologia , Temperatura
10.
Tree Physiol ; 42(5): 1016-1028, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34918132

RESUMO

Mangrove ecosystems are vulnerable to rising sea levels. When the sea level rises, the plants are exposed to increased salinity and tidal submergence. In Taiwan, the mangrove species Kandelia obovata and Rhizophora stylosa grow in different habitats and at different elevations. To understand the response of photosynthesis to salinity and submergence in mangroves adapted to different tidal elevations, gas exchange and chlorophyll fluorescence parameters were measured in K. obovata and R. stylosa under different salinity (20 and 40‰) and submergence treatments. The period of light induction of photosynthesis for the two mangrove species was >60 min. In the induction process, the increase in photosystem efficiency was faster than the increase in stomatal opening, but CO2 fixation efficiency was restricted by stomatal conductance. The constraint of stomatal opening speed is related to the conservative water-use strategy developed in response to mangrove environments. Submergence increased the photosynthetic rate of K. obovata, but not that of R. stylosa. Although R. stylosa was more salt tolerant than K. obovata, R. stylosa was not submergence tolerant in a high-salinity environment, which may be the reason for the higher intertidal elevations observed for R. stylosa in comparison with K. obovata. The photosynthetic rate and energy-dependent quenching (qE) of the two mangroves presented a negative relationship with photoinhibition, and high-salt treatment simultaneously reduced photosynthetic rate and qE. A decrease in the photosynthetic rate increased excess energy, whereas a decrease in qE decreased photoprotection; both increased photoinhibition. As the degree of photoinhibition can be easily measured in the field, it is a useful ecological monitoring index that provides a suitable reference for mangrove restoration, habitat construction and ecological monitoring.


Assuntos
Rhizophoraceae , Adaptação Fisiológica , Ecossistema , Fotossíntese , Rhizophoraceae/fisiologia , Salinidade
11.
Appl Environ Microbiol ; 87(11)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33741614

RESUMO

Coastal wetlands are experiencing frequent flooding because of global climate changes, such as the rising sea level. Despite the key role of archaea in soil biogeochemical cycles, the assembly processes and co-occurrence patterns of archaeal communities in coastal wetlands in response to increasing inundation frequencies remain elusive. In this study, we established an in situ mesocosm with an inundation frequency gradient to investigate the response of soil archaeal community toward increasing inundation frequencies in monocultures of Spartina alterniflora and a mangrove species, Kandelia obovata Both neutral community model and null model analyses suggested that stochastic processes are dominant in governing the archaeal community assembly and that the stochastic processes are enhanced with increasing inundation frequencies. Increasing inundation frequencies significantly increased the community niche width. Moreover, archaeal community in S. alterniflora soil displayed lower niche overlap and higher stochasticity than in K. obovata soil. Co-occurrence network analysis revealed that the network complexity increases with increase in the inundation frequencies. Soil water content is the most decisive factor influencing the archaeal communities. Overall, we found that increasing inundation frequencies enhance the stochastic processes and network complexity of the soil archaeal community in coastal wetlands. This study could enhance our understanding on the response of soil archaeal communities in coastal wetlands toward global change.IMPORTANCE Coastal wetlands, subjected to regular disturbances by periodic tides, are highly productive and important in the regulation of climate change. However, the assembly mechanisms and co-occurrence patterns of soil archaeal communities in coastal areas remain poorly known, especially for their responses to increasing inundation frequencies. In this study, we aimed at unraveling these uncertainties by studying typical estuarine ecosystems in southern China. We show that increasing inundation frequencies enhance the stochastic processes and network complexity of the soil archaeal community. This study offers a new path for an improved understanding of archaeal community assembly and species coexistence in coastal environments, with a special focus on the role of inundation frequency.


Assuntos
Archaea/fisiologia , Inundações , Microbiota , Elevação do Nível do Mar , Microbiologia do Solo , Áreas Alagadas , China , Poaceae/fisiologia , Rhizophoraceae/fisiologia , Processos Estocásticos
12.
BMC Plant Biol ; 21(1): 10, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407136

RESUMO

BACKGROUND: Low temperature is a major abiotic stress that seriously limits mangrove productivity and distribution. Kandelia obovata is the most cold-resistance specie in mangrove plants, but little is known about the molecular mechanism underlying its resistance to cold. Osmotin is a key protein associated with abiotic and biotic stress response in plants but no information about this gene in K. obovata was reported. RESULTS: In this study, a cDNA sequence encoding osmotin, KoOsmotin (GenBank accession no. KP267758), was cloned from mangrove plant K. obovata. The KoOsmotin protein was composed of 221 amino acids and showed a calculated molecular mass of 24.11 kDa with pI 4.92. The KoOsmotin contained sixteen cysteine residues and an N-terminal signal peptide, which were common signatures to most osmotins and pathogenesis-related 5 proteins. The three-dimensional (3D) model of KoOsmotin, contained one α-helix and eleven ß-strands, was formed by three characteristic domains. Database comparisons of the KoOsmotin showed the closest identity (55.75%) with the osmotin 34 from Theobroma cacao. The phylogenetic tree also revealed that the KoOsmotin was clustered in the branch of osmotin/OLP (osmotin-like protien). The KoOsmotin protein was proved to be localized to both the plasma membrane and cytoplasm by the subcellular localization analysis. Gene expression showed that the KoOsmotin was induced primarily and highly in the leaves of K. obovata, but less abundantly in stems and roots. The overexpressing of KoOsmotin conferred cold tolerance in Escherichia coli cells. CONCLUSION: As we known, this is the first study to explore the osmotin of K. obovata. Our study provided valuable clues for further exploring the function of KoOsmotin response to stress.


Assuntos
Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/fisiologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Análise de Sequência de DNA
13.
Ecotoxicology ; 29(6): 718-725, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32394360

RESUMO

Kandelia obovata is one of the cold tolerant mangrove plants along the China coast. To reveal the cold tolerant mechanism of K. obovata, the present work isolated two CBF/DREB1 genes (designated KoCBF1 and KoCBF3) from cold-stressed K. obovata and characterized their expression profiles in various organs and in response to multiple abiotic stresses. The deduced proteins of KoCBF1 and 3 all contain specific features of CBFs, and show high similarity to AmCBF1 and 3 from Avicennia marina, respectively. Different expression patterns of the two CBF orthologous under various abiotic stresses and exogenous hormone suggested that they may have different regulators and be involved in different regulatory pathway. The high basal and cold induced expression of the two genes indicated that they may all play important roles in growth and cold resistance of plants. The significant induction of KoCBF3 after salt and lead (Pb2+) treatments suggested that this CBF gene may also participate in response to salinity and heavy metal stresses. This study will provide a better understanding of CBF-regulated stress-resistant mechanism, which may be benefit in mangrove biotechnological breeding, high-latitude transplanting, and bioremediation of heavy metal pollutions.


Assuntos
Rhizophoraceae/fisiologia , Estresse Fisiológico/genética , Avicennia , China , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Rhizophoraceae/genética , Salinidade
14.
Chemosphere ; 249: 126341, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32213393

RESUMO

Current mechanism studies in plant heavy metal tolerance do not consider the effects of different phenolic acids on the bioavailability of heavy metals and the comparison with antioxidant enzyme system in the hydroxyl radical scavenging capacity. In present study, by a set of pot culture experiments with adding cadmium (Cd) and zinc (Zn) to the sediments, the effects of different phenolic acids on the toxicity of Cd and Zn in Kandelia obovata and the dominant role in scavenging hydroxyl radicals were evaluated. The results showed that 100 mg kg-1 Zn treatment promoted the growth of plant under high concentrations of Cd and Zn stress. Under the stress of Cd and Zn, the phenolic acids were mainly metabolized by phenylpropanoid and flavonoid pathways, supplemented by shikimate and monolignol pathways in K. obovata. Eleven phenolic acids with different abilities of scavenging free radicals were detected in the plant, including pyrogallic acid (Gal), coumaric acid (Cou), protocatechuic acid (Pro), chlorogenic acid (Chl), 4-hydroxy benzoic acid (Hyd), caffeic acid (Caf), vanillic acid (Van), ferulic acid (Fer), benzoic acid (Ben), and salicylic acid (Sal). By adding phenolic acids to the sediments, chlorogenic acid (Chl), pyrogallic acid (Gal), cinnamic acid (Cin), and coumaric acid (Cou) behave as more reactive in changing Cd or Zn into residual fractions than the others, and chlorogenic acid (Chl), pyrogallic acid (Gal), ferulic acid (Fer) and caffeic acid (Caf) have higher ability of scavenging hydroxyl radicals than the others. In summary, K. obovata tends to synthesize phenolic acids with strong scavenging ability of free radicals and changing the bioavailability of Cd and Zn under high concentration of Cd and Zn stress. Phenolic acids played a crucial role in the mitigative effect of heavy metal stress via scavenging free radicals and involving in the process of Cd and Zn uptake and tolerance. The results will provide important theoretical basis and method guidance for mangrove wetland conservation.


Assuntos
Hidroxibenzoatos/química , Metais Pesados/química , Rhizophoraceae/fisiologia , Antioxidantes/metabolismo , Disponibilidade Biológica , Cádmio/química , Cádmio/metabolismo , Ácidos Cafeicos , Ácidos Cumáricos , Metais Pesados/metabolismo , Rhizophoraceae/efeitos dos fármacos , Áreas Alagadas , Zinco/química , Zinco/metabolismo
15.
Sci Rep ; 9(1): 14880, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619728

RESUMO

The positive effects of arbuscular mycorrhizal fungi (AMF) have been demonstrated for plant biomass, and zinc (Zn) and phosphorus (P) uptake, under soil nutrient deficiency. Additionally, a number of Zn and P transporter genes are affected by mycorrhizal colonisation or implicated in the mycorrhizal pathway of uptake. However, a comprehensive study of plant physiology and gene expression simultaneously, remains to be undertaken. Medicago truncatula was grown at different soil P and Zn availabilities, with or without inoculation of Rhizophagus irregularis. Measures of biomass, shoot elemental concentrations, mycorrhizal colonisation, and expression of Zn transporter (ZIP) and phosphate transporter (PT) genes in the roots, were taken. Mycorrhizal plants had a greater tolerance of both P and Zn soil deficiency; there was also evidence of AMF protecting plants against excessive Zn accumulation at high soil Zn. The expression of all PT genes was interactive with both P availability and mycorrhizal colonisation. MtZIP5 expression was induced both by AMF and soil Zn deficiency, while MtZIP2 was down-regulated in mycorrhizal plants, and up-regulated with increasing soil Zn concentration. These findings provide the first comprehensive physiological and molecular picture of plant-mycorrhizal fungal symbiosis with regard to soil P and Zn availability. Mycorrhizal fungi conferred tolerance to soil Zn and P deficiency and this could be linked to the induction of the ZIP transporter gene MtZIP5, and the PT gene MtPT4.


Assuntos
Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago truncatula/efeitos dos fármacos , Fósforo/farmacologia , Proteínas de Plantas/genética , Rhizophoraceae/fisiologia , Zinco/farmacologia , Biomassa , Proteínas de Transporte de Cátions/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Micorrizas/fisiologia , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Solo/química , Simbiose/fisiologia , Zinco/deficiência
16.
An Acad Bras Cienc ; 91(3): e20180924, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31531534

RESUMO

The authors of the 19th century had demonstrated the viviparity of the species Rhizophora mangle L. with the formation of propagules in the form of spears devoid a radicle, adapted self-planting in the soil of the mangrove or to leave floating in vertical during the high tide. With low tide the propagules self-planting or remain prostrate on the soil but later become upright later. When the seedlings are unearthed, those who are self-planting are straight from end to end; those that stood erect later show a curvature at the base in the form of J (J-shaped). Authors of the last 30 years have questioned the self-planting and accurately demonstrate how the prostrate propagules rise from the ground. It has been verified that the propagule is stem from end to end and does not present radicle, that is, under the plumale there is the hypocotyls without a root. All roots are adventitious, agreeing with 19th century researchers, not lateral roots as researchers of the present century have claimed. Propagules that return to the beach in Porto Seguro (BA) probably of another flowering period show an extra growth of the lower part, but this growth remains a stem rather than a root, demonstrating that there is no root, as 19th century researchers claimed.


Assuntos
Rhizophoraceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Avicennia , Brasil , Germinação , Rhizophoraceae/citologia , Rhizophoraceae/fisiologia , Plântula/citologia , Plântula/fisiologia , Solo , Áreas Alagadas
17.
PLoS One ; 14(9): e0221950, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31479477

RESUMO

Tree stems swell and shrink daily, which is thought to reflect changes in the volume of water within stem tissues. We observed these daily patterns using automatic dendrometer bands in a diverse group of mangrove species over five mangrove forests across Australia and New Caledonia. We found that mangrove stems swelled during the day and shrank at night. Maximum swelling was highly correlated with daily maxima in air temperature. Variation in soil salinity and levels of tidal inundation did not influence the timing of stem swelling over all species. Medium-term increases in stem circumference were highly sensitive to rainfall. We defoliated trees to assess the role of foliar transpiration in stem swelling and shrinking. Defoliated trees showed maintenance of the pattern of daytime swelling, indicating that processes other than canopy transpiration influence the temporary stem diameter increments, which could include thermal swelling of stems. More research is required to understand the processes contributing to stem shrinking and swelling. Automatic Dendrometer Bands could provide a useful tool for monitoring the response of mangroves to extreme climatic events as they provide high-frequency, long-term, and large-scale information on tree water status.


Assuntos
Áreas Alagadas , Austrália , Avicennia/crescimento & desenvolvimento , Avicennia/fisiologia , Ritmo Circadiano , Clima , Nova Caledônia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Transpiração Vegetal , Chuva , Rhizophoraceae/crescimento & desenvolvimento , Rhizophoraceae/fisiologia , Temperatura , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Água/metabolismo
18.
Sci Total Environ ; 691: 71-79, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31319260

RESUMO

The problems of aquaculture effluent (AE) and polybrominated diphenyl ethers (PBDEs) are common in coastal areas. The fate of 2,2',4,4',5-pentabromodiphenyl ether (BDE-99), a dominant PBDE congener, in mangrove sediments and the effects of AE on it have never been reported. A 12-months microcosm study was conducted and more than 55% of the BDE-99 in contaminated sediment was removed at the end. The removal percentages depended on treatments, with the highest removal in the treatment planted with Kandelia obovata (Ko) and irrigated with AE (WPAE), followed by Ko planted but without AE (WP), unplanted with AE (NPAE) and unplanted without AE (NP). Hydroxylation of BDE-99 was observed in all treatments, with a preference in the para position bromine substitution, followed by meta position and the lowest was ortho bromine substitution. BDE-99 was also debrominated to lower brominated congeners like tri- and di-BDEs congeners. Different from parent BDE-99, ortho-substituted BDE-28 and -15 were more dominant than that of para-substituted BDE-17 and -7, suggesting that para-substituted congeners could further be debrominated. The AE addition enhanced root uptake of PBDEs in Ko. These findings suggested that the addition of AE and planting Ko could be an effective way to remedy BDE-99 in contaminated sediments.


Assuntos
Aquicultura , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Rhizophoraceae/fisiologia , Poluentes Químicos da Água/análise , Áreas Alagadas , Sedimentos Geológicos
19.
Biol Rev Camb Philos Soc ; 94(4): 1547-1575, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31058451

RESUMO

Dispersal allows species to shift their distributions in response to changing climate conditions. As a result, dispersal is considered a key process contributing to a species' long-term persistence. For many passive dispersers, fluid dynamics of wind and water fuel these movements and different species have developed remarkable adaptations for utilizing this energy to reach and colonize suitable habitats. The seafaring propagules (fruits and seeds) of mangroves represent an excellent example of such passive dispersal. Mangroves are halophytic woody plants that grow in the intertidal zones along tropical and subtropical shorelines and produce hydrochorous propagules with high dispersal potential. This results in exceptionally large coastal ranges across vast expanses of ocean and allows species to shift geographically and track the conditions to which they are adapted. This is particularly relevant given the challenges presented by rapid sea-level rise, higher frequency and intensity of storms, and changes in regional precipitation and temperature regimes. However, despite its importance, the underlying drivers of mangrove dispersal have typically been studied in isolation, and a conceptual synthesis of mangrove oceanic dispersal across spatial scales is lacking. Here, we review current knowledge on mangrove propagule dispersal across the various stages of the dispersal process. Using a general framework, we outline the mechanisms and ecological processes that are known to modulate the spatial patterns of mangrove dispersal. We show that important dispersal factors remain understudied and that adequate empirical data on the determinants of dispersal are missing for most mangrove species. This review particularly aims to provide a baseline for developing future research agendas and field campaigns, filling current knowledge gaps and increasing our understanding of the processes that shape global mangrove distributions.


Assuntos
Avicennia/fisiologia , Ecossistema , Dispersão Vegetal , Rhizophoraceae/fisiologia , Sementes/fisiologia , Fatores de Tempo
20.
Sci Total Environ ; 681: 191-201, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31103657

RESUMO

Mangrove forests are an important contributor to the coastal marine environment. They have developed unique adaptations to the harsh coastal wetland, yet their geographic distribution is limited by environmental temperature. The adaptive strategies of mangrove at the molecular level, however, have not been addressed. In the present work, transcriptome analyses were performed on different cold damaged plants of a mangrove species, Kandelia obovata. From the samples collected in the field after a cold stress, we found that distinct expression profiles of many key genes are related to extreme temperature responses. These include transcription factors such as WRKY and bHLH, and other genes encoding proteins like SnRK2, PR-1, KCS, involving in the pathways of plant hormones, plant-pathogen interactions, and long chain fatty acid synthesis. We also examined the transcriptomes of eight tissues of K. obovata to identify candidate genes involved in adaptation and development. While stress-responsive genes were globally expressed, tissue-specific genes with diverse functions might be involved in tissue development and adaptability. For examples, genes encoding CYP724B1 and ABCB1 were specifically expressed in the fruit and root, respectively. Additionally, 26 genes were identified as positively selected genes in K. obovata, six of them were found to be involved in chilling stress response, seed germination and oxidation-reduction processes, suggesting their roles in stressful environment adaptation. Together, these results shed light into the K. obovata's natural responses to cold snaps at the molecular level, and reveal a global gene expression portrait across different tissues. It also provides a transcriptome resource for further molecular ecology studies and conservation planning of this and other mangrove plants in their native and adopted environments.


Assuntos
Adaptação Fisiológica/genética , Rhizophoraceae/fisiologia , Temperatura Baixa , Perfilação da Expressão Gênica , Reguladores de Crescimento de Plantas , Rhizophoraceae/genética , Transcriptoma , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA