Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38931006

RESUMO

Hepatitis B virus (HBV) remains a global health threat. Ribonuclease H (RNase H), part of the virus polymerase protein, cleaves the pgRNA template during viral genome replication. Inhibition of RNase H activity prevents (+) DNA strand synthesis and results in the accumulation of non-functional genomes, terminating the viral replication cycle. RNase H, though promising, remains an under-explored drug target against HBV. We previously reported the identification of a series of N-hydroxypyridinedione (HPD) imines that effectively inhibit the HBV RNase H. In our effort to further explore the HPD scaffold, we designed, synthesized, and evaluated 18 novel HPD oximes, as well as 4 structurally related minoxidil derivatives and 2 barbituric acid counterparts. The new analogs were docked on the RNase H active site and all proved able to coordinate the two Mg2+ ions in the catalytic site. All of the new HPDs effectively inhibited the viral replication in cell assays exhibiting EC50 values in the low µM range (1.1-7.7 µM) with low cytotoxicity, resulting in selectivity indexes (SI) of up to 92, one of the highest reported to date among HBV RNase H inhibitors. Our findings expand the structure-activity relationships on the HPD scaffold, facilitating the development of even more potent anti-HBV agents.


Assuntos
Antivirais , Vírus da Hepatite B , Ribonuclease H , Replicação Viral , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Ribonuclease H/metabolismo , Ribonuclease H/antagonistas & inibidores , Humanos , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Domínio Catalítico/efeitos dos fármacos , Oximas/química , Oximas/farmacologia , Estrutura Molecular , Células Hep G2 , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química
2.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731613

RESUMO

Ribonuclease H (RNase H) was identified as an important target for HIV therapy. Currently, no RNase H inhibitors have reached clinical status. Herein, a series of novel thiazolone[3,2-a]pyrimidine-containing RNase H inhibitors were developed, based on the hit compound 10i, identified from screening our in-house compound library. Some of these derivatives exhibited low micromolar inhibitory activity. Among them, compound 12b was identified as the most potent inhibitor of RNase H (IC50 = 2.98 µM). The experiment of magnesium ion coordination was performed to verify that this ligand could coordinate with magnesium ions, indicating its binding ability to the catalytic site of RNase H. Docking studies revealed the main interactions of this ligand with RNase H. A quantitative structure activity relationship (QSAR) was also conducted to disclose several predictive mathematic models. A molecular dynamics simulation was also conducted to determine the stability of the complex. Taken together, thiazolone[3,2-a]pyrimidine can be regarded as a potential scaffold for the further development of RNase H inhibitors.


Assuntos
Fármacos Anti-HIV , Simulação de Acoplamento Molecular , Pirimidinas , Relação Quantitativa Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Humanos , Simulação de Dinâmica Molecular , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Estrutura Molecular
3.
Bioorg Chem ; 148: 107495, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805850

RESUMO

Targeting Ribonuclease H (RNase H) has been considered a viable strategy for HIV therapy. In this study, a series of novel thiazolo[3, 2-a]pyrimidine derivatives were firstly designed and synthesized as potential inhibitors of HIV-1 RNase H. Among these compounds, A28 exhibited the most potent inhibition against HIV-1 RNase H with an IC50 value of 4.14 µM, which was about 5-fold increase in potency than the hit compound A1 (IC50 = 21.49 µM). To gain deeper insights into the structure-activity relationship (SAR), a CoMFA model was constructed to yield reasonable statistical results (q2 = 0.658 and R2 = 0.969). Results from magnesium ion chelation experiments and molecular docking studies revealed that these thiazolopyrimidine inhibitors may exert their inhibitory activity by binding to an allosteric site on RNase H at the interface between subunits p51 and p66. Furthermore, this analog demonstrated favorable physicochemical properties. Our findings provide valuable groundwork for further development of allosteric inhibitors targeting HIV-1 RNase H.


Assuntos
Desenho de Fármacos , HIV-1 , Simulação de Acoplamento Molecular , Pirimidinas , Relação Estrutura-Atividade , Pirimidinas/química , Pirimidinas/farmacologia , Pirimidinas/síntese química , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Tiazóis/química , Tiazóis/farmacologia , Tiazóis/síntese química , Estrutura Molecular , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Ribonuclease H do Vírus da Imunodeficiência Humana/metabolismo
4.
J Chem Inf Model ; 62(24): 6762-6774, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36184946

RESUMO

Chemotherapy of human immunodeficiency virus type-1 (HIV-1) has significantly developed over the last three decades. The emergence of drug-resistant variants is, however, still a severe problem. The RNase H activity of HIV-1 reverse transcriptase is an attractive target for a new class of antiviral drugs because there is no approved inhibitor. The nitro-furan-carbonyl and nitro-thiophene-carbonyl groups are potent scaffolds for the HIV-1 RNase H inhibitor. In this work, the binding structures of six inhibitory compounds were obtained by X-ray crystal analysis in a complex with a recombinant protein of HIV-1 RNase H domain. Every inhibitory compound was found to be bound to the catalytic site with the furan- or thiophene-ring coordinated to two divalent metal ions at the binding pocket. All the atoms in nitro, furan, carbonyl, and two metals were aligned in the nitro-furan derivatives. The straight line connecting nitro and carboxyl groups was parallel to the plane made by two metal ions and a furan O atom. The binding modes of the nitro-thiophene derivatives were slightly different from those of the nitro-furan ones. The nitro and carbonyl groups deviated from the plane made by two metals and a thiophene S atom. Molecular dynamics simulations suggested that the furan O or thiophene S atom and carbonyl O atom were firmly coordinated to the metal ions. The simulations made the planar nitro-furan moiety well aligned to the line connecting the two metal ions. In contrast, the nitro-thiophene derivatives were displaced from the initial positions after the simulations. The computational findings will be a sound basis for developing potent inhibitors for HIV-1 RNase H activity.


Assuntos
Fármacos Anti-HIV , HIV-1 , Ribonuclease H , Humanos , Domínio Catalítico , Cristalografia por Raios X , Furanos/farmacologia , Furanos/química , Transcriptase Reversa do HIV , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Metais/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Ribonuclease H/antagonistas & inibidores , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia
5.
Eur J Med Chem ; 243: 114760, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36152387

RESUMO

During HIV-1 genome replication, the viral reverse transcriptase-associated ribonuclease H (RT-associated RNase H) activity hydrolyzes the RNA strand of RNA/DNA heteroduplex intermediates. As of today, HIV-1 RNase H inhibitors (RHIs) remain at an investigational level, although none of them reached clinical trials. Therefore, RNase H remains as an attractive target for drug design and development. In this paper, we review the current status of medicinal chemistry strategies aimed at the discovery of novel RHIs, while discussing problems encountered in their characterization and further development, thereby providing an update on recent progress in the field.


Assuntos
HIV-1 , Ribonuclease H , Química Farmacêutica , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , Ribonuclease H/antagonistas & inibidores , RNA
6.
Antimicrob Agents Chemother ; 65(12): e0146021, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34516242

RESUMO

The hepatitis B virus (HBV) ribonuclease H (RNase H) is an attractive but unexploited drug target. Here, we addressed three limitations to the current state of RNase H inhibitor development: (a) Efficacy has been assessed only in transfected cell lines. (b) Cytotoxicity data are from transformed cell lines rather than primary cells. (c) It is unknown how the compounds work against nucleos(t)ide analog resistant HBV strains. Three RNase H inhibitors from different chemotypes, 110 (α-hydroxytropolone), 1133 (N-hydroxypyridinedione), and 1073 (N-hydroxynapthyridinone), were tested in HBV-infected HepG2-NTCP cells for inhibition of cccDNA accumulation and HBV product formation. 50% effective concentrations (EC50s) were 0.049-0.078 µM in the infection studies compared to 0.29-1.6 µM in transfected cells. All compounds suppressed cccDNA formation by >98% at 5 µM when added shortly after infection. HBV RNA, intracellular and extracellular DNA, and HBsAg secretion were all robustly suppressed. The greater efficacy of the inhibitors when added shortly after infection is presumably due to blocking amplification of the HBV cccDNA, which suppresses events downstream of cccDNA formation. The compounds had 50% cytotoxic concentrations (CC50s) of 16-100 µM in HepG2-derived cell lines but were nontoxic in primary human hepatocytes, possibly due to the quiescent state of the hepatocytes. The compounds had similar EC50s against replication of wild-type, lamivudine-resistant, and adefovir/lamivudine-resistant HBV, as expected because the RNase H inhibitors do not target the viral reverse transcriptase active site. These studies expand confidence in inhibiting the HBV RNase H as a drug strategy and support inclusion of RNase H inhibitors in novel curative drug combinations for HBV.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B , Hepatite B , Ribonuclease H/antagonistas & inibidores , DNA Circular/genética , DNA Viral/genética , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Humanos , Replicação Viral
7.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201561

RESUMO

Current therapeutic protocols for the treatment of HIV infection consist of the combination of diverse anti-retroviral drugs in order to reduce the selection of resistant mutants and to allow for the use of lower doses of each single agent to reduce toxicity. However, avoiding drugs interactions and patient compliance are issues not fully accomplished so far. Pursuing on our investigation on potential anti HIV multi-target agents we have designed and synthesized a small library of biphenylhydrazo 4-arylthiazoles derivatives and evaluated to investigate the ability of the new derivatives to simultaneously inhibit both associated functions of HIV reverse transcriptase. All compounds were active towards the two functions, although at different concentrations. The substitution pattern on the biphenyl moiety appears relevant to determine the activity. In particular, compound 2-{3-[(2-{4-[4-(hydroxynitroso)phenyl]-1,3-thiazol-2-yl} hydrazin-1-ylidene) methyl]-4-methoxyphenyl} benzamide bromide (EMAC2063) was the most potent towards RNaseH (IC50 = 4.5 mM)- and RDDP (IC50 = 8.0 mM) HIV RT-associated functions.


Assuntos
Fármacos Anti-HIV/química , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/metabolismo , Ribonuclease H/antagonistas & inibidores , Tiazóis/química , Tiazóis/farmacologia , Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/química , HIV-1/enzimologia , Concentração Inibidora 50 , Ligantes , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Tiazóis/síntese química
8.
J Enzyme Inhib Med Chem ; 36(1): 749-757, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33715562

RESUMO

Bioassay-guided fractionation of the ethyl acetate extract from Teucrium flavum subsp. glaucum, endowed with inhibitory activity towards the HIV-1 reverse transcriptase-associated RNase H function, led to the isolation of salvigenin (1), cirsimaritin (2) and cirsiliol (3) along with the neo-clerodanes teuflavin (4) and teuflavoside (5). Acid hydrolysis of the inactive teuflavoside provided three undescribed neo-clerodanes, flavuglaucins A-C (7-9) and one known neo-clerodane (10). Among all neo-clerodanes, flavuglaucin B showed the highest inhibitory activity towards RNase H function with a IC50 value of 9.1 µM. Molecular modelling and site-directed mutagenesis analysis suggested that flavuglaucin B binds into an allosteric pocket close to RNase H catalytic site. This is the first report of clerodane diterpenoids endowed with anti-reverse transcriptase activity. Neo-clerodanes represent a valid scaffold for the development of a new class of HIV-1 RNase H inhibitors.


Assuntos
Diterpenos Clerodânicos/farmacologia , Flavonoides/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Extratos Vegetais/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores , Teucrium/química , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/isolamento & purificação , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/isolamento & purificação , Ribonuclease H/genética , Ribonuclease H/metabolismo , Relação Estrutura-Atividade
9.
Future Med Chem ; 13(3): 269-286, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33399497

RESUMO

Reverse transcriptase and integrase are key enzymes that play a pivotal role in HIV-1 viral maturation and replication. Reverse transcriptase consists of two active sites: RNA-dependent DNA polymerase and RNase H. The catalytic domains of integrase and RNase H share striking similarity, comprising two aspartates and one glutamate residue, also known as the catalytic DDE triad, and a Mg2+ pair. The simultaneous inhibition of reverse transcriptase and integrase can be a rational drug discovery approach for combating the emerging drug resistance problem. In the present review, the dual inhibition of RNase H and integrase is systematically discussed, including rationality of design, journey of development, advancement and future perspective.


Assuntos
Fármacos Anti-HIV/química , Integrase de HIV/metabolismo , HIV-1/enzimologia , Ribonuclease H/metabolismo , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/uso terapêutico , Domínio Catalítico , Desenho de Fármacos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Integrase de HIV/química , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , Humanos , Ribonuclease H/antagonistas & inibidores , Relação Estrutura-Atividade
10.
Antiviral Res ; 179: 104815, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380149

RESUMO

Chronic Hepatitis B Virus infections afflict >250 million people and kill nearly 1 million annually. Current non-curative therapies are dominated by nucleos(t)ide analogs (NAs) that profoundly but incompletely suppress DNA synthesis by the viral reverse transcriptase. Residual HBV replication during NA therapy contributes to maintenance of the critical nuclear reservoir of the HBV genome, the covalently-closed circular DNA, and to ongoing infection of naive cells. Identification of next-generation NAs with improved efficacy and safety profiles, often through novel prodrug approaches, is the primary thrust of ongoing efforts to improve HBV replication inhibitors. Inhibitors of the HBV ribonuclease H, the other viral enzymatic activity essential for viral genomic replication, are in preclinical development. The complexity of HBV's reverse transcription pathway offers many other potential targets. HBV's protein-priming of reverse transcription has been briefly explored as a potential target, as have the host chaperones necessary for function of the HBV reverse transcriptase. Improved inhibitors of HBV reverse transcription would reduce HBV's replication-dependent persistence mechanisms and are therefore expected to become a backbone of future curative combination anti-HBV therapies.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Ensaios Clínicos como Assunto , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/virologia , Humanos , Camundongos , Nucleosídeos/farmacologia , Ribonuclease H/antagonistas & inibidores
11.
Molecules ; 25(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151066

RESUMO

Despite great efforts have been made in the prevention and therapy of human immunodeficiency virus (HIV-1) infection, however the difficulty to eradicate latent viral reservoirs together with the emergence of multi-drug-resistant strains require the search for innovative agents, possibly exploiting novel mechanisms of action. In this context, the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H), which is one of the few HIV-1 encoded enzymatic function still not targeted by any current drug, can be considered as an appealing target. In this work, we repurposed in-house anti-influenza derivatives based on the 1,2,4-triazolo[1,5-a]-pyrimidine (TZP) scaffold for their ability to inhibit HIV-1 RNase H function. Based on the results, a successive multi-step structural exploration around the TZP core was performed leading to identify catechol derivatives that inhibited RNase H in the low micromolar range without showing RT-associated polymerase inhibitory activity. The antiviral evaluation of the compounds in the MT4 cells showed any activity against HIV-1 (IIIB strain). Molecular modelling and mutagenesis analysis suggested key interactions with an unexplored allosteric site providing insights for the future optimization of this class of RNase H inhibitors.


Assuntos
Pirimidinas/química , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Sítios de Ligação , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/química , Relação Estrutura-Atividade
12.
Antiviral Res ; 171: 104613, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31550450

RESUMO

Ribonucleases H (RNases H) are endonucleolytic enzymes, evolutionarily related to retroviral integrases, DNA transposases, resolvases and numerous nucleases. RNases H cleave RNA in RNA/DNA hybrids and their activity plays an important role in the replication of prokaryotic and eukaryotic genomes, as well as in the replication of reverse-transcribing viruses. During reverse transcription, the RNase H activity of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) degrades the viral genomic RNA to facilitate the synthesis of viral double-stranded DNA. HIV and HBV reverse transcriptases contain DNA polymerase and RNase H domains that act in a coordinated manner to produce double-stranded viral DNA. Although RNase H inhibitors have not been developed into licensed drugs, recent progress has led to the identification of a number of small molecules with inhibitory activity at low micromolar or even nanomolar concentrations. These compounds can be classified into metal-chelating active site inhibitors and allosteric inhibitors. Among them, α-hydroxytropolones, N-hydroxyisoquinolinediones and N-hydroxypyridinediones represent chemotypes active against both HIV and HBV RNases H. In this review we summarize recent developments in the field including the identification of novel RNase H inhibitors, compounds with dual inhibitory activity, broad specificity and efforts to decrease their toxicity.


Assuntos
Antivirais/farmacologia , HIV/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Ribonuclease H/antagonistas & inibidores , Substituição de Aminoácidos , Antivirais/química , Domínio Catalítico , Ativação Enzimática , HIV/enzimologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Vírus da Hepatite B/enzimologia , Humanos , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Ribonuclease H/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
13.
Mikrochim Acta ; 186(6): 335, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31065868

RESUMO

A new fluorometric method is delineated for the detection of RNase H activity by combining DNAzyme with reduced graphene oxide (rGO). In the absence of RNase H, the fluorescence of FAM-labeled probe is quenched due to the strong adsorption on the rGO. The presence of RNase H can release the active DNAzyme from the DNA-RNA chimeric strand. This triggers the cleavage of the signal probe at the rA site with the help of the cofactor Mg2+. The recycle cleavage can directly result in the amplified signal emitted by the FAM-labeled short fragment. The method allows the activity of RNase H to be detected in a linear range of 0.01 to 5 U·mL-1. The detection limit of 0.018 U·mL-1 is calculated by the principle of three-time standard deviation over the blank signal. Then, RNase H-targeting natural compounds were screened for their inhibitory action. Among the investigated compounds, five were screened as RNase H inhibitors in a concentration-dependent manner, and 4 compounds were identified as activators. Finally, the method was reliably used for discriminating the difference of RNase H activity in human serum. It is found that RNase H activity was upregulated in patients with hepatitis C virus infection. Graphical abstract The schematic presentation of rGO-DNAzyme-based RNase H detection. RNase H triggers the active DNAzyme releasing from the DNA-RNA chimeric strand, which can cleavage probes to FAM-labeled short fragments and make the fluorescence signal cycle amplified.


Assuntos
Sondas de DNA/química , DNA Catalítico/química , Grafite/química , Ribonuclease H/sangue , Espectrometria de Fluorescência/métodos , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Fluoresceínas/química , Corantes Fluorescentes/química , Humanos , Limite de Detecção , Ribonuclease H/antagonistas & inibidores
14.
PLoS Genet ; 15(5): e1008020, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31125342

RESUMO

Breast cancer is the second leading cause of cancer-related deaths in the United States, with the majority of these deaths due to metastatic lesions rather than the primary tumor. Thus, a better understanding of the etiology of metastatic disease is crucial for improving survival. Using a haplotype mapping strategy in mouse and shRNA-mediated gene knockdown, we identified Rnaseh2c, a scaffolding protein of the heterotrimeric RNase H2 endoribonuclease complex, as a novel metastasis susceptibility factor. We found that the role of Rnaseh2c in metastatic disease is independent of RNase H2 enzymatic activity, and immunophenotyping and RNA-sequencing analysis revealed engagement of the T cell-mediated adaptive immune response. Furthermore, the cGAS-Sting pathway was not activated in the metastatic cancer cells used in this study, suggesting that the mechanism of immune response in breast cancer is different from the mechanism proposed for Aicardi-Goutières Syndrome, a rare interferonopathy caused by RNase H2 mutation. These results suggest an important novel, non-enzymatic role for RNASEH2C during breast cancer progression and add Rnaseh2c to a panel of genes we have identified that together could determine patients with high risk for metastasis. These results also highlight a potential new target for combination with immunotherapies and may contribute to a better understanding of the etiology of Aicardi-Goutières Syndrome autoimmunity.


Assuntos
Imunidade Adaptativa , Doenças Autoimunes do Sistema Nervoso/genética , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteínas de Neoplasias/genética , Malformações do Sistema Nervoso/genética , Ribonuclease H/genética , Animais , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/mortalidade , Doenças Autoimunes do Sistema Nervoso/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Metástase Linfática , Camundongos , Camundongos Nus , Mutação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Malformações do Sistema Nervoso/imunologia , Malformações do Sistema Nervoso/mortalidade , Malformações do Sistema Nervoso/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/imunologia , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/imunologia , Análise de Sequência de RNA , Transdução de Sinais , Análise de Sobrevida , Linfócitos T/imunologia , Linfócitos T/patologia
16.
Biotechnol J ; 14(7): e1800645, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30791223

RESUMO

Herein, the ribonuclease H (RNase H) activity assay based on the target-activated DNA polymerase activity is described. In this method, a detection probe composed of two functional sequences, a binding site for DNA polymerase and a catalytic substrate for RNase H, serves as a key component. The detection probe, at its initial state, suppresses the DNA polymerase activity, but it becomes destabilized by RNase H, which specifically hydrolyzes RNA in RNA/DNA hybrid duplexes. As a result, DNA polymerase recovers its activity and initiates multiple primer extension reactions in a separate TaqMan probe-based signal transduction module, leading to a significantly enhanced fluorescence "turn-on" signal. This assay can detect RNase H activity as low as 0.016 U mL-1 under optimized conditions. Furthermore, its potential use for evaluating RNase H inhibitors, which have been considered potential therapeutic agents against acquired immune deficiency syndrome (AIDS), is successfully explored. In summary, this approach is quite promising for the sensitive and accurate determination of enzyme activity and inhibitor screening.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Descoberta de Drogas/métodos , Ensaios Enzimáticos/métodos , Técnicas de Sonda Molecular , Ribonuclease H , Estabilidade Enzimática , Ribonuclease H/análise , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo
17.
Antiviral Res ; 164: 70-80, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30768944

RESUMO

We recently developed a screening system capable of identifying and evaluating inhibitors of the Hepatitis B virus (HBV) ribonuclease H (RNaseH), which is the only HBV enzyme not targeted by current anti-HBV therapies. Inhibiting the HBV RNaseH blocks synthesis of the positive-polarity DNA strand, causing early termination of negative-polarity DNA synthesis and accumulation of RNA:DNA heteroduplexes. We previously reported inhibition of HBV replication by N-hydroxyisoquinolinediones (HID) and N-hydroxypyridinediones (HPD) in human hepatoma cells. Here, we report results from our ongoing efforts to develop more potent anti-HBV RNaseH inhibitors in the HID/HPD compound classes. We synthesized and screened additional HIDs and HPDs for preferential suppression of positive-polarity DNA in cells replicating HBV. Three of seven new HIDs inhibited HBV replication, however, the therapeutic indexes (TI = CC50/EC50) did not improve over what we previously reported. All nine of the HPDs inhibited HBV replication with EC50s ranging from 110 nM to 4 µM. Cellular cytotoxicity was evaluated by four assays and CC50s ranged from 15 to >100 µM. The best compounds have a calculated TI of >300, which is a 16-fold improvement over the primary HPD hit. These studies indicate that the HPD compound class holds potential for antiviral discovery.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Isoquinolinas/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Ribonuclease H/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Antivirais/síntese química , Replicação do DNA/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Vírus da Hepatite B/fisiologia , Humanos , Isoquinolinas/síntese química , Piridinas/química , Piridonas/síntese química , Proteínas Virais/antagonistas & inibidores
18.
Analyst ; 144(4): 1420-1425, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30607414

RESUMO

To assay enzyme activities and screen its inhibitors, we demonstrated a novel label-free chemiluminescent (CL) aptasensor for the sensitive detection of RNase H activity based on hairpin technology. The specific hairpin structure was a DNA-RNA chimeric strand, which contained a streptavidin aptamer sequence and a blocked RNA sequence. RNase H could specifically recognize and cleave the RNA sequence of the DNA-RNA hybrid stem, liberating the streptavidin aptamer which could be accumulated by streptavidin-coated magnetic microspheres (SA-MP). Then the CL signal was generated due to an instantaneous derivatization reaction between the specific CL reagent 3,4,5-trimethoxyphenyl-glyoxal (TMPG) and the guanine (G) nucleotides in the SA aptamer. This novel assay method exhibited a good linear relationship in the range of 0.1-10 U mL-1 under the optimized conditions. Our results suggested that the developed system was a promising platform for monitoring the RNase H activity and showed great potential in biomedical studies and drug screening.


Assuntos
Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/farmacologia , Sequências Repetidas Invertidas , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/metabolismo , Células A549 , Regulação Alostérica , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Avaliação Pré-Clínica de Medicamentos , Estudos de Viabilidade , Humanos , Medições Luminescentes , Estreptavidina/metabolismo
19.
Nat Prod Res ; 33(12): 1798-1803, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29397771

RESUMO

During our search for potential templates of HIV-1 reverse transcriptase (RT) and integrase (IN) dual inhibitors, the methanolic extract obtained from aerial parts of Limonium morisianum was investigated. Repeated bioassay-guided chromatographic purifications led to the isolation of the following secondary metabolites: myricetin, myricetin 3-O-rutinoside, myricetin-3-O-(6″-O-galloyl)-ß-d-galactopyranoside, (-)-epigallocatechin 3-O-gallate, tryptamine, ferulic and phloretic acids. The isolated compounds were tested on both HIV-1 RT-associated RNase H and IN activities. Interestingly, (-)-epigallocatechin-3-O-gallate and myricetin-3-O-(6″-O-galloyl)-ß-d-galactopyranoside potently inhibited both enzyme activities with IC50 values ranging from 0.21 to 10.9 µM. Differently, tryptamine and ferulic acid exhibited a significant inhibition only on the IN strand transfer reaction, showing a selectivity for this viral enzyme. Taken together these results strongly support the potential of this plant as a valuable anti HIV-1 drugs source worthy of further investigations.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores de Integrase de HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Plumbaginaceae/química , Fármacos Anti-HIV/química , Flavonoides/química , Flavonoides/farmacologia , Galactose/análogos & derivados , Galactose/química , Galactose/farmacologia , Inibidores de Integrase de HIV/química , Itália , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores
20.
ACS Infect Dis ; 5(5): 655-658, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29565562

RESUMO

Hepatitis B virus (HBV) chronically infects >250 million people and kills nearly a million annually, and current antivirals cannot clear the infection or adequately suppress disease. The virus replicates by reverse transcription, and the dominant antiviral drugs are nucleos(t)ide analogs that target the viral reverse transcriptase. We are developing antivirals targeting the other essential viral enzymatic activity, the ribonuclease H (RNaseH). HBV RNaseH inhibitors with efficacies in the low micromolar to nanomolar range against viral replication in culture have been identified in the α-hydroxytropolone and hydroxyimide chemotypes. Here, we review the promise of RNaseH inhibitors, their current structure-activity relationships, and challenges to optimizing the inhibitors into leads for clinical assessment.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/enzimologia , Ribonuclease H/antagonistas & inibidores , Antivirais/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA