Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 614(7946): 175-181, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482135

RESUMO

Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism1. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.


Assuntos
Microscopia Crioeletrônica , Ribossomos Mitocondriais , Ribonucleoproteínas , Subunidades Ribossômicas Menores , Saccharomyces cerevisiae , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , RNA Ribossômico , GTP Fosfo-Hidrolases , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Subunidades Ribossômicas Menores/química , Subunidades Ribossômicas Menores/metabolismo , Subunidades Ribossômicas Menores/ultraestrutura
2.
Commun Biol ; 4(1): 858, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244608

RESUMO

The single-stranded, negative-sense, viral genomic RNA (vRNA) of influenza A virus is encapsidated by viral nucleoproteins (NPs) and an RNA polymerase to form a ribonucleoprotein complex (vRNP) with a helical, rod-shaped structure. The vRNP is responsible for transcription and replication of the vRNA. However, the vRNP conformation during RNA synthesis is not well understood. Here, using high-speed atomic force microscopy and cryo-electron microscopy, we investigated the native structure of influenza A vRNPs during RNA synthesis in vitro. Two distinct types of vRNPs were observed in association with newly synthesized RNAs: an intact, helical rod-shaped vRNP connected with a folded RNA and a deformed vRNP associated with a looped RNA. Interestingly, the looped RNA was a double-stranded RNA, which likely comprises a nascent RNA and the template RNA detached from NPs of the vRNP. These results suggest that while some vRNPs keep their helical structures during RNA synthesis, for the repeated cycle of RNA synthesis, others accidentally become structurally deformed, which likely results in failure to commence or continue RNA synthesis. Thus, our findings provide the ultrastructural feature of vRNPs during RNA synthesis.


Assuntos
Vírus da Influenza A/metabolismo , RNA Viral/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Microscopia Crioeletrônica/métodos , Humanos , Vírus da Influenza A/genética , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Microscopia de Força Atômica/métodos , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/química , RNA Viral/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestrutura , Proteínas Virais/genética , Proteínas Virais/ultraestrutura , Replicação Viral/genética
3.
Nature ; 593(7859): 454-459, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33981033

RESUMO

Telomerase is unique among the reverse transcriptases in containing a noncoding RNA (known as telomerase RNA (TER)) that includes a short template that is used for the processive synthesis of G-rich telomeric DNA repeats at the 3' ends of most eukaryotic chromosomes1. Telomerase maintains genomic integrity, and its activity or dysregulation are critical determinants of human longevity, stem cell renewal and cancer progression2,3. Previous cryo-electron microscopy structures have established the general architecture, protein components and stoichiometries of Tetrahymena and human telomerase, but our understandings of the details of DNA-protein and RNA-protein interactions and of the mechanisms and recruitment involved remain limited4-6. Here we report cryo-electron microscopy structures of active Tetrahymena telomerase with telomeric DNA at different steps of nucleotide addition. Interactions between telomerase reverse transcriptase (TERT), TER and DNA reveal the structural basis of the determination of the 5' and 3' template boundaries, handling of the template-DNA duplex and separation of the product strand during nucleotide addition. The structure and binding interface between TERT and telomerase protein p50 (a homologue of human TPP17,8) define conserved interactions that are required for telomerase activation and recruitment to telomeres. Telomerase La-related protein p65 remodels several regions of TER, bridging the 5' and 3' ends and the conserved pseudoknot to facilitate assembly of the TERT-TER catalytic core.


Assuntos
Microscopia Crioeletrônica , Telomerase/química , Telomerase/metabolismo , Telômero/metabolismo , Tetrahymena thermophila/enzimologia , Motivos de Aminoácidos , Sítios de Ligação , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Humanos , Modelos Moleculares , Nucleotídeos , Ligação Proteica , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Complexo Shelterina/química , Complexo Shelterina/metabolismo , Telomerase/ultraestrutura , Telômero/genética , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Moldes Genéticos , Tetrahymena thermophila/ultraestrutura
4.
Nature ; 593(7859): 449-453, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33883742

RESUMO

Telomerase adds telomeric repeats at chromosome ends to compensate for the telomere loss that is caused by incomplete genome end replication1. In humans, telomerase is upregulated during embryogenesis and in cancers, and mutations that compromise the function of telomerase result in disease2. A previous structure of human telomerase at a resolution of 8 Å revealed a vertebrate-specific composition and architecture3, comprising a catalytic core that is flexibly tethered to an H and ACA (hereafter, H/ACA) box ribonucleoprotein (RNP) lobe by telomerase RNA. High-resolution structural information is necessary to develop treatments that can effectively modulate telomerase activity as a therapeutic approach against cancers and disease. Here we used cryo-electron microscopy to determine the structure of human telomerase holoenzyme bound to telomeric DNA at sub-4 Å resolution, which reveals crucial DNA- and RNA-binding interfaces in the active site of telomerase as well as the locations of mutations that alter telomerase activity. We identified a histone H2A-H2B dimer within the holoenzyme that was bound to an essential telomerase RNA motif, which suggests a role for histones in the folding and function of telomerase RNA. Furthermore, this structure of a eukaryotic H/ACA RNP reveals the molecular recognition of conserved RNA and protein motifs, as well as interactions that are crucial for understanding the molecular pathology of many mutations that cause disease. Our findings provide the structural details of the assembly and active site of human telomerase, which paves the way for the development of therapeutic agents that target this enzyme.


Assuntos
Microscopia Crioeletrônica , DNA/química , DNA/ultraestrutura , Telomerase/química , Telomerase/ultraestrutura , Telômero , Sítios de Ligação , Domínio Catalítico , DNA/genética , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Telômero/ultraestrutura
5.
Viruses ; 12(9)2020 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872471

RESUMO

Rhabdoviruses, as single-stranded, negative-sense RNA viruses within the order Mononegavirales, are characterised by bullet-shaped or bacteroid particles that contain a helical ribonucleoprotein complex (RNP). Here, we review the components of the RNP and its higher-order structural assembly.


Assuntos
Rhabdoviridae/química , Ribonucleoproteínas/química , Proteínas Virais/química , Proteínas do Nucleocapsídeo/química , Proteínas do Nucleocapsídeo/ultraestrutura , Conformação Proteica , Rhabdoviridae/genética , Ribonucleoproteínas/ultraestrutura , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/ultraestrutura , Proteínas Virais/ultraestrutura , Proteínas do Complexo da Replicase Viral/química , Proteínas do Complexo da Replicase Viral/ultraestrutura , Vírion/química
6.
Nat Commun ; 11(1): 3474, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651392

RESUMO

RNase MRP is an essential eukaryotic ribonucleoprotein complex involved in the maturation of rRNA and the regulation of the cell cycle. RNase MRP is related to the ribozyme-based RNase P, but it has evolved to have distinct cellular roles. We report a cryo-EM structure of the S. cerevisiae RNase MRP holoenzyme solved to 3.0 Å. We describe the structure of this 450 kDa complex, interactions between its components, and the organization of its catalytic RNA. We show that some of the RNase MRP proteins shared with RNase P undergo an unexpected RNA-driven remodeling that allows them to bind to divergent RNAs. Further, we reveal how this RNA-driven protein remodeling, acting together with the introduction of new auxiliary elements, results in the functional diversification of RNase MRP and its progenitor, RNase P, and demonstrate structural underpinnings of the acquisition of new functions by catalytic RNPs.


Assuntos
Microscopia Crioeletrônica , Endorribonucleases/ultraestrutura , Ribonucleoproteínas/ultraestrutura , Carbono/química , Catálise , Domínio Catalítico , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Catalítico/química , RNA Fúngico/química , Ribonuclease P/química , Saccharomyces cerevisiae/enzimologia
7.
Nucleic Acids Res ; 48(12): 6811-6823, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32496535

RESUMO

A key aim in exploiting CRISPR-Cas is gRNA engineering to introduce additional functionalities, ranging from individual nucleotide changes that increase efficiency of on-target binding to the inclusion of larger functional RNA aptamers or ribonucleoproteins (RNPs). Cas9-gRNA interactions are crucial for complex assembly, but several distinct regions of the gRNA are amenable to modification. We used in vitro ensemble and single-molecule assays to assess the impact of gRNA structural alterations on RNP complex formation, R-loop dynamics, and endonuclease activity. Our results indicate that RNP formation was unaffected by any of our modifications. R-loop formation and DNA cleavage activity were also essentially unaffected by modification of the Upper Stem, first Hairpin and 3' end. In contrast, we found that 5' additions of only two or three nucleotides could reduce R-loop formation and cleavage activity of the RuvC domain relative to a single nucleotide addition. Such modifications are a common by-product of in vitro transcribed gRNA. We also observed that addition of a 20 nt RNA hairpin to the 5' end of a gRNA still supported RNP formation but produced a stable ∼9 bp R-loop that could not activate DNA cleavage. Consideration of these observations will assist in successful gRNA design.


Assuntos
Sistemas CRISPR-Cas/genética , Clivagem do DNA , Estruturas R-Loop/genética , RNA Guia de Cinetoplastídeos/genética , Aptâmeros de Nucleotídeos/genética , Edição de Genes , Conformação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/ultraestrutura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestrutura , Imagem Individual de Molécula , Streptococcus pyogenes/genética
9.
Nat Commun ; 10(1): 3230, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324804

RESUMO

Liquid-liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold ArtiG to generate concentration-dependent RNA-protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation. We demonstrate that intracellular RNA seeds the nucleation of the condensates, as it provides molecular cues to locally coordinate the formation of endogenous high-order RNP assemblies. Interestingly, the co-segregation of intracellular components ultimately impacts the size of the phase-separated condensates. Thus, RNA arises as an architectural element that can influence the composition and the morphological outcome of the condensate phases in an intracellular context.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Ribonucleoproteínas/metabolismo , Grânulos Citoplasmáticos/química , Células HeLa , Humanos , Cinética , Microscopia Eletrônica de Transmissão , Ligação Proteica , Mapas de Interação de Proteínas , RNA/química , Proteínas de Ligação a RNA/química , Ribonucleoproteínas/química , Ribonucleoproteínas/ultraestrutura
10.
Sci Rep ; 9(1): 9639, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270364

RESUMO

Rabies virus is an important zoonotic pathogen. Its bullet shaped particle contains a helical nucleocapsid. We used cryo-electron tomography and subsequent subtomogram averaging to determine the structure of its ribonucleoprotein. The resulting electron density map allowed for confident fitting of the N-protein crystal structure, indicating that interactions between neighbouring N-proteins are only mediated by N- and C-terminal protruding subdomains (aa 1-27 and aa 355-372). Additional connecting densities, likely stabilizing the ribonucleoprotein complex, are present between neighbouring M-protein densities on the same helical turn and between M- and N-protein densities located on neighbouring helical turns, but not between M-proteins of different turns, as is observed for the related Vesicular stomatitis virus (VSV). This insight into the architecture of the rabies virus nucleocapsid highlights the surprising structural divergence of large biological assemblies even if the building blocks - here exemplified by VSV M- and N-protein - are structurally closely related.


Assuntos
Microscopia Crioeletrônica/métodos , Vírus da Raiva/metabolismo , Vírus da Raiva/ultraestrutura , Raiva/virologia , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Vírion/ultraestrutura , Células HEK293 , Humanos , RNA Viral/análise , RNA Viral/metabolismo
11.
Nat Methods ; 15(11): 947-954, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30377372

RESUMO

Increasingly, cryo-electron microscopy (cryo-EM) is used to determine the structures of RNA-protein assemblies, but nearly all maps determined with this method have biologically important regions where the local resolution does not permit RNA coordinate tracing. To address these omissions, we present de novo ribonucleoprotein modeling in real space through assembly of fragments together with experimental density in Rosetta (DRRAFTER). We show that DRRAFTER recovers near-native models for a diverse benchmark set of RNA-protein complexes including the spliceosome, mitochondrial ribosome, and CRISPR-Cas9-sgRNA complexes; rigorous blind tests include yeast U1 snRNP and spliceosomal P complex maps. Additionally, to aid in model interpretation, we present a method for reliable in situ estimation of DRRAFTER model accuracy. Finally, we apply DRRAFTER to recently determined maps of telomerase, the HIV-1 reverse transcriptase initiation complex, and the packaged MS2 genome, demonstrating the acceleration of accurate model building in challenging cases.


Assuntos
Biologia Computacional/métodos , Microscopia Crioeletrônica/métodos , Modelos Moleculares , RNA/ultraestrutura , Ribonucleoproteínas/ultraestrutura , Software , Algoritmos , Humanos , Conformação Proteica , RNA/metabolismo , Ribonucleoproteínas/metabolismo
12.
Mol Cell ; 72(4): 715-726.e3, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415953

RESUMO

Compared to noncoding RNAs (ncRNAs), such as rRNAs and ribozymes, for which high-resolution structures abound, little is known about the tertiary structures of mRNAs. In eukaryotic cells, newly made mRNAs are packaged with proteins in highly compacted mRNA particles (mRNPs), but the manner of this mRNA compaction is unknown. Here, we developed and implemented RIPPLiT (RNA immunoprecipitation and proximity ligation in tandem), a transcriptome-wide method for probing the 3D conformations of RNAs stably associated with defined proteins, in this case, exon junction complex (EJC) core factors. EJCs multimerize with other mRNP components to form megadalton-sized complexes that protect large swaths of newly synthesized mRNAs from endonuclease digestion. Unlike ncRNPs, wherein strong locus-specific structures predominate, mRNPs behave more like flexible polymers. Polymer analysis of proximity ligation data for hundreds of mRNA species demonstrates that nascent and pre-translational mammalian mRNAs are compacted by their associated proteins into linear rod-like structures.


Assuntos
Precursores de RNA/ultraestrutura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestrutura , Núcleo Celular , Éxons , Células HEK293 , Humanos , Imunoprecipitação/métodos , Processamento de Proteína Pós-Traducional , Precursores de RNA/genética , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , RNA não Traduzido , Spliceossomos , Transcrição Gênica
13.
New Phytol ; 219(3): 1085-1096, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29882354

RESUMO

A large number of plant RNA viruses circulate between plants and insects. For RNA viruses, host alternations may impose a differential selective pressure on viral populations and induce variations in viral genomes. Here, we report the variations in the 3'-terminal regions of the multiple-segment RNA virus Rice stripe virus (RSV) that were discovered through de novo assembly of the genome using RNA sequencing data from infected host plants and vector insects. The newly assembled RSV genome contained 16- and 15-nt extensions at the 3'-termini of two genome segments compared with the published reference RSV genome. Our study demonstrated that these extensional sequences were consistently observed in two RSV isolates belonging to distinct genetic subtypes in RSV-infected rice, wheat and tobacco. Moreover, the de novo assembled genome of Southern rice black-streaked dwarf virus also contained 3'-terminal extensions in five RNA segments compared with the reference genome. Time course experiments confirmed that the 3'-terminal extensions of RSV were enriched in the vector insects, were gradually eliminated in the host plant and potentially affected viral replication. These findings indicate that variations in the 3'-termini of viral genomes may be different adaptive strategies for plant RNA viruses in insects and plants.


Assuntos
Variação Genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Insetos Vetores/virologia , Oryza/virologia , Tenuivirus/genética , Animais , Sequência de Bases , Nucleotídeos/genética , Doenças das Plantas/virologia , Reoviridae/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Tenuivirus/isolamento & purificação , Tenuivirus/ultraestrutura , Replicação Viral/genética
14.
Nat Commun ; 9(1): 1736, 2018 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712906

RESUMO

Measles virus (MeV) remains a major human pathogen, but there are presently no licensed antivirals to treat MeV or other paramyxoviruses. Here, we use cryo-electron tomography (cryo-ET) to elucidate the principles governing paramyxovirus assembly in MeV-infected human cells. The three-dimensional (3D) arrangement of the MeV structural proteins including the surface glycoproteins (F and H), matrix protein (M), and the ribonucleoprotein complex (RNP) are characterized at stages of virus assembly and budding, and in released virus particles. The M protein is observed as an organized two-dimensional (2D) paracrystalline array associated with the membrane. A two-layered F-M lattice is revealed suggesting that interactions between F and M may coordinate processes essential for MeV assembly. The RNP complex remains associated with and in close proximity to the M lattice. In this model, the M lattice facilitates the well-ordered incorporation and concentration of the surface glycoproteins and the RNP at sites of virus assembly.


Assuntos
Hemaglutininas Virais/ultraestrutura , Vírus do Sarampo/ultraestrutura , Ribonucleoproteínas/ultraestrutura , Proteínas Virais de Fusão/ultraestrutura , Proteínas da Matriz Viral/ultraestrutura , Vírion/ultraestrutura , Linhagem Celular , Microscopia Crioeletrônica , Fibroblastos/ultraestrutura , Fibroblastos/virologia , Células HeLa , Hemaglutininas Virais/metabolismo , Humanos , Vírus do Sarampo/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas da Matriz Viral/metabolismo , Vírion/metabolismo , Montagem de Vírus , Liberação de Vírus
15.
Nature ; 557(7704): 190-195, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29695869

RESUMO

The enzyme telomerase adds telomeric repeats to chromosome ends to balance the loss of telomeres during genome replication. Telomerase regulation has been implicated in cancer, other human diseases, and ageing, but progress towards clinical manipulation of telomerase has been hampered by the lack of structural data. Here we present the cryo-electron microscopy structure of the substrate-bound human telomerase holoenzyme at subnanometre resolution, showing two flexibly RNA-tethered lobes: the catalytic core with telomerase reverse transcriptase (TERT) and conserved motifs of telomerase RNA (hTR), and an H/ACA ribonucleoprotein (RNP). In the catalytic core, RNA encircles TERT, adopting a well-ordered tertiary structure with surprisingly limited protein-RNA interactions. The H/ACA RNP lobe comprises two sets of heterotetrameric H/ACA proteins and one Cajal body protein, TCAB1, representing a pioneering structure of a large eukaryotic family of ribosome and spliceosome biogenesis factors. Our findings provide a structural framework for understanding human telomerase disease mutations and represent an important step towards telomerase-related clinical therapeutics.


Assuntos
Microscopia Crioeletrônica , Telomerase/metabolismo , Telomerase/ultraestrutura , Domínio Catalítico , Holoenzimas/química , Holoenzimas/genética , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Modelos Moleculares , Chaperonas Moleculares , Mutação , Domínios Proteicos , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Especificidade por Substrato , Telomerase/química , Telomerase/genética
17.
J Struct Biol ; 197(3): 294-307, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28007449

RESUMO

Ribonucleoprotein (RNP) complexes of influenza viruses are composed of multiple copies of the viral nucleoprotein (NP) that can form filamentous supra-structures. RNPs package distinct viral genomic RNA segments of different lengths into pleomorphic influenza virions. RNPs also function in viral RNA transcription and replication. Different RNP segments have varying lengths, but all must be incorporated into virions during assembly and then released during viral entry for productive infection cycles. RNP structures serve varied functions in the viral replication cycle, therefore understanding their molecular organization and flexibility is essential to understanding these functions. Here, we show using electron tomography and image analyses that isolated RNP filaments are not rigid helical structures, but instead display variations in lengths, curvatures, and even tolerated kinks and local unwinding. Additionally, we observed NP rings within RNP preparations, which were commonly composed of 5, 6, or 7 NP molecules and were of similar widths to filaments, suggesting plasticity in NP-NP interactions mediate RNP structural polymorphism. To demonstrate that NP alone could generate rings of variable oligomeric state, we performed 2D single particle image analysis on recombinant NP and found that rings of 4 and 5 protomers dominated, but rings of all compositions up to 7 were directly observed with variable frequency. This structural flexibility may be needed as RNPs carry out the interactions and conformational changes required for RNP assembly and genome packaging as well as virus uncoating.


Assuntos
Microscopia Eletrônica/métodos , Ribonucleoproteínas/ultraestrutura , Proteínas Virais/ultraestrutura , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo , RNA Viral/genética , RNA Viral/ultraestrutura , Proteínas Virais/genética
18.
Nature ; 534(7605): 133-7, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27251291

RESUMO

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Assuntos
Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestrutura , Transporte Ativo do Núcleo Celular , Sequência de Bases , Domínio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Citoplasma/metabolismo , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/metabolismo , DNA Espaçador Ribossômico/ultraestrutura , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Ligação Proteica , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Fúngico/ultraestrutura , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Rotação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
19.
Nat Struct Mol Biol ; 23(6): 549-57, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27136327

RESUMO

Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.


Assuntos
Proteínas de Bactérias/metabolismo , Lactococcus lactis/metabolismo , RNA Bacteriano/metabolismo , RNA Catalítico/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Microscopia Crioeletrônica , Lactococcus lactis/química , Lactococcus lactis/ultraestrutura , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/ultraestrutura , RNA Catalítico/química , RNA Catalítico/ultraestrutura , DNA Polimerase Dirigida por RNA/química , Ribonucleoproteínas/química , Ribonucleoproteínas/ultraestrutura
20.
J Virol ; 90(2): 1048-61, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559827

RESUMO

UNLABELLED: Hantaviruses, which belong to the genus Hantavirus in the family Bunyaviridae, infect mammals, including humans, causing either hemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS) in humans with high mortality. Hantavirus encodes a nucleocapsid protein (NP) to encapsidate the genome and form a ribonucleoprotein complex (RNP) together with viral polymerase. Here, we report the crystal structure of the core domains of NP (NPcore) encoded by Sin Nombre virus (SNV) and Andes virus (ANDV), which are two representative members that cause HCPS in the New World. The constructs of SNV and ANDV NPcore exclude the N- and C-terminal portions of full polypeptide to obtain stable proteins for crystallographic study. The structure features an N lobe and a C lobe to clamp RNA-binding crevice and exhibits two protruding extensions in both lobes. The positively charged residues located in the RNA-binding crevice play a key role in RNA binding and virus replication. We further demonstrated that the C-terminal helix and the linker region connecting the N-terminal coiled-coil domain and NPcore are essential for hantavirus NP oligomerization through contacts made with two adjacent protomers. Moreover, electron microscopy (EM) visualization of native RNPs extracted from the virions revealed that a monomer-sized NP-RNA complex is the building block of viral RNP. This work provides insight into the formation of hantavirus RNP and provides an understanding of the evolutionary connections that exist among bunyaviruses. IMPORTANCE: Hantaviruses are distributed across a wide and increasing range of host reservoirs throughout the world. In particular, hantaviruses can be transmitted via aerosols of rodent excreta to humans or from human to human and cause HFRS and HCPS, with mortalities of 15% and 50%, respectively. Hantavirus is therefore listed as a category C pathogen. Hantavirus encodes an NP that plays essential roles both in RNP formation and in multiple biological functions. NP is also the exclusive target for the serological diagnoses. This work reveals the structure of hantavirus NP, furthering the knowledge of hantavirus RNP formation, revealing the relationship between hantavirus NP and serological specificity and raising the potential for the development of new diagnosis and therapeutics targeting hantavirus infection.


Assuntos
Proteínas do Nucleocapsídeo/química , Orthohantavírus/química , Ribonucleoproteínas/química , Vírus Sin Nombre/química , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Proteínas do Nucleocapsídeo/ultraestrutura , Conformação Proteica , Ribonucleoproteínas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA