Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38517341

RESUMO

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Assuntos
Ribonucleoproteínas Nucleares Pequenas , Spliceossomos , Humanos , Adenosina Trifosfatases/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , RNA/metabolismo , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo
2.
Acta Crystallogr D Struct Biol ; 78(Pt 11): 1373-1383, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322420

RESUMO

Small nuclear ribonucleoprotein complexes (snRNPs) represent the main subunits of the spliceosome. While the assembly of the snRNP core particles has been well characterized, comparably little is known of the incorporation of snRNP-specific proteins and the mechanisms of snRNP recycling. U5 snRNP assembly in yeast requires binding of the the Aar2 protein to Prp8p as a placeholder to preclude premature assembly of the SNRNP200 helicase, but the role of the human AAR2 homolog has not yet been investigated in detail. Here, a crystal structure of human AAR2 in complex with the RNase H-like domain of the U5-specific PRPF8 (PRP8F RH) is reported, revealing a significantly different interaction between the two proteins compared with that in yeast. Based on the structure of the AAR2-PRPF8 RH complex, the importance of the interacting regions and residues was probed and AAR2 variants were designed that failed to stably bind PRPF8 in vitro. Protein-interaction studies of AAR2 with U5 proteins using size-exclusion chromatography reveal similarities and marked differences in the interaction patterns compared with yeast Aar2p and imply phosphorylation-dependent regulation of AAR2 reminiscent of that in yeast. It is found that in vitro AAR2 seems to lock PRPF8 RH in a conformation that is only compatible with the first transesterification step of the splicing reaction and blocks a conformational switch to the step 2-like, Mg2+-coordinated conformation that is likely during U5 snRNP biogenesis. These findings extend the picture of AAR2 PRP8 interaction from yeast to humans and indicate a function for AAR2 in the spliceosomal assembly process beyond its role as an SNRNP200 placeholder in yeast.


Assuntos
Ribonucleoproteína Nuclear Pequena U5 , Proteínas de Saccharomyces cerevisiae , Humanos , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Ribonuclease H/metabolismo , Proteínas de Ligação a RNA/química
3.
Nucleic Acids Res ; 48(8): 4572-4584, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196113

RESUMO

The single G protein of the spliceosome, Snu114, has been proposed to facilitate splicing as a molecular motor or as a regulatory G protein. However, available structures of spliceosomal complexes show Snu114 in the same GTP-bound state, and presently no Snu114 GTPase-regulatory protein is known. We determined a crystal structure of Snu114 with a Snu114-binding region of the Prp8 protein, in which Snu114 again adopts the same GTP-bound conformation seen in spliceosomes. Snu114 and the Snu114-Prp8 complex co-purified with endogenous GTP. Snu114 exhibited weak, intrinsic GTPase activity that was abolished by the Prp8 Snu114-binding region. Exchange of GTP-contacting residues in Snu114, or of Prp8 residues lining the Snu114 GTP-binding pocket, led to temperature-sensitive yeast growth and affected the same set of splicing events in vivo. Consistent with dynamic Snu114-mediated protein interactions during splicing, our results suggest that the Snu114-GTP-Prp8 module serves as a relay station during spliceosome activation and disassembly, but that GTPase activity may be dispensable for splicing.


Assuntos
Guanosina Trifosfato/química , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Modelos Moleculares , Conformação Proteica , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Annu Rev Biochem ; 89: 333-358, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31815536

RESUMO

Splicing of the precursor messenger RNA, involving intron removal and exon ligation, is mediated by the spliceosome. Together with biochemical and genetic investigations of the past four decades, structural studies of the intact spliceosome at atomic resolution since 2015 have led to mechanistic delineation of RNA splicing with remarkable insights. The spliceosome is proven to be a protein-orchestrated metalloribozyme. Conserved elements of small nuclear RNA (snRNA) constitute the splicing active site with two catalytic metal ions and recognize three conserved intron elements through duplex formation, which are delivered into the splicing active site for branching and exon ligation. The protein components of the spliceosome stabilize the conformation of the snRNA, drive spliceosome remodeling, orchestrate the movement of the RNA elements, and facilitate the splicing reaction. The overall organization of the spliceosome and the configuration of the splicing active site are strictly conserved between human and yeast.


Assuntos
Fatores de Processamento de RNA/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo , Domínio Catalítico , Sequência Conservada , Éxons , Humanos , Íntrons , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , RNA Helicases/química , RNA Helicases/genética , RNA Helicases/metabolismo , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/ultraestrutura
5.
Arch Biochem Biophys ; 677: 108159, 2019 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-31669268

RESUMO

Thioredoxin interacting protein (Txnip) is an α-arrestin protein that regulates pleiotropic biological responses. Txnip acts as a cancer suppressor and is a critical regulator of energy metabolism. To investigate molecular mechanisms involving Txnip, we searched for its protein binding partners using tandem affinity purification and proteomics analyses and identified several viable candidates, including HSP90, HSP70, and Prp31. We showed, by native PAGE, that Txnip is involved in the formation of high molecular weight complexes (1000-1300 kDa) in the nuclear fraction of cells treated with glucose and bortezomib. DTT treatment partly dissolved these high molecular weight complexes, suggesting that Txnip forms redox sensitive high-order nucleoprotein complexes. RNAse treatment slightly decreased the complex and RNA-seq showed differential expression of RNAs in the complex between Txnip protein overexpressing and control cells, indicating the involvement of RNAs in the complex. These results collectively provide a model whereby Txnip exerts its functions through multiple binding partners, forming transient higher-order complexes to regulate other signaling molecules.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas do Olho/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Proteínas de Transporte/química , Ditiotreitol/química , Ditiotreitol/farmacologia , Proteínas do Olho/química , Células HEK293 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Células MCF-7 , Peso Molecular , Oxirredução , Multimerização Proteica/efeitos dos fármacos , RNA/análise , RNA/metabolismo , Ribonuclease Pancreático/farmacologia , Ribonucleoproteína Nuclear Pequena U4-U6/química
6.
Mol Cell ; 75(3): 538-548.e3, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229405

RESUMO

The RNA catalytic core of spliceosomes as visualized by cryoelectron microscopy (cryo-EM) remains unchanged at different stages of splicing. However, we demonstrate that mutations within the core of yeast U6 snRNA modulate conformational changes between the two catalytic steps. We propose that the intramolecular stem-loop (ISL) of U6 exists in two competing states, changing between a default, non-catalytic conformation and a transient, catalytic conformation. Whereas stable interactions in the catalytic triplex promote catalysis and their disruptions favor exit from the catalytic conformation, destabilization of the lower ISL stem promotes catalysis and its stabilization supports exit from the catalytic conformation. Thus, in addition to the catalytic triplex, U6-ISL acts as an important dynamic component of the catalytic center. The relative flexibility of the lower U6-ISL stem is conserved across eukaryotes. Similar features are found in U6atac and domain V of group II introns, arguing for the generality of the proposed mechanism.


Assuntos
Processamento Alternativo/genética , RNA Nuclear Pequeno/ultraestrutura , Ribonucleoproteína Nuclear Pequena U4-U6/ultraestrutura , Spliceossomos/ultraestrutura , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Catálise , Microscopia Crioeletrônica , Íntrons/genética , Mutação/genética , Conformação de Ácido Nucleico , RNA Helicases/química , RNA Helicases/genética , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/química , Spliceossomos/genética
7.
Science ; 364(6438): 362-367, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30975767

RESUMO

The prespliceosome, comprising U1 and U2 small nuclear ribonucleoproteins (snRNPs) bound to the precursor messenger RNA 5' splice site (5'SS) and branch point sequence, associates with the U4/U6.U5 tri-snRNP to form the fully assembled precatalytic pre-B spliceosome. Here, we report cryo-electron microscopy structures of the human pre-B complex captured before U1 snRNP dissociation at 3.3-angstrom core resolution and the human tri-snRNP at 2.9-angstrom resolution. U1 snRNP inserts the 5'SS-U1 snRNA helix between the two RecA domains of the Prp28 DEAD-box helicase. Adenosine 5'-triphosphate-dependent closure of the Prp28 RecA domains releases the 5'SS to pair with the nearby U6 ACAGAGA-box sequence presented as a mobile loop. The structures suggest that formation of the 5'SS-ACAGAGA helix triggers remodeling of an intricate protein-RNA network to induce Brr2 helicase relocation to its loading sequence in U4 snRNA, enabling Brr2 to unwind the U4/U6 snRNA duplex to allow U6 snRNA to form the catalytic center of the spliceosome.


Assuntos
Sítios de Splice de RNA , Splicing de RNA , Spliceossomos/metabolismo , Microscopia Crioeletrônica , Humanos , Conformação Proteica , Dobramento de RNA , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/química , Spliceossomos/ultraestrutura
8.
Proc Natl Acad Sci U S A ; 116(6): 2193-2199, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674666

RESUMO

Pre-mRNA splicing must occur with extremely high fidelity. Spliceosomes assemble onto pre-mRNA guided by specific sequences (5' splice site, 3' splice site, and branchpoint). When splice sites are mutated, as in many hereditary diseases, the spliceosome can aberrantly select nearby pseudo- or "cryptic" splice sites, often resulting in nonfunctional protein. How the spliceosome distinguishes authentic splice sites from cryptic splice sites is poorly understood. We performed a Caenorhabditis elegans genetic screen to find cellular factors that affect the frequency with which the spliceosome uses cryptic splice sites and identified two alleles in core spliceosome component Prp8 that alter cryptic splicing frequency. Subsequent complementary genetic and structural analyses in yeast implicate these alleles in the stability of the spliceosome's catalytic core. However, despite a clear effect on cryptic splicing, high-throughput mRNA sequencing of these prp-8 mutant C. elegans reveals that overall alternative splicing patterns are relatively unchanged. Our data suggest the spliceosome evolved intrinsic mechanisms to reduce the occurrence of cryptic splicing and that these mechanisms are distinct from those that impact alternative splicing.


Assuntos
Processamento Alternativo , Sítios de Splice de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Proteínas de Saccharomyces cerevisiae/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos , Animais , Caenorhabditis elegans , Sequência Conservada , Frequência do Gene , Loci Gênicos , Modelos Moleculares , Conformação Proteica , Precursores de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Spliceossomos
9.
Nature ; 559(7714): 419-422, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29995849

RESUMO

The spliceosome catalyses the excision of introns from pre-mRNA in two steps, branching and exon ligation, and is assembled from five small nuclear ribonucleoprotein particles (snRNPs; U1, U2, U4, U5, U6) and numerous non-snRNP factors1. For branching, the intron 5' splice site and the branch point sequence are selected and brought by the U1 and U2 snRNPs into the prespliceosome1, which is a focal point for regulation by alternative splicing factors2. The U4/U6.U5 tri-snRNP subsequently joins the prespliceosome to form the complete pre-catalytic spliceosome. Recent studies have revealed the structural basis of the branching and exon-ligation reactions3, however, the structural basis of the early events in spliceosome assembly remains poorly understood4. Here we report the cryo-electron microscopy structure of the yeast Saccharomyces cerevisiae prespliceosome at near-atomic resolution. The structure reveals an induced stabilization of the 5' splice site in the U1 snRNP, and provides structural insights into the functions of the human alternative splicing factors LUC7-like (yeast Luc7) and TIA-1 (yeast Nam8), both of which have been linked to human disease5,6. In the prespliceosome, the U1 snRNP associates with the U2 snRNP through a stable contact with the U2 3' domain and a transient yeast-specific contact with the U2 SF3b-containing 5' region, leaving its tri-snRNP-binding interface fully exposed. The results suggest mechanisms for 5' splice site transfer to the U6 ACAGAGA region within the assembled spliceosome and for its subsequent conversion to the activation-competent B-complex spliceosome7,8. Taken together, the data provide a working model to investigate the early steps of spliceosome assembly.


Assuntos
Microscopia Crioeletrônica , Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura , Processamento Alternativo/genética , Modelos Moleculares , Sítios de Splice de RNA , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U1/ultraestrutura , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/química
10.
Nat Commun ; 9(1): 1749, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717126

RESUMO

The spliceosome removes introns from precursor messenger RNA (pre-mRNA) to produce mature mRNA. Prior to catalysis, spliceosomes are assembled de novo onto pre-mRNA substrates. During this assembly process, U6 small nuclear RNA (snRNA) undergoes extensive structural remodeling. The early stages of this remodeling process are chaperoned by U6 snRNP proteins Prp24 and the Lsm2-8 heteroheptameric ring. We now report a structure of the U6 snRNP from Saccharomyces cerevisiae. The structure reveals protein-protein contacts that position Lsm2-8 in close proximity to the chaperone "active site" of Prp24. The structure also shows how the Lsm2-8 ring specifically recognizes U6 snRNA that has been post-transcriptionally modified at its 3' end, thereby elucidating the mechanism by which U6 snRNPs selectively recruit 3' end-processed U6 snRNA into spliceosomes. Additionally, the structure reveals unanticipated homology between the C-terminal regions of Lsm8 and the cytoplasmic Lsm1 protein involved in mRNA decay.


Assuntos
RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Conformação Proteica , Processamento de Terminações 3' de RNA , Processamento Pós-Transcricional do RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos
11.
Nucleic Acids Res ; 46(8): 3833-3840, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29635373

RESUMO

Precursor message RNA (pre-mRNA) splicing is executed by the spliceosome, a large ribonucleoprotein (RNP) machinery that is comparable to the ribosome. Driven by the rapid progress of cryo-electron microscopy (cryo-EM) technology, high resolution structures of the spliceosome in its different splicing stages have proliferated over the past three years, which has greatly facilitated the mechanistic understanding of pre-mRNA splicing. As the largest and most conserved protein in the spliceosome, Prp8 plays a pivotal role within this protein-directed ribozyme. Structure determination of different spliceosomal complexes has revealed intimate and dynamic interactions between Prp8 and catalytic RNAs as well as with other protein factors during splicing. Here we review the structural dynamics of two elements of Prp8, the N-terminal domain (N-domain) and the Switch loop, and delineate the dynamic organisation and underlying functional significance of these two elements during spliceosome assembly and activation. Further biochemical and structural dissections of idiographic splicing stages are much needed for a complete understanding of the spliceosome and pre-mRNA splicing.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/química , Spliceossomos/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Endorribonucleases/química , Endorribonucleases/metabolismo , Humanos , Modelos Moleculares , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Cell Res ; 28(3): 307-322, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29360106

RESUMO

During each cycle of pre-mRNA splicing, the pre-catalytic spliceosome (B complex) is converted into the activated spliceosome (Bact complex), which has a well-formed active site but cannot proceed to the branching reaction. Here, we present the cryo-EM structure of the human Bact complex in three distinct conformational states. The EM map allows atomic modeling of nearly all protein components of the U2 small nuclear ribonucleoprotein (snRNP), including three of the SF3a complex and seven of the SF3b complex. The structure of the human Bact complex contains 52 proteins, U2, U5, and U6 small nuclear RNA (snRNA), and a pre-mRNA. Three distinct conformations have been captured, representing the early, mature, and late states of the human Bact complex. These complexes differ in the orientation of the Switch loop of Prp8, the splicing factors RNF113A and NY-CO-10, and most components of the NineTeen complex (NTC) and the NTC-related complex. Analysis of these three complexes and comparison with the B and C complexes reveal an ordered flux of components in the B-to-Bact and the Bact-to-B* transitions, which ultimately prime the active site for the branching reaction.


Assuntos
Modelos Moleculares , Spliceossomos/química , Spliceossomos/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica/métodos , Humanos , Conformação Proteica , Precursores de RNA/química , RNA Nuclear Pequeno/química , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Science ; 358(6368): 1278-1283, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29146870

RESUMO

The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5'-splice site (ss) recognition, branching, and intron release, but lacked information on 3'-ss recognition, exon ligation, and exon release. Here we report a cryo-electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3' ss is mainly recognized through non-Watson-Crick base pairing with the 5' ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3' exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3' exon, enabling it to pull the intron-exon or ligated exons in a 3' to 5' direction to achieve 3'-ss proofreading or exon release, respectively.


Assuntos
RNA Helicases DEAD-box/química , Complexos Multienzimáticos/química , Fatores de Processamento de RNA/química , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Spliceossomos/química , Pareamento de Bases , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/ultraestrutura , Éxons , Íntrons , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/ultraestrutura , Mutação , Conformação Proteica , Sítios de Splice de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/ultraestrutura , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/ultraestrutura , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/ultraestrutura
14.
Nature ; 546(7660): 617-621, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28530653

RESUMO

Intron removal requires assembly of the spliceosome on precursor mRNA (pre-mRNA) and extensive remodelling to form the spliceosome's catalytic centre. Here we report the cryo-electron microscopy structure of the yeast Saccharomyces cerevisiae pre-catalytic B complex spliceosome at near-atomic resolution. The mobile U2 small nuclear ribonucleoprotein particle (snRNP) associates with U4/U6.U5 tri-snRNP through the U2/U6 helix II and an interface between U4/U6 di-snRNP and the U2 snRNP SF3b-containing domain, which also transiently contacts the helicase Brr2. The 3' region of the U2 snRNP is flexibly attached to the SF3b-containing domain and protrudes over the concave surface of tri-snRNP, where the U1 snRNP may reside before its release from the pre-mRNA 5' splice site. The U6 ACAGAGA sequence forms a hairpin that weakly tethers the 5' splice site. The B complex proteins Prp38, Snu23 and Spp381 bind the Prp8 N-terminal domain and stabilize U6 ACAGAGA stem-pre-mRNA and Brr2-U4 small nuclear RNA interactions. These results provide important insights into the events leading to active site formation.


Assuntos
Microscopia Crioeletrônica , Saccharomyces cerevisiae , Spliceossomos/química , Spliceossomos/ultraestrutura , Sequência de Bases , Biocatálise , Domínio Catalítico , Íntrons/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Helicases/ultraestrutura , Precursores de RNA/genética , Precursores de RNA/metabolismo , Precursores de RNA/ultraestrutura , Sítios de Splice de RNA/genética , Splicing de RNA , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/metabolismo
15.
Proc Natl Acad Sci U S A ; 114(17): 4288-4293, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28408394

RESUMO

Major developments in cryo-electron microscopy in the past three or four years have led to the solution of a number of spliceosome structures at high resolution, e.g., the fully assembled but not yet active spliceosome (Bact), the spliceosome just after the first step of splicing (C), and the spliceosome activated for the second step (C*). Therefore 30 years of genetics and biochemistry of the spliceosome can now be interpreted at the structural level. I have closely examined the RNase H domain of Prp8 in each of the structures. Interestingly, the RNase H domain has different and unexpected roles in each of the catalytic steps of splicing.


Assuntos
Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Spliceossomos/química , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo
16.
Nucleic Acids Res ; 45(11): 6729-6745, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28379520

RESUMO

Pre-mRNA splicing is catalyzed by the spliceosome, a multi-megadalton ribonucleoprotein machine. Previous work from our laboratory revealed the splicing factor SRSF1 as a regulator of the SUMO pathway, leading us to explore a connection between this pathway and the splicing machinery. We show here that addition of a recombinant SUMO-protease decreases the efficiency of pre-mRNA splicing in vitro. By mass spectrometry analysis of anti-SUMO immunoprecipitated proteins obtained from purified splicing complexes formed along the splicing reaction, we identified spliceosome-associated SUMO substrates. After corroborating SUMOylation of Prp3 in cultured cells, we defined Lys 289 and Lys 559 as bona fide SUMO attachment sites within this spliceosomal protein. We further demonstrated that a Prp3 SUMOylation-deficient mutant while still capable of interacting with U4/U6 snRNP components, is unable to co-precipitate U2 and U5 snRNA and the spliceosomal proteins U2-SF3a120 and U5-Snu114. This SUMOylation-deficient mutant fails to restore the splicing of different pre-mRNAs to the levels achieved by the wild type protein, when transfected into Prp3-depleted cultured cells. This mutant also shows a diminished recruitment to active spliceosomes, compared to the wild type protein. These findings indicate that SUMO conjugation plays a role during the splicing process and suggest the involvement of Prp3 SUMOylation in U4/U6•U5 tri-snRNP formation and/or recruitment.


Assuntos
Proteínas Nucleares/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Spliceossomos/metabolismo , Sumoilação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/fisiologia , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/química , Precursores de RNA/química , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química
17.
Proc Natl Acad Sci U S A ; 114(18): 4739-4744, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416677

RESUMO

Pre-mRNA splicing is an essential step of eukaryotic gene expression that requires both high efficiency and high fidelity. Prp8 has long been considered the "master regulator" of the spliceosome, the molecular machine that executes pre-mRNA splicing. Cross-linking and structural studies place the RNaseH domain (RH) of Prp8 near the spliceosome's catalytic core and demonstrate that prp8 alleles that map to a 17-aa extension in RH stabilize it in one of two mutually exclusive structures, the biological relevance of which are unknown. We performed an extensive characterization of prp8 alleles that map to this extension and, using in vitro and in vivo reporter assays, show they fall into two functional classes associated with the two structures: those that promote error-prone/efficient splicing and those that promote hyperaccurate/inefficient splicing. Identification of global locations of endogenous splice-site activation by lariat sequencing confirms the fidelity effects seen in our reporter assays. Furthermore, we show that error-prone/efficient RH alleles suppress a prp2 mutant deficient at promoting the first catalytic step of splicing, whereas hyperaccurate/inefficient RH alleles exhibit synthetic sickness. Together our data indicate that prp8 RH alleles link splicing fidelity with catalytic efficiency by biasing the relative stabilities of distinct spliceosome conformations. We hypothesize that the spliceosome "toggles" between such error-prone/efficient and hyperaccurate/inefficient conformations during the splicing cycle to regulate splicing fidelity.


Assuntos
Alelos , Mutação , Splicing de RNA/fisiologia , RNA Fúngico , Ribonuclease H , Ribonucleoproteína Nuclear Pequena U4-U6 , Ribonucleoproteína Nuclear Pequena U5 , Proteínas de Saccharomyces cerevisiae , Domínios Proteicos , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Science ; 355(6321): 149-155, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-27980089

RESUMO

Each cycle of precursor messenger RNA (pre-mRNA) splicing comprises two sequential reactions, first freeing the 5' exon and generating an intron lariat-3' exon and then ligating the two exons and releasing the intron lariat. The second reaction is executed by the step II catalytically activated spliceosome (known as the C* complex). Here, we present the cryo-electron microscopy structure of a C* complex from Saccharomyces cerevisiae at an average resolution of 4.0 angstroms. Compared with the preceding spliceosomal complex (C complex), the lariat junction has been translocated by 15 to 20 angstroms to vacate space for the incoming 3'-exon sequences. The step I splicing factors Cwc25 and Yju2 have been dissociated from the active site. Two catalytic motifs from Prp8 (the 1585 loop and the ß finger of the ribonuclease H-like domain), along with the step II splicing factors Prp17 and Prp18 and other surrounding proteins, are poised to assist the second transesterification. These structural features, together with those reported for other spliceosomal complexes, yield a near-complete mechanistic picture on the splicing cycle.


Assuntos
Splicing de RNA , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/química , Spliceossomos/ultraestrutura , Motivos de Aminoácidos , Biocatálise , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Éxons , Fatores de Processamento de RNA/química , Fatores de Processamento de RNA/ultraestrutura , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/ultraestrutura , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
19.
Sci Rep ; 6: 37840, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27886254

RESUMO

Retinitis pigmentosa (RP) is a heterogeneous set of hereditary eye diseases, characterized by selective death of photoreceptor cells in the retina, resulting in progressive visual impairment. Approximately 20-40% of RP cases are autosomal dominant RP (ADRP). In this study, a Chinese ADRP family previously localized to the region between D1S2819 and D1S2635 was sequenced via whole-exome sequencing and a variant c.1345C > G (p.R449G) was identified in PRPF3. The Sanger sequencing was performed in probands of additional 95 Chinese ADRP families to investigate the contribution of PRPF3 to ADRP in Chinese population and another variant c.1532A > C (p.H511P) was detected in one family. These two variants, co-segregate with RP in two families respectively and both variants are predicted to be pathological. This is the first report about the spectrum of PRPF3 mutations in Chinese population, leading to the identification of two novel PRPF3 mutations. Only three clustered mutations in PRPF3 have been identified so far in several populations and all are in exon 11. Our study expands the spectrum of PRPF3 mutations in RP. We also demonstrate that PRPF3 mutations are responsible for 2.08% of ADRP families in this cohort indicating that PRPF3 mutations might be relatively rare in Chinese ADRP patients.


Assuntos
Povo Asiático/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Retinose Pigmentar/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Adolescente , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Modelos Moleculares , Mutação , Proteínas Nucleares/química , Linhagem , Conformação Proteica , Ribonucleoproteína Nuclear Pequena U4-U6/química , Sequenciamento do Exoma , Adulto Jovem
20.
Science ; 353(6306): 1399-1405, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27562955

RESUMO

The activated spliceosome (Bact) is in a catalytically inactive state and is remodeled into a catalytically active machine by the RNA helicase Prp2, but the mechanism is unclear. Here, we describe a 3D electron cryomicroscopy structure of the Saccharomyces cerevisiae Bact complex at 5.8-angstrom resolution. Our model reveals that in Bact, the catalytic U2/U6 RNA-Prp8 ribonucleoprotein core is already established, and the 5' splice site (ss) is oriented for step 1 catalysis but occluded by protein. The first-step nucleophile-the branchsite adenosine-is sequestered within the Hsh155 HEAT domain and is held 50 angstroms away from the 5'ss. Our structure suggests that Prp2 adenosine triphosphatase-mediated remodeling leads to conformational changes in Hsh155's HEAT domain that liberate the first-step reactants for catalysis.


Assuntos
RNA Nuclear Pequeno/química , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/ultraestrutura , Adenosina Trifosfatases , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , Éxons , Conformação Proteica , RNA Helicases/química , RNA Helicases/genética , Sítios de Splice de RNA , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA