Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.511
Filtrar
1.
Biomol NMR Assign ; 18(1): 111-118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691336

RESUMO

Human La-related protein 1 (HsLARP1) is involved in post-transcriptional regulation of certain 5' terminal oligopyrimidine (5'TOP) mRNAs as well as other mRNAs and binds to both the 5'TOP motif and the 3'-poly(A) tail of certain mRNAs. HsLARP1 is heavily involved in cell proliferation, cell cycle defects, and cancer, where HsLARP1 is significantly upregulated in malignant cells and tissues. Like all LARPs, HsLARP1 contains a folded RNA binding domain, the La motif (LaM). Our current understanding of post-transcriptional regulation that emanates from the intricate molecular framework of HsLARP1 is currently limited to small snapshots, obfuscating our understanding of the full picture on HsLARP1 functionality in post-transcriptional events. Here, we present the nearly complete resonance assignment of the LaM of HsLARP1, providing a significant platform for future NMR spectroscopic studies.


Assuntos
Motivos de Aminoácidos , Ressonância Magnética Nuclear Biomolecular , Humanos , Isótopos de Nitrogênio , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a RNA
2.
Nat Commun ; 15(1): 3747, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702310

RESUMO

In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.


Assuntos
RNA Helicases DEAD-box , Plasmodium falciparum , Proteínas de Protozoários , RNA Mensageiro , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Estágios do Ciclo de Vida/genética , RNA de Protozoário/metabolismo , RNA de Protozoário/genética , Estabilidade de RNA , Humanos , Malária Falciparum/parasitologia
3.
Biomolecules ; 14(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672417

RESUMO

Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.


Assuntos
Nucléolo Celular , Citosol , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Nucléolo Celular/metabolismo , Citosol/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/genética , Animais , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Processamento de Proteína Pós-Traducional
4.
Mol Cell ; 84(9): 1764-1782.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593806

RESUMO

mRNAs continually change their protein partners throughout their lifetimes, yet our understanding of mRNA-protein complex (mRNP) remodeling is limited by a lack of temporal data. Here, we present time-resolved mRNA interactome data by performing pulse metabolic labeling with photoactivatable ribonucleoside in human cells, UVA crosslinking, poly(A)+ RNA isolation, and mass spectrometry. This longitudinal approach allowed the quantification of over 700 RNA binding proteins (RBPs) across ten time points. Overall, the sequential order of mRNA binding aligns well with known functions, subcellular locations, and molecular interactions. However, we also observed RBPs with unexpected dynamics: the transcription-export (TREX) complex recruited posttranscriptionally after nuclear export factor 1 (NXF1) binding, challenging the current view of transcription-coupled mRNA export, and stress granule proteins prevalent in aged mRNPs, indicating roles in late stages of the mRNA life cycle. To systematically identify mRBPs with unknown functions, we employed machine learning to compare mRNA binding dynamics with Gene Ontology (GO) annotations. Our data can be explored at chronology.rna.snu.ac.kr.


Assuntos
RNA Mensageiro , Proteínas de Ligação a RNA , Humanos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Ligação Proteica , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Células HeLa , Fatores de Tempo , Aprendizado de Máquina
5.
Cell Rep ; 43(4): 114095, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38613787

RESUMO

Interferon (IFN) contributes to the host's antiviral response by inducing IFN-stimulated genes (ISGs). However, their functional targets and the mechanism of action remain elusive. Here, we report that one such ISG, TRIM21, interacts with and degrades the TRPV2 channel in myeloid cells, reducing its expression and providing host protection against viral infections. Moreover, viral infection upregulates TRIM21 in paracrine and autocrine manners, downregulating TRPV2 in neighboring cells to prevent viral spread to uninfected cells. Consistently, the Trim21-/- mice are more susceptible to HSV-1 and VSV infection than the Trim21+/+ littermates, in which viral susceptibility is rescued by inhibition or deletion of TRPV2. Mechanistically, TRIM21 catalyzes the K48-linked ubiquitination of TRPV2 at Lys295. TRPV2K295R is resistant to viral-infection-induced TRIM21-dependent ubiquitination and degradation, promoting viral infection more profoundly than wild-type TRPV2 when reconstituted into Lyz2-Cre;Trpv2fl/fl myeloid cells. These findings characterize targeting the TRIM21-TRPV2 axis as a conducive strategy to control viral spread to bystander cells.


Assuntos
Ribonucleoproteínas , Canais de Cátion TRPV , Ubiquitinação , Viroses , Animais , Humanos , Camundongos , Regulação para Baixo , Células HEK293 , Herpesvirus Humano 1/fisiologia , Interferons/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Ribonucleoproteínas/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Viroses/metabolismo
6.
Angew Chem Int Ed Engl ; 63(21): e202401004, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497898

RESUMO

The CRISPR/Cas9 system has emerged as a promising platform for gene editing; however, the lack of an efficient and safe delivery system to introduce it into cells continues to hinder clinical translation. Here, we report a rationally designed gene-editing nanoparticle (NP) formulation for brain applications: an sgRNA:Cas9 ribonucleoprotein complex is immobilized on the NP surface by oligonucleotides that are complementary to the sgRNA. Irradiation of the formulation with a near-infrared (NIR) laser generates heat in the NP, leading to the release of the ribonucleoprotein complex. The gene-editing potential of the formulation was demonstrated in vitro at the single-cell level. The safety and gene editing of the formulation were also demonstrated in the brains of reporter mice, specifically in the subventricular zone after intracerebral administration and in the olfactory bulb after intranasal administration. The formulation presented here offers a new strategy for the spatially controlled delivery of the CRISPR system to the brain.


Assuntos
Encéfalo , Sistemas CRISPR-Cas , Edição de Genes , Raios Infravermelhos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Animais , Encéfalo/metabolismo , Camundongos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Nanopartículas/química , Humanos
7.
Cancer Sci ; 115(5): 1476-1491, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38475938

RESUMO

Liver cancer is the sixth most common cancer and the third leading cause of cancer-related death globally. Despite efforts being made in last two decades in cancer diagnosis and treatment, the 5-year survival rate of liver cancer remains extremely low. TRIM21 participates in cancer metabolism, glycolysis, immunity, chemosensitivity and metastasis by targeting various substrates for ubiquitination. TRIM21 serves as a prognosis marker for human hepatocellular carcinoma (HCC), but the mechanism by which TRIM21 regulates HCC tumorigenesis and progression remains elusive. In this study, we demonstrated that TRIM21 protein levels were elevated in human HCC. Elevated TRIM21 expression was associated with HCC progression and poor survival. Knockdown of TRIM21 in HCC cell lines significantly impaired cell growth and metastasis and enhanced sorafenib-induced toxicity. Mechanistically, we found that knockdown of TRIM21 resulted in cytosolic translocation and inactivation of YAP. At the molecular level, we further identified that TRIM21 interacted and induced ubiquitination of MST1, which resulted in MST1 degradation and YAP activation. Knockdown of MST1 or overexpression of YAP reversed TRIM21 knockdown-induced impairment of HCC growth and chemosensitivity. Taken together, the current study demonstrates a novel mechanism that regulates the Hippo pathway and reveals TRM21 as a critical factor that promotes growth and chemoresistance in human HCC.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Neoplasias Hepáticas , Ribonucleoproteínas , Transdução de Sinais , Fatores de Transcrição , Ubiquitinação , Proteínas de Sinalização YAP , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Proteínas de Sinalização YAP/metabolismo , Proteínas de Sinalização YAP/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Animais , Regulação Neoplásica da Expressão Gênica , Masculino , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Técnicas de Silenciamento de Genes , Feminino , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética
8.
Adv Exp Med Biol ; 3234: 17-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507197

RESUMO

Throughout their entire life cycle, RNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions and very diverse functions in RNA metabolism, including splicing, translational regulation, ribosome assembly. Many RNPs remain poorly characterized due to the challenges inherent in their purification and subsequent biochemical characterization. Therefore, developing methods to isolate specific RNA-protein complexes is an important initial step toward understanding their function. Many elegant methodologies have been developed to isolate RNPs. This chapter describes different approaches and methods devised for RNA-specific purification of a target RNP. We focused on general methods for selecting RNPs that target a given RNA under conditions favourable for the copurification of associated factors including RNAs and protein components of the RNP.


Assuntos
RNA , Ribonucleoproteínas , RNA/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteômica
9.
Adv Exp Med Biol ; 3234: 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507196

RESUMO

Throughout their life cycle, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Each mRNA is part of multiple successive mRNP complexes that participate in their biogenesis, cellular localization, translation and decay. The dynamic composition of mRNP complexes and their structural remodelling play crucial roles in the control of gene expression. Studying the endogenous composition of different mRNP complexes is a major challenge. In this chapter, we describe the variety of protein-centric immunoprecipitation methods available for the identification of mRNP complexes and the requirements for their experimental settings.


Assuntos
Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Imunoprecipitação
10.
J Proteome Res ; 23(4): 1370-1378, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38472149

RESUMO

Messenger ribonucleoprotein particles (mRNPs) are vital for tissue-specific gene expression via mediating posttranscriptional regulations. However, proteomic profiling of proteins in mRNPs, i.e., mRNA-associated proteins (mRAPs), has been challenging at the tissue level. Herein, we report the development of formaldehyde cross-linking-based mRNA-associated protein profiling (FAXRAP), a chemical strategy that enables the identification of mRAPs in both cultured cells and intact mouse organs. Applying FAXRAP, tissue-specific mRAPs were systematically profiled in the mouse liver, kidney, heart, and brain. Furthermore, brain mRAPs in Parkinson's disease (PD) mouse model were investigated, which revealed a global decrease of mRNP assembly in the brain of mice with PD. We envision that FAXRAP will facilitate uncovering the posttranscriptional regulation networks in various biological systems.


Assuntos
Proteômica , Ribonucleoproteínas , Camundongos , Animais , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Formaldeído
11.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547866

RESUMO

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Assuntos
Fator de Iniciação 4F em Eucariotos , Fator de Iniciação Eucariótico 4G , Resposta ao Choque Térmico , Proteínas de Ligação a Poli(A) , Biossíntese de Proteínas , RNA Mensageiro , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Resposta ao Choque Térmico/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Ligação Proteica , RNA Fúngico/metabolismo , RNA Fúngico/genética
12.
PLoS Biol ; 22(2): e3002527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422113

RESUMO

TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.


Assuntos
Proteínas de Ligação a DNA , Ribonucleoproteínas , Proteinopatias TDP-43 , Humanos , Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/metabolismo , Substâncias Macromoleculares/metabolismo , Ribonucleoproteínas/metabolismo , RNA , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/metabolismo
13.
Cell ; 187(3): 733-749.e16, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306984

RESUMO

Autoimmune diseases disproportionately affect females more than males. The XX sex chromosome complement is strongly associated with susceptibility to autoimmunity. Xist long non-coding RNA (lncRNA) is expressed only in females to randomly inactivate one of the two X chromosomes to achieve gene dosage compensation. Here, we show that the Xist ribonucleoprotein (RNP) complex comprising numerous autoantigenic components is an important driver of sex-biased autoimmunity. Inducible transgenic expression of a non-silencing form of Xist in male mice introduced Xist RNP complexes and sufficed to produce autoantibodies. Male SJL/J mice expressing transgenic Xist developed more severe multi-organ pathology in a pristane-induced lupus model than wild-type males. Xist expression in males reprogrammed T and B cell populations and chromatin states to more resemble wild-type females. Human patients with autoimmune diseases displayed significant autoantibodies to multiple components of XIST RNP. Thus, a sex-specific lncRNA scaffolds ubiquitous RNP components to drive sex-biased immunity.


Assuntos
Autoanticorpos , Doenças Autoimunes , RNA Longo não Codificante , Animais , Feminino , Humanos , Masculino , Camundongos , Autoanticorpos/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação do Cromossomo X , Caracteres Sexuais
14.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323828

RESUMO

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Assuntos
Vírus da Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Endopeptidases/metabolismo , Sítios Internos de Entrada Ribossomal , Proteases Virais 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
15.
Nat Commun ; 15(1): 1727, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409124

RESUMO

The delivery of CRISPR ribonucleoproteins (RNPs) for genome editing in vitro and in vivo has important advantages over other delivery methods, including reduced off-target and immunogenic effects. However, effective delivery of RNPs remains challenging in certain cell types due to low efficiency and cell toxicity. To address these issues, we engineer self-deliverable RNPs that can promote efficient cellular uptake and carry out robust genome editing without the need for helper materials or biomolecules. Screening of cell-penetrating peptides (CPPs) fused to CRISPR-Cas9 protein identifies potent constructs capable of efficient genome editing of neural progenitor cells. Further engineering of these fusion proteins establishes a C-terminal Cas9 fusion with three copies of A22p, a peptide derived from human semaphorin-3a, that exhibits substantially improved editing efficacy compared to other constructs. We find that self-deliverable Cas9 RNPs generate robust genome edits in clinically relevant genes when injected directly into the mouse striatum. Overall, self-deliverable Cas9 proteins provide a facile and effective platform for genome editing in vitro and in vivo.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Camundongos , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/metabolismo , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Encéfalo/metabolismo
16.
Methods Mol Biol ; 2770: 123-134, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351451

RESUMO

Gene editing in the murine germline is a valuable approach to investigate germ cell maturation and generate mouse models. Several studies demonstrated that CRISPR/Cas9 alters the genome of cultured male mouse germline stem cells delivered by electroporation of plasmids. Recently, we showed proof-of-principle that gene knockout can be effectively targeted in mouse germline stem cells by lipofecting Cas9:gRNA ribonucleoproteins. In this protocol, we describe a simple, fast, and cheap workflow for gene editing via the lipofection of non-integrative ribonucleoproteins in murine male germline stem cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Células Germinativas/metabolismo
17.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338898

RESUMO

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system is a revolutionary tool for precise genome editing across various cell types. Ribonucleoproteins (RNPs), encompassing the Cas9 protein and guide RNA (gRNA), have emerged as a promising technique due to their increased specificity and reduced off-target effects. This method eliminates the need for plasmid DNA introduction, thereby preventing potential integration of foreign DNA into the target cell genome. Given the requirement for large quantities of highly purified protein in various Cas9 studies, we present an efficient and simple method for the preparation of recombinant Streptococcus pyogenes Cas9 (SpCas9) protein. This method leverages the Small Ubiquitin Like Modifier(SUMO) tag system, which includes metal-affinity chromatography followed by anion-exchange chromatography purification. Furthermore, we compare two methods of CRISPR-Cas9 system delivery into cells: transfection with plasmid DNA encoding the CRISPR-Cas9 system and RNP transfection with the Cas9-gRNA complex. We estimate the efficiency of genomic editing and protein lifespan post-transfection. Intriguingly, we found that RNP treatment of cells, even in the absence of a transfection system, is a relatively efficient method for RNP delivery into cell culture. This discovery is particularly promising as it can significantly reduce cytotoxicity, which is crucial for certain cell cultures such as induced pluripotent stem cells (iPSCs).


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , DNA
18.
Nucleic Acids Res ; 52(6): 3310-3326, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38165001

RESUMO

L1TD1 is a cytoplasmic RNA-binding protein specifically expressed in pluripotent stem cells and, unlike its mouse ortholog, is essential for the maintenance of stemness in human cells. Although L1TD1 is the only known protein-coding gene domesticated from a LINE-1 (L1) retroelement, the functional legacy of its ancestral protein, ORF1p of L1, and how it is manifested in L1TD1 are still unknown. Here, we determined RNAs associated with L1TD1 and found that, like ORF1p, L1TD1 binds L1 RNAs and localizes to high-density ribonucleoprotein (RNP) condensates. Unexpectedly, L1TD1 enhanced the translation of a subset of mRNAs enriched in the condensates. L1TD1 depletion promoted the formation of stress granules in embryonic stem cells. In HeLa cells, ectopically expressed L1TD1 facilitated the dissolution of stress granules and granules formed by pathological mutations of TDP-43 and FUS. The glutamate-rich domain and the ORF1-homology domain of L1TD1 facilitated dispersal of the RNPs and induced autophagy, respectively. These results provide insights into how L1TD1 regulates gene expression in pluripotent stem cells. We propose that the ability of L1TD1 to dissolve stress granules may provide novel opportunities for treatment of neurodegenerative diseases caused by disturbed stress granule dynamics.


Assuntos
Células-Tronco Embrionárias , Proteínas de Ligação a RNA , Ribonucleoproteínas , Animais , Humanos , Camundongos , Grânulos Citoplasmáticos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
Bioessays ; 46(3): e2300203, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38175843

RESUMO

Cells contain a myriad of membraneless ribonucleoprotein (RNP) condensates with distinct compositions of proteins and RNAs. RNP condensates participate in different cellular activities, including RNA storage, mRNA translation or decay, stress response, etc. RNP condensates are assembled via liquid-liquid phase separation (LLPS) driven by multivalent interactions. Transition of RNP condensates into bodies with abnormal material properties, such as solid-like amyloid structures, is associated with the pathogenesis of various diseases. In this review, we focus on how RNAs regulate multiple aspects of RNP condensates, such as dynamic assembly and/or disassembly and biophysical properties. RNA properties - including concentration, sequence, length and structure - also determine the phase behaviors of RNP condensates. RNA is also involved in specifying autophagic degradation of RNP condensates. Unraveling the role of RNA in RNPs provides novel insights into pathological accumulation of RNPs in various diseases. This new understanding can potentially be harnessed to develop therapeutic strategies.


Assuntos
Condensados Biomoleculares , RNA , RNA/genética , Ribonucleoproteínas/metabolismo , Autofagia
20.
J Virol ; 98(1): e0156823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054738

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high case mortality rates, which is caused by Dabie bandavirus (DBV), a novel pathogen also termed as SFTS virus (SFTSV). Currently, no specific therapeutic drugs or vaccines are available for SFTS. Myxovirus resistance protein A (MxA) has been shown to inhibit multiple viral pathogens; however, the role of MxA in DBV infection is unknown. Here, we demonstrated that DBV stimulates MxA expression which, in turn, restricts DBV infection. Mechanistic target analysis revealed that MxA specifically interacts with the viral nucleocapsid protein (NP) in a manner independent of RNA. Minigenome reporter assay showed that in agreement with its targeting of NP, MxA inhibits DBV ribonucleoprotein (RNP) activity. In detail, MxA interacts with the NP N-terminal and disrupts the interaction of NP with the viral RNA-dependent RNA polymerase (RdRp) but not NP multimerization, the critical activities of NP for RNP formation and function. Furthermore, MxA N-terminal domain was identified as the functional domain inhibiting DBV infection, and, consistently, then was shown to interact with NP and obstruct the NP-RdRp interaction. Additionally, threonine 103 within the N-terminal domain is important for MxA inhibition to DBV, and its mutation (T103A) attenuates MxA binding to NP and obstruction of the NP-RdRp interaction. This study uncovers MxA inhibition of DBV with a series of functional and mechanistical analyses, providing insights into the virus-host interactions and probably helping inform the development of antiviral agents in the future.IMPORTANCEDBV/SFTSV is an emerging high-pathogenic virus. Since its first identification in China in 2009, cases of DBV infection have been reported in many other countries, posing a significant threat to public health. Uncovering the mechanisms of DBV-host interactions is necessary to understand the viral pathogenesis and host response and may advance the development of antiviral therapeutics. Here, we found that host factor MxA whose expression is induced by DBV restricts the virus infection. Mechanistically, MxA specifically interacts with the viral NP and blocks the NP-RdRp interaction, inhibiting the viral RNP activity. Further studies identified the key domain and amino acid residue required for MxA inhibition to DBV. Consistently, they were then shown to be important for MxA targeting of NP and obstruction of the NP-RdRp association. These findings unravel the restrictive role of MxA in DBV infection and the underlying mechanism, expanding our knowledge of the virus-host interactions.


Assuntos
Phlebovirus , Febre Grave com Síndrome de Trombocitopenia , Humanos , Proteínas do Nucleocapsídeo , Ribonucleoproteínas/metabolismo , RNA Polimerase Dependente de RNA , Febre Grave com Síndrome de Trombocitopenia/metabolismo , Febre Grave com Síndrome de Trombocitopenia/virologia , Phlebovirus/fisiologia , Interações Hospedeiro-Patógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA