Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1375058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081868

RESUMO

Rhino-orbital-cerebral mucormycosis (ROCM) is a rare, invasive, and fatal fungal disease that is often easily misdiagnosed in the early stages due to the lack of specific clinical manifestations and adequate auxiliary examinations. Early diagnosis and timely therapy are essential for successful treatment. In this report, we presented a 46-year-old man with diabetes who experienced gradual vision loss, right ptosis, swelling, and headaches that progressively worsened to death within 4 days after admission. It was finally confirmed as a fungal Rhizopus arrhizus infection by metagenomics next-generation sequencing (mNGS). Our report has proved that mNGS testing should be strongly recommended in highly suspected patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Mucormicose , Rhizopus , Humanos , Mucormicose/diagnóstico , Mucormicose/microbiologia , Masculino , Rhizopus/genética , Rhizopus/isolamento & purificação , Pessoa de Meia-Idade , Metagenômica/métodos , Evolução Fatal , Doenças Orbitárias/diagnóstico , Doenças Orbitárias/microbiologia , Antifúngicos/uso terapêutico
2.
Microb Genom ; 10(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38860878

RESUMO

Endofungal Mycetohabitans (formerly Burkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, Rhizopus microsporus. The one known secreted effector family from Mycetohabitans consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic Xanthomonas and Ralstonia spp. to activate host genes that promote disease. These 'Burkholderia TAL-like (Btl)' proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two Mycetohabitans strains revealed that the single Btl in one Mycetohabitans endofungorum strain enhances fungal membrane stress tolerance, while others in a Mycetohabitans rhizoxinica strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine Mycetohabitans spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal-bacterial metagenomes. We show that btl genes are present across diverse Mycetohabitans strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that Mycetohabitans might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across M. rhizoxinica strains than across M. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial-fungal symbioses in myriad ways.


Assuntos
Burkholderia , Rhizopus , Simbiose , Rhizopus/genética , Rhizopus/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Filogenia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Variação Genética
3.
mBio ; 15(7): e0116624, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38934618

RESUMO

Contemporary antifungal therapies utilized to treat filamentous fungal infections are inhibited by intrinsic and emerging drug resistance. Consequently, there is an urgent need to develop novel antifungal compounds that are effective against drug-resistant filamentous fungi. Here, we utilized an Aspergillus fumigatus cell-based high-throughput screen to identify small molecules with antifungal activity that also potentiated triazole activity. The screen identified 16 hits with promising activity against A. fumigatus. A nonspirocyclic piperidine, herein named MBX-7591, exhibited synergy with triazole antifungal drugs and activity against pan-azole-resistant A. fumigatus isolates. MBX-7591 has additional potent activity against Rhizopus species and CO2-dependent activity against Cryptococcus neoformans. Chemical, genetic, and biochemical mode of action analyses revealed that MBX-7591 increases cell membrane saturation by decreasing oleic acid content. MBX-7591 has low toxicity in vivo and shows good efficacy in decreasing fungal burden in a murine model of invasive pulmonary aspergillosis. Taken together, our results suggest MBX-7591 is a promising hit with a novel mode of action for further antifungal drug development to combat the rising incidence of triazole-resistant filamentous fungal infections.IMPORTANCEThe incidence of infections caused by fungi continues to increase with advances in medical therapies. Unfortunately, antifungal drug development has not kept pace with the incidence and importance of fungal infections, with only three major classes of antifungal drugs currently available for use in the clinic. Filamentous fungi, also called molds, are particularly recalcitrant to contemporary antifungal therapies. Here, a recently developed Aspergillus fumigatus cell reporter strain was utilized to conduct a high-throughput screen to identify small molecules with antifungal activity. An emphasis was placed on small molecules that potentiated the activity of contemporary triazole antifungals and led to the discovery of MBX-7591. MBX-7591 potentiates triazole activity against drug-resistant molds such as A. fumigatus and has activity against Mucorales fungi. MBX-7591's mode of action involves inhibiting the conversion of saturated to unsaturated fatty acids, thereby impacting fungal membrane integrity. MBX-7591 is a novel small molecule with antifungal activity poised for lead development.


Assuntos
Antifúngicos , Aspergillus fumigatus , Farmacorresistência Fúngica , Ácidos Graxos Insaturados , Testes de Sensibilidade Microbiana , Triazóis , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Antifúngicos/farmacologia , Triazóis/farmacologia , Camundongos , Animais , Ácidos Graxos Insaturados/farmacologia , Humanos , Ensaios de Triagem em Larga Escala , Sinergismo Farmacológico , Rhizopus/efeitos dos fármacos , Rhizopus/genética , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Piperidinas/farmacologia , Modelos Animais de Doenças , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Aspergilose Pulmonar Invasiva/microbiologia
4.
J Agric Food Chem ; 72(26): 14912-14921, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38913033

RESUMO

Lipase from Rhizopus oryzae (ROL) exhibits remarkable sn-1,3 stereoselectivity and catalytic activity, but its poor thermostability limits its applications in the production of 1,3-dioleoyl-2-palmitoyl glycerol (OPO, a high-quality substitute for human milk fat). In this work, a semirational method was proposed to engineer the thermostability and catalytic activity of 4M (ROL mutant in our previous study). First, a computer-aided design is performed using 4M as a template, and N-glycosylation mutants are then recombinantly expressed and screened in Pichia pastoris, the optimal mutant N227 exhibited a half-life of 298.8 h at 45 °C, which is 7.23-folds longer than that of 4M. Its catalytic activity also reached 1043.80 ± 61.98 U/mg, representing a 29.2% increase compared to 4M (808.02 ± 47.02 U/mg). Molecular dynamics simulations of N227 suggested that the introduction of glycan enhanced the protein rigidity, while the strong hydrogen bonds formed between the glycan and the protein stabilized the lipase structure, thereby improving its thermostability. The acidolysis reaction between oleic acid (OA) and glycerol tripalmitate (PPP) was successfully carried out using immobilized N227, achieving a molar conversion rate of 90.2% for PPP. This engineering strategy guides the modification of lipases, while the glycomutants obtained in this study have potential applications in the biosynthesis of OPO.


Assuntos
Biocatálise , Estabilidade Enzimática , Proteínas Fúngicas , Lipase , Rhizopus oryzae , Lipase/química , Lipase/genética , Lipase/metabolismo , Glicosilação , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Rhizopus oryzae/enzimologia , Rhizopus oryzae/genética , Rhizopus oryzae/química , Rhizopus oryzae/metabolismo , Temperatura Alta , Cinética , Rhizopus/enzimologia , Rhizopus/genética
5.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38691425

RESUMO

The endosymbiosis between the pathogenic fungus Rhizopus microsporus and the toxin-producing bacterium Mycetohabitans rhizoxinica represents a unique example of host control by an endosymbiont. Fungal sporulation strictly depends on the presence of endosymbionts as well as bacterially produced secondary metabolites. However, an influence of primary metabolites on host control remained unexplored. Recently, we discovered that M. rhizoxinica produces FO and 3PG-F420, a derivative of the specialized redox cofactor F420. Whether FO/3PG-F420 plays a role in the symbiosis has yet to be investigated. Here, we report that FO, the precursor of 3PG-F420, is essential to the establishment of a stable symbiosis. Bioinformatic analysis revealed that the genetic inventory to produce cofactor 3PG-F420 is conserved in the genomes of eight endofungal Mycetohabitans strains. By developing a CRISPR/Cas-assisted base editing strategy for M. rhizoxinica, we generated mutant strains deficient in 3PG-F420 (M. rhizoxinica ΔcofC) and in both FO and 3PG-F420 (M. rhizoxinica ΔfbiC). Co-culture experiments demonstrated that the sporulating phenotype of apo-symbiotic R. microsporus is maintained upon reinfection with wild-type M. rhizoxinica or M. rhizoxinica ΔcofC. In contrast, R. microsporus is unable to sporulate when co-cultivated with M. rhizoxinica ΔfbiC, even though the fungus was observed by super-resolution fluorescence microscopy to be successfully colonized. Genetic and chemical complementation of the FO deficiency of M. rhizoxinica ΔfbiC led to restoration of fungal sporulation, signifying that FO is indispensable for establishing a functional symbiosis. Even though FO is known for its light-harvesting properties, our data illustrate an important role of FO in inter-kingdom communication.


Assuntos
Rhizopus , Simbiose , Rhizopus/metabolismo , Rhizopus/genética , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Flavinas/metabolismo , Sistemas CRISPR-Cas , Riboflavina/metabolismo
6.
J Mycol Med ; 34(2): 101480, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744060

RESUMO

OBJECTIVES: The present study aimed to assess the features, clinical characteristics, and species diversity among patients admitted to referral Hospitals for SARS-CoV-2 pneumonia and mucormycosis in Tehran, Iran, and the relationship between seasonal and species diversity was considered. METHODS: Confirmed COVID-19 patients with a positive reverse-transcriptase real-time (rRT-PCR) test for SARS-CoV2 were primarily included based on clinically suspected mucormycosis infection and confirmed by histopathology and mycology examination of biopsy specimens. The PCR technique was performed by the amplification of the high-affinity iron permease 1 (FTR1) gene for identification and discrimination between Rhizopus arrhizus and non- Rhizopus arrhizus isolates. In contrast, species identification of non-Rhizopus arrhizus was performed by sequencing of ITS rDNA region. RESULTS: Rhino-sino-orbital mucormycosis was identified in the majority of cases (n = 33), with 66 % and 34 % of the cases involving male and female patients, respectively. Rhizopus arrhizus was found to be the most prevalent (84.6 %), followed by Mucor circinelloides (7.6 %). Rhizopus arrhizus was the most prevalent species and present in all the seasons; however, Mucor circinelloides was only present in the autumn. The overall mortality of the total population was 24.6 % (16/ 65); the mortality rates occurring in patients diagnosed with rhino-sino-orbital infection and rhino-sinusal form were 21.4 % and 25 %, respectively. CONCLUSION: CAM can be a serious complication of severe COVID-19, especially in patients with uncontrolled diabetes. It is important to monitor the epidemiology of mucormycosis to raise awareness of the disease and improve diagnosis, treatment and prognosis, particularly in the setting of pandemic.


Assuntos
COVID-19 , Mucormicose , SARS-CoV-2 , Humanos , Mucormicose/epidemiologia , Mucormicose/microbiologia , Mucormicose/diagnóstico , COVID-19/complicações , COVID-19/epidemiologia , Irã (Geográfico)/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , SARS-CoV-2/genética , Rhizopus/isolamento & purificação , Rhizopus/genética , Adulto Jovem , Mucor/isolamento & purificação , Mucor/genética , Encaminhamento e Consulta/estatística & dados numéricos , Estações do Ano , Doenças Orbitárias/microbiologia , Doenças Orbitárias/epidemiologia
7.
Microb Pathog ; 188: 106532, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215861

RESUMO

Rhizopus arrhizus is a fungus that can cause central nervous system infections in animals, resulting in high morbidity and mortality, but the mechanism of injury is rarely reported. In this study, we investigated the mechanism of Rhizopus arrhizus damage to the central nervous system of mice by observing the clinical neurological symptoms and resolving the pathological changes in the ultrastructure of brain tissues, combined with the alteration of apoptosis-related genes and immunohistochemistry (IHC). The results showed that all the mice in the treated group died, the brain pyknosis of neurons, there were black mycelium aggregates around the blood vessels, and apoptotic vesicles were produced. The RT-qPCR results showed that, compared with the control group, the relative transcriptome levels of Caspase 8 and BcL-2 genes were significantly increased (P < 0.05), the relative transcriptome level of Caspase 9 gene was highly significant (P < 0.01), the relative transcriptome level of Caspase 3 and Bax gene was significantly decreased (P < 0.05), and the ratio of Bcl-2/Bax was significantly increased (P < 0.05) in the brains of the treated group. TUNEL staining showed that the rate of neuronal apoptosis in the treated group of mice was extremely significantly higher than that in the control group (P < 0.01). This study shows that Rhizopus arrhizus strain XMLO1 causes brain damage by triggering neuronal apoptosis. This study provided a theoretical basis for revealing the mechanism of Rhizopus arrhizus infection.


Assuntos
Mucormicose , Rhizopus oryzae , Rhizopus , Animais , Camundongos , Rhizopus/genética , Proteína X Associada a bcl-2/genética , Apoptose , Encéfalo
8.
Int Microbiol ; 27(4): 1231-1247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38158469

RESUMO

BACKGROUND: Plukenetia volubilis Linneo is an oleaginous plant belonging to the family Euphorbiaceae. Due to its seeds containing a high content of edible oil and rich in vitamins, P. volubilis is cultivated as an economical plant worldwide. However, the cultivation and growth of P. volubilis is challenged by phytopathogen invasion leading to production loss. METHODS: In the current study, we tested the pathogenicity of fungal pathogens isolated from root rot infected P. volubilis plant tissues by inoculating them into healthy P. volubilis seedlings. Metagenomic sequencing was used to assess the shift in the fungal community of P. volubilis rhizosphere soil after root rot infection. RESULTS: Four Fusarium isolates and two Rhizopus isolates were found to be root rot causative agents of P. volubilis as they induced typical root rot symptoms in healthy seedlings. The metagenomic sequencing data showed that root rot infection altered the rhizosphere fungal community. In root rot infected soil, the richness and diversity indices increased or decreased depending on pathogens. The four most abundant phyla across all samples were Ascomycota, Glomeromycota, Basidiomycota, and Mortierellomycota. In infected soil, the relative abundance of each phylum increased or decreased depending on the pathogen and functional taxonomic classification. CONCLUSIONS: Based on our results, we concluded that Fusarium and Rhizopus species cause root rot infection of P. volubilis. In root rot infected P. volubilis, the shift in the rhizosphere fungal community was pathogen-dependent. These findings may serve as a key point for a future study on the biocontrol of root rot of P. volubilis.


Assuntos
Euphorbiaceae , Fusarium , Doenças das Plantas , Raízes de Plantas , Rhizopus , Rizosfera , Microbiologia do Solo , Fusarium/genética , Fusarium/classificação , Fusarium/isolamento & purificação , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rhizopus/genética , Rhizopus/classificação , Rhizopus/isolamento & purificação , Rhizopus/crescimento & desenvolvimento , Euphorbiaceae/microbiologia , Micobioma , Plântula/microbiologia , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA