Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.817
Filtrar
1.
JCI Insight ; 9(10)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775150

RESUMO

This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.


Assuntos
Anemia de Diamond-Blackfan , Terapia Genética , Vetores Genéticos , Células-Tronco Hematopoéticas , Lentivirus , Proteínas Ribossômicas , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Humanos , Terapia Genética/métodos , Lentivirus/genética , Proteínas Ribossômicas/genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Camundongos , Masculino , Feminino , Ribossomos/metabolismo , Ribossomos/genética , Regiões Promotoras Genéticas , Mutação , Transplante de Células-Tronco Hematopoéticas/métodos
2.
Nat Commun ; 15(1): 4336, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773100

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a major class of natural products with diverse chemical structures and potent biological activities. A vast majority of RiPP gene clusters remain unexplored in microbial genomes, which is partially due to the lack of rapid and efficient heterologous expression systems for RiPP characterization and biosynthesis. Here, we report a unified biocatalysis (UniBioCat) system based on cell-free gene expression for rapid biosynthesis and engineering of RiPPs. We demonstrate UniBioCat by reconstituting a full biosynthetic pathway for de novo biosynthesis of salivaricin B, a lanthipeptide RiPP. Next, we delete several protease/peptidase genes from the source strain to enhance the performance of UniBioCat, which then can synthesize and screen salivaricin B variants with enhanced antimicrobial activity. Finally, we show that UniBioCat is generalizable by synthesizing and evaluating the bioactivity of ten uncharacterized lanthipeptides. We expect UniBioCat to accelerate the discovery, characterization, and synthesis of RiPPs.


Assuntos
Sistema Livre de Células , Processamento de Proteína Pós-Traducional , Ribossomos , Ribossomos/metabolismo , Ribossomos/genética , Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/química , Vias Biossintéticas/genética , Família Multigênica , Biocatálise
3.
Genome Res ; 34(4): 530-538, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38719470

RESUMO

The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Ribossomos/metabolismo , Ribossomos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Fases de Leitura Aberta , Eucariotos/genética
4.
Nat Commun ; 15(1): 3963, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729943

RESUMO

Translation initiation in bacteria is frequently regulated by various structures in the 5' untranslated region (5'UTR). Previously, we demonstrated that G-quadruplex (G4) formation in non-template DNA enhances transcription. In this study, we aim to explore how G4 formation in mRNA (RG4) at 5'UTR impacts translation using a T7-based in vitro translation system and in E. coli. We show that RG4 strongly promotes translation efficiency in a size-dependent manner. Additionally, inserting a hairpin upstream of the RG4 further enhances translation efficiency, reaching up to a 12-fold increase. We find that the RG4-dependent effect is not due to increased ribosome affinity, ribosome binding site accessibility, or mRNA stability. We propose a physical barrier model in which bulky structures in 5'UTR biases ribosome movement toward the downstream start codon, thereby increasing the translation output. This study provides biophysical insights into the regulatory role of 5'UTR structures in in vitro and bacterial translation, highlighting their potential applications in tuning gene expression.


Assuntos
Regiões 5' não Traduzidas , Escherichia coli , Quadruplex G , Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Regiões 5' não Traduzidas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Conformação de Ácido Nucleico , Estabilidade de RNA , Sítios de Ligação
5.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599770

RESUMO

Translational regulation by non-coding RNAs is a mechanism commonly used by cells to fine-tune gene expression. A fragment derived from an archaeal valine tRNA (Val-tRF) has been previously identified to bind the small subunit of the ribosome and inhibit translation in Haloferax volcanii Here, we present three cryo-electron microscopy structures of Val-tRF bound to the small subunit of Sulfolobus acidocaldarius ribosomes at resolutions between 4.02 and 4.53 Å. Within these complexes, Val-tRF was observed to bind to conserved RNA-interacting sites, including the ribosomal decoding center. The binding of Val-tRF destabilizes helices h24, h44, and h45 and the anti-Shine-Dalgarno sequence of 16S rRNA. The binding position of this molecule partially overlaps with the translation initiation factor aIF1A and occludes the mRNA P-site codon. Moreover, we found that the binding of Val-tRF is associated with steric hindrance of the H69 base of 23S rRNA in the large ribosome subunit, thereby preventing 70S assembly. Our data exemplify how tRNA-derived fragments bind to ribosomes and provide new insights into the mechanisms underlying translation inhibition by Val-tRFs.


Assuntos
RNA de Transferência , Ribossomos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/metabolismo , Microscopia Crioeletrônica , Ribossomos/genética , RNA de Transferência/genética , RNA de Transferência/química , RNA de Transferência/metabolismo , Valina/análise , Valina/metabolismo
6.
Nat Commun ; 15(1): 2711, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565864

RESUMO

Regulatory arrest peptides interact with specific residues on bacterial ribosomes and arrest their own translation. Here, we analyse over 30,000 bacterial genome sequences to identify additional Sec/YidC-related arrest peptides, followed by in vivo and in vitro analyses. We find that Sec/YidC-related arrest peptides show patchy, but widespread, phylogenetic distribution throughout the bacterial domain. Several of the identified peptides contain distinct conserved sequences near the C-termini, but are still able to efficiently stall bacterial ribosomes in vitro and in vivo. In addition, we identify many arrest peptides that share an R-A-P-P-like sequence, suggesting that this sequence might serve as a common evolutionary seed to overcome ribosomal structural differences across species.


Assuntos
Proteínas de Escherichia coli , Biossíntese de Proteínas , Filogenia , Peptídeos/química , Ribossomos/genética , Ribossomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo
7.
Biomolecules ; 14(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672495

RESUMO

Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a significant potential for novel therapeutic applications because of their bioactive properties, stability, and specificity. RiPPs are synthesized on ribosomes, followed by intricate post-translational modifications (PTMs), crucial for their diverse structures and functions. PTMs, such as cyclization, methylation, and proteolysis, play crucial roles in enhancing RiPP stability and bioactivity. Advances in synthetic biology and bioinformatics have significantly advanced the field, introducing new methods for RiPP production and engineering. These methods encompass strategies for heterologous expression, genetic refactoring, and exploiting the substrate tolerance of tailoring enzymes to create novel RiPP analogs with improved or entirely new functions. Furthermore, the introduction and implementation of cutting-edge screening methods, including mRNA display, surface display, and two-hybrid systems, have expedited the identification of RiPPs with significant pharmaceutical potential. This comprehensive review not only discusses the current advancements in RiPP research but also the promising opportunities that leveraging these bioactive peptides for therapeutic applications presents, illustrating the synergy between traditional biochemistry and contemporary synthetic biology and genetic engineering approaches.


Assuntos
Peptídeos , Processamento de Proteína Pós-Traducional , Ribossomos , Ribossomos/metabolismo , Ribossomos/genética , Peptídeos/química , Peptídeos/metabolismo , Humanos , Animais , Biologia Sintética/métodos
8.
Nat Commun ; 15(1): 3296, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632236

RESUMO

DEAD-box ATPases play crucial roles in guiding rRNA restructuring events during the biogenesis of large (60S) ribosomal subunits, but their precise molecular functions are currently unknown. In this study, we present cryo-EM reconstructions of nucleolar pre-60S intermediates that reveal an unexpected, alternate secondary structure within the nascent peptidyl-transferase-center (PTC). Our analysis of three sequential nucleolar pre-60S intermediates reveals that the DEAD-box ATPase Dbp10/DDX54 remodels this alternate base pairing and enables the formation of the rRNA junction that anchors the mature form of the universally conserved PTC A-loop. Post-catalysis, Dbp10 captures rRNA helix H61, initiating the concerted exchange of biogenesis factors during late nucleolar 60S maturation. Our findings show that Dbp10 activity is essential for the formation of the ribosome active site and reveal how this function is integrated with subsequent assembly steps to drive the biogenesis of the large ribosomal subunit.


Assuntos
RNA Helicases DEAD-box , Peptidil Transferases , Ribossomos , Proteínas de Saccharomyces cerevisiae , RNA Helicases DEAD-box/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores de Eucariotos/química , Ribossomos/genética , Ribossomos/metabolismo , RNA Ribossômico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Chem Rev ; 124(10): 6444-6500, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38688034

RESUMO

Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.


Assuntos
Biossíntese de Proteínas , RNA de Transferência , Ribossomos , RNA de Transferência/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , Ribossomos/metabolismo , Ribossomos/genética , Código Genético , Humanos
10.
Cell Syst ; 15(4): 388-408.e4, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636458

RESUMO

Genome-wide measurement of ribosome occupancy on mRNAs has enabled empirical identification of translated regions, but high-confidence detection of coding regions that overlap annotated coding regions has remained challenging. Here, we report a sensitive and robust algorithm that revealed the translation of 388 N-terminally truncated proteins in budding yeast-more than 30-fold more than previously known. We extensively experimentally validated them and defined two classes. The first class lacks large portions of the annotated protein and tends to be produced from a truncated transcript. We show that two such cases, Yap5truncation and Pus1truncation, have condition-specific regulation and distinct functions from their respective annotated isoforms. The second class of truncated protein isoforms lacks only a small region of the annotated protein and is less likely to be produced from an alternative transcript isoform. Many display different subcellular localizations than their annotated counterpart, representing a common strategy for dual localization of otherwise functionally identical proteins. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Genoma , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina Básica
11.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617541

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Proteínas Ribossômicas/genética , Proteínas Nucleares , Ribossomos/genética , Proteínas Mitocondriais
12.
Nat Commun ; 15(1): 1932, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431639

RESUMO

Studies have revealed dozens of functional peptides in putative 'noncoding' regions and raised the question of how many proteins are encoded by noncanonical open reading frames (ORFs). Here, we comprehensively annotate genome-wide translated ORFs across five eukaryotes (human, mouse, zebrafish, worm, and yeast) by analyzing ribosome profiling data. We develop a logistic regression model named PepScore based on ORF features (expected length, encoded domain, and conservation) to calculate the probability that the encoded peptide is stable in humans. Systematic ectopic expression validates PepScore and shows that stable complex-associating microproteins can be encoded in 5'/3' untranslated regions and overlapping coding regions of mRNAs besides annotated noncoding RNAs. Stable noncanonical proteins follow conventional rules and localize to different subcellular compartments. Inhibition of proteasomal/lysosomal degradation pathways can stabilize some peptides especially those with moderate PepScores, but cannot rescue the expression of short ones with low PepScores suggesting they are directly degraded by cellular proteases. The majority of human noncanonical peptides with high PepScores show longer lengths but low conservation across species/mammals, and hundreds contain trait-associated genetic variants. Our study presents a statistical framework to identify stable noncanonical peptides in the genome and provides a valuable resource for functional characterization of noncanonical translation during development and disease.


Assuntos
Perfil de Ribossomos , Ribossomos , Humanos , Animais , Camundongos , Ribossomos/genética , Ribossomos/metabolismo , Fases de Leitura Aberta/genética , Peixe-Zebra/genética , Peptídeos/genética , Peptídeos/metabolismo , Mamíferos/genética
13.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474062

RESUMO

Several types of mood disorders lie along a continuum, with nebulous boundaries between them. Understanding the mechanisms that contribute to mood disorder complexity is critical for effective treatment. However, present treatments are largely centered around neurotransmission and receptor-based hypotheses, which, given the high instance of treatment resistance, fail to adequately explain the complexities of mood disorders. In this opinion piece, based on our recent results, we propose a ribosome hypothesis of mood disorders. We suggest that any hypothesis seeking to explain the diverse nature of mood disorders must incorporate infrastructure diversity that results in a wide range of effects. Ribosomes, with their mobility across neurites and complex composition, have the potential to become specialized during stress; thus, ribosome diversity and dysregulation are well suited to explaining mood disorder complexity. Here, we first establish a framework connecting ribosomes to the current state of knowledge associated with mood disorders. Then, we describe the potential mechanisms through which ribosomes could homeostatically regulate systems to manifest diverse mood disorder phenotypes and discuss approaches for substantiating the ribosome hypothesis. Investigating these mechanisms as therapeutic targets holds promise for transdiagnostic avenues targeting mood disorders.


Assuntos
Transtornos do Humor , Ribossomos , Humanos , Ribossomos/genética , Proteínas Ribossômicas/genética
14.
Nat Commun ; 15(1): 2205, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467613

RESUMO

Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.


Assuntos
RNA Guia de Sistemas CRISPR-Cas , Ribossomos , Animais , Códon de Iniciação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Inativação Gênica , Biossíntese de Proteínas/genética , Iniciação Traducional da Cadeia Peptídica , Mamíferos/genética
15.
mBio ; 15(4): e0033324, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38511928

RESUMO

In recent years, it has become evident that the true complexity of bacterial proteomes remains underestimated. Gene annotation tools are known to propagate biases and overlook certain classes of truly expressed proteins, particularly proteoforms-protein isoforms arising from a single gene. Recent (re-)annotation efforts heavily rely on ribosome profiling by providing a direct readout of translation to fully describe bacterial proteomes. In this study, we employ a robust riboproteogenomic pipeline to conduct a systematic census of expressed N-terminal proteoform pairs, representing two isoforms encoded by a single gene raised by annotated and alternative translation initiation, in Salmonella. Intriguingly, conditional-dependent changes in relative utilization of annotated and alternative translation initiation sites (TIS) were observed in several cases. This suggests that TIS selection is subject to regulatory control, adding yet another layer of complexity to our understanding of bacterial proteomes. IMPORTANCE: With the emerging theme of genes within genes comprising the existence of alternative open reading frames (ORFs) generated by translation initiation at in-frame start codons, mechanisms that control the relative utilization of annotated and alternative TIS need to be unraveled and our molecular understanding of resulting proteoforms broadened. Utilizing complementary ribosome profiling strategies to map ORF boundaries, we uncovered dual-encoding ORFs generated by in-frame TIS usage in Salmonella. Besides demonstrating that alternative TIS usage may generate proteoforms with different characteristics, such as differential localization and specialized function, quantitative aspects of conditional retapamulin-assisted ribosome profiling (Ribo-RET) translation initiation maps offer unprecedented insights into the relative utilization of annotated and alternative TIS, enabling the exploration of gene regulatory mechanisms that control TIS usage and, consequently, the translation of N-terminal proteoform pairs.


Assuntos
Proteoma , Ribossomos , Proteoma/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Códon de Iniciação/metabolismo , Proteômica/métodos , Isoformas de Proteínas/genética , Fases de Leitura Aberta , Biossíntese de Proteínas
16.
Proc Natl Acad Sci U S A ; 121(11): e2321700121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442159

RESUMO

Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.


Assuntos
Magnoliopsida , Selenocisteína , RNA Mensageiro/genética , RNA Ribossômico 16S , Selenoproteínas/genética , Ribossomos/genética , Códon de Terminação/genética , Escherichia coli/genética
17.
PLoS Comput Biol ; 20(3): e1011918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442108

RESUMO

Processive enzymes like polymerases or ribosomes are often studied in bulk experiments by monitoring time-dependent signals, such as fluorescence time traces. However, due to biomolecular process stochasticity, ensemble signals may lack the distinct features of single-molecule signals. Here, we demonstrate that, under certain conditions, bulk signals from processive reactions can be decomposed to unveil hidden information about individual reaction steps. Using mRNA translation as a case study, we show that decomposing a noisy ensemble signal generated by the translation of mRNAs with more than a few codons is an ill-posed problem, addressable through Tikhonov regularization. We apply our method to the fluorescence signatures of in-vitro translated LepB mRNA and determine codon-position dependent translation rates and corresponding state-specific fluorescence intensities. We find a significant change in fluorescence intensity after the fourth and the fifth peptide bond formation, and show that both codon position and encoded amino acid have an effect on the elongation rate. This demonstrates that our approach enhances the information content extracted from bulk experiments, thereby expanding the range of these time- and cost-efficient methods.


Assuntos
Biossíntese de Proteínas , Ribossomos , Códon/genética , Códon/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/metabolismo , Fluorescência
18.
Wiley Interdiscip Rev RNA ; 15(2): e1833, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38433101

RESUMO

Selection of the correct start codon is critical for high-fidelity protein synthesis. In eukaryotes, this is typically governed by a multitude of initiation factors (eIFs), including eIF2·GTP that directly delivers the initiator tRNA (Met-tRNAi Met ) to the P site of the ribosome. However, numerous reports, some dating back to the early 1970s, have described other initiation factors having high affinity for the initiator tRNA and the ability of delivering it to the ribosome, which has provided a foundation for further work demonstrating non-canonical initiation mechanisms using alternative initiation factors. Here we provide a critical analysis of current understanding of eIF2A, eIF2D, and the MCT-1·DENR dimer, the evidence surrounding their ability to initiate translation, their implications in human disease, and lay out important key questions for the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Mechanisms Translation > Regulation.


Assuntos
Fatores de Iniciação em Eucariotos , RNA de Transferência de Metionina , Ribossomos , Humanos , Eucariotos , Fatores de Iniciação de Peptídeos , Ribossomos/genética , RNA , Fator de Iniciação 2 em Eucariotos
19.
RNA ; 30(6): 662-679, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38443115

RESUMO

Despite being predicted to lack coding potential, cytoplasmic long noncoding (lnc)RNAs can associate with ribosomes. However, the landscape and biological relevance of lncRNA translation remain poorly studied. In yeast, cytoplasmic Xrn1-sensitive unstable transcripts (XUTs) are targeted by nonsense-mediated mRNA decay (NMD), suggesting a translation-dependent degradation process. Here, we report that XUTs are pervasively translated, which impacts their decay. We show that XUTs globally accumulate upon translation elongation inhibition, but not when initial ribosome loading is impaired. Ribo-seq confirmed ribosomes binding to XUTs and identified ribosome-associated 5'-proximal small ORFs. Mechanistically, the NMD-sensitivity of XUTs mainly depends on the 3'-untranslated region length. Finally, we show that the peptide resulting from the translation of an NMD-sensitive XUT reporter exists in NMD-competent cells. Our work highlights the role of translation in the posttranscriptional metabolism of XUTs. We propose that XUT-derived peptides could be exposed to natural selection, while NMD restricts XUT levels.


Assuntos
Exorribonucleases , Degradação do RNAm Mediada por Códon sem Sentido , Biossíntese de Proteínas , RNA Longo não Codificante , Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Exorribonucleases/metabolismo , Exorribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Regiões 3' não Traduzidas , Fases de Leitura Aberta , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA
20.
Microbiol Spectr ; 12(3): e0365823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323828

RESUMO

The internal ribosome entry site (IRES) element constitutes a cis-acting RNA regulatory sequence that recruits the ribosomal initiation complex in a cap-independent manner, assisted by various RNA-binding proteins and IRES trans-acting factors. Foot-and-mouth disease virus (FMDV) contains a functional IRES element and takes advantage of this element to subvert host translation machinery. Our study identified a novel mechanism wherein RALY, a member of the heterogeneous nuclear ribonucleoproteins (hnRNP) family belonging to RNA-binding proteins, binds to the domain 3 of FMDV IRES via its RNA recognition motif residue. This interaction results in the downregulation of FMDV replication by inhibiting IRES-driven translation. Furthermore, our findings reveal that the inhibitory effect exerted by RALY on FMDV replication is not attributed to the FMDV IRES-mediated assembly of translation initiation complexes but rather to the impediment of 80S ribosome complex formation after binding with 40S ribosomes. Conversely, 3Cpro of FMDV counteracts RALY-mediated inhibition by the ubiquitin-proteasome pathway. Therefore, these results indicate that RALY, as a novel critical IRES-binding protein, inhibits FMDV replication by blocking the formation of 80S ribosome, providing a deeper understanding of how viruses recruit and manipulate host factors. IMPORTANCE: The translation of FMDV genomic RNA driven by IRES element is a crucial step for virus infections. Many host proteins are hijacked to regulate FMDV IRES-dependent translation, but the regulatory mechanism remains unknown. Here, we report for the first time that cellular RALY specifically interacts with the IRES of FMDV and negatively regulates viral replication by blocking 80S ribosome assembly on FMDV IRES. Conversely, RALY-mediated inhibition is antagonized by the viral 3C protease by the ubiquitin-proteasome pathway. These results would facilitate further understanding of virus-host interactions and translational control during viral infection.


Assuntos
Vírus da Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Endopeptidases/metabolismo , Sítios Internos de Entrada Ribossomal , Proteases Virais 3C , Ubiquitinas/genética , Ubiquitinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA