Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
J Virol ; 96(17): e0070622, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000839

RESUMO

Rotavirus infects intestinal epithelial cells and is the leading cause of gastroenteritis in infants worldwide. Upon viral infection, intestinal cells produce type I and type III interferons (IFNs) to alert the tissue and promote an antiviral state. These two types of IFN bind to different receptors but induce similar pathways that stimulate the activation of interferon-stimulated genes (ISGs) to combat viral infection. In this work, we studied the spread of a fluorescent wild-type (WT) SA11 rotavirus in human colorectal cancer cells lacking specific interferon receptors and compared it to that of an NSP1 mutant rotavirus that cannot interfere with the host intrinsic innate immune response. We could show that the WT rotavirus efficiently blocks the production of type I IFNs but that type III IFNs are still produced, whereas the NSP1 mutant rotavirus allows the production of both. Interestingly, while both exogenously added type I and type III IFNs could efficiently protect cells against rotavirus infection, endogenous type III IFNs were found to be key to limit infection of human intestinal cells by rotavirus. By using a fluorescent reporter cell line to highlight the cells mounting an antiviral program, we could show that paracrine signaling driven by type III IFNs efficiently controls the spread of both WT and NSP1 mutant rotavirus. Our results strongly suggest that NSP1 efficiently blocks the type I IFN-mediated antiviral response; however, its restriction of the type III IFN-mediated one is not sufficient to prevent type III IFNs from partially inhibiting viral spread in intestinal epithelial cells. Additionally, our findings further highlight the importance of type III IFNs in controlling rotavirus infection, which could be exploited as antiviral therapeutic measures. IMPORTANCE Rotavirus is one of the most common causes of gastroenteritis worldwide. In developing countries, rotavirus infections lead to more than 200,000 deaths in infants and children. The intestinal epithelial cells lining the gastrointestinal tract combat rotavirus infection by two key antiviral compounds known as type I and III interferons. However, rotavirus has developed countermeasures to block the antiviral actions of the interferons. In this work, we evaluated the arms race between rotavirus and type I and III interferons. We determined that although rotavirus could block the induction of type I interferons, it was unable to block type III interferons. The ability of infected cells to produce and release type III interferons leads to the protection of the noninfected neighboring cells and the clearance of rotavirus infection from the epithelium. This suggests that type III interferons are key antiviral agents and could be used to help control rotavirus infections in children.


Assuntos
Células Epiteliais , Interferons , Mucosa Intestinal , Infecções por Rotavirus , Rotavirus , Antivirais/imunologia , Criança , Células Epiteliais/imunologia , Células Epiteliais/virologia , Gastroenterite/virologia , Humanos , Imunidade Inata , Lactente , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/imunologia , Interferons/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/virologia , Mutação , Rotavirus/genética , Rotavirus/crescimento & desenvolvimento , Rotavirus/imunologia , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Proteínas não Estruturais Virais/genética
2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34615715

RESUMO

Rotavirus genomes are distributed between 11 distinct RNA molecules, all of which must be selectively copackaged during virus assembly. This likely occurs through sequence-specific RNA interactions facilitated by the RNA chaperone NSP2. Here, we report that NSP2 autoregulates its chaperone activity through its C-terminal region (CTR) that promotes RNA-RNA interactions by limiting its helix-unwinding activity. Unexpectedly, structural proteomics data revealed that the CTR does not directly interact with RNA, while accelerating RNA release from NSP2. Cryo-electron microscopy reconstructions of an NSP2-RNA complex reveal a highly conserved acidic patch on the CTR, which is poised toward the bound RNA. Virus replication was abrogated by charge-disrupting mutations within the acidic patch but completely restored by charge-preserving mutations. Mechanistic similarities between NSP2 and the unrelated bacterial RNA chaperone Hfq suggest that accelerating RNA dissociation while promoting intermolecular RNA interactions may be a widespread strategy of RNA chaperone recycling.


Assuntos
Genoma Viral/genética , Dobramento de RNA/genética , RNA Viral/genética , Rotavirus/crescimento & desenvolvimento , Empacotamento do Genoma Viral/genética , Proteínas não Estruturais Virais/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Rotavirus/genética , Rotavirus/metabolismo
3.
EMBO J ; 40(21): e107711, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34524703

RESUMO

RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.


Assuntos
Grânulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a RNA/metabolismo , Rotavirus/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Grânulos de Ribonucleoproteínas Citoplasmáticas/efeitos dos fármacos , Grânulos de Ribonucleoproteínas Citoplasmáticas/ultraestrutura , Grânulos de Ribonucleoproteínas Citoplasmáticas/virologia , Regulação Viral da Expressão Gênica , Genes Reporter , Glicóis/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Haplorrinos , Interações Hospedeiro-Patógeno/genética , Humanos , Concentração Osmolar , Fosforilação , Propilenoglicol/farmacologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Rotavirus/ultraestrutura , Transdução de Sinais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
4.
Gut Microbes ; 13(1): 1955643, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34369301

RESUMO

Rotavirus is the most common cause of severe diarrhea among infants and young children and is responsible for more than 200,000 pediatric deaths per year. There is currently no pharmacological treatment for rotavirus infection in clinical activity. Although cholesterol synthesis has been proven to play a key role in the infections of multiple viruses, little is known about the relationship between cholesterol biosynthesis and rotavirus replication. The models of rotavirus infected two cell lines and a human small intestinal organoid were used. We investigated the effects of cholesterol biosynthesis, including inhibition, enhancement, and their combinations on rotavirus replication on these models. The knockdown of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was built by small hairpin RNAs in Caco2 cells. In all these models, inhibition of cholesterol synthesis by statins or HMGCR knockdown had a significant inhibitory effect on rotavirus replication. The result was further confirmed by the other inhibitors: 6-fluoromevalonate, Zaragozic acid A and U18666A, in the cholesterol biosynthesis pathway. Conversely, enhancement of cholesterol production increased rotavirus replication, suggesting that cholesterol homeostasis is relevant for rotavirus replication. The effects of all these compounds toward rotavirus were further confirmed with a clinical rotavirus isolate. We concluded that rotavirus replication is dependent on cholesterol biosynthesis. To be specific, inhibition of cholesterol synthesis can downregulate rotavirus replication; on the contrary, rotavirus replication is upregulated. Statin treatment is potentially an effective novel clinical anti-rotavirus strategy.


Assuntos
Colesterol/biossíntese , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Infecções por Rotavirus/tratamento farmacológico , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Replicação Viral/efeitos dos fármacos , Animais , Anticolesterolemiantes/farmacocinética , Anticolesterolemiantes/uso terapêutico , Células CACO-2/efeitos dos fármacos , Células CACO-2/virologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/virologia , Chlorocebus aethiops/crescimento & desenvolvimento , Chlorocebus aethiops/virologia , Modelos Animais de Doenças , Células HEK293/efeitos dos fármacos , Células HEK293/virologia , Humanos
5.
Food Environ Virol ; 13(1): 44-52, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33180282

RESUMO

Drinking water supplies in the developing world often serve as a biosphere for various organisms. Viral gastroenteritis is a neglected area of research in Pakistan, there are no data for the prevalence of enteric viruses in drinking water of the largest city of Karachi. The present study aimed to provide a survey of the existence of enteric viruses: human adenovirus (HAdV), human enteroviruses (hEV), and genotype A rotavirus (GARV) in tap water. Using a simple PCR approach, we detected 20%, 43%, and 23% of HAdV, hEV, and GARV in tap water samples, respectively. We have also shown an overall quality deficit of tap water at the pumping station and consumer tap. We have found no sample free from bacterial contaminations. The ranges for a total number of the heterotrophic plate count and coliform were found 8.7 × 102-4.5 × 106 CFU/mL and 210 to uncountable coliforms/100 mL, respectively. Moreover, we assessed the efficiency of small-scale water treatment methods for the removal of viruses.


Assuntos
Adenovírus Humanos/isolamento & purificação , Enterovirus/isolamento & purificação , Água Doce/virologia , Rotavirus/isolamento & purificação , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Adenovírus Humanos/crescimento & desenvolvimento , Enterovirus/classificação , Enterovirus/genética , Enterovirus/crescimento & desenvolvimento , Água Doce/química , Paquistão , Rotavirus/classificação , Rotavirus/genética , Rotavirus/crescimento & desenvolvimento , Poluição da Água/análise , Purificação da Água , Qualidade da Água , Abastecimento de Água
6.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32847859

RESUMO

Interferon (IFN) family cytokines stimulate genes (interferon-stimulated genes [ISGs]) that are integral to antiviral host defense. Type I IFNs act systemically, whereas type III IFNs act preferentially at epithelial barriers. Among barrier cells, intestinal epithelial cells (IECs) are particularly dependent on type III IFN for the control and clearance of virus infection, but the physiological basis of this selective IFN response is not well understood. Here, we confirm that type III IFN treatment elicits robust and uniform ISG expression in neonatal mouse IECs and inhibits the replication of IEC-tropic rotavirus. In contrast, type I IFN elicits a marginal ISG response in neonatal mouse IECs and does not inhibit rotavirus replication. In vitro treatment of IEC organoids with type III IFN results in ISG expression that mirrors the in vivo type III IFN response. However, IEC organoids have increased expression of the type I IFN receptor relative to neonate IECs, and the response of IEC organoids to type I IFN is strikingly increased in magnitude and scope relative to type III IFN. The expanded type I IFN-specific response includes proapoptotic genes and potentiates toxicity triggered by tumor necrosis factor alpha (TNF-α). The ISGs stimulated in common by type I and III IFNs have strong interferon-stimulated response element (ISRE) promoter motifs, whereas the expanded set of type I IFN-specific ISGs, including proapoptotic genes, have weak ISRE motifs. Thus, the preferential responsiveness of IECs to type III IFN in vivo enables selective ISG expression during infection that confers antiviral protection but minimizes disruption of intestinal homeostasis.IMPORTANCE Enteric viral infections are a major cause of gastroenteritis worldwide and have the potential to trigger or exacerbate intestinal inflammatory diseases. Prior studies have identified specialized innate immune responses that are active in the intestinal epithelium following viral infection, but our understanding of the benefits of such an epithelium-specific response is incomplete. Here, we show that the intestinal epithelial antiviral response is programmed to enable protection while minimizing epithelial cytotoxicity that can often accompany an inflammatory response. Our findings offer new insight into the benefits of a tailored innate immune response at the intestinal barrier and suggest how dysregulation of this response could promote inflammatory disease.


Assuntos
Citocinas/imunologia , Mucosa Intestinal/imunologia , Infecções por Rotavirus/imunologia , Fator de Transcrição STAT1/imunologia , Fator de Transcrição STAT2/imunologia , Fator de Necrose Tumoral alfa/toxicidade , Animais , Animais Recém-Nascidos , Citocinas/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Humanos , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/efeitos dos fármacos , Organoides/imunologia , Organoides/virologia , Elementos de Resposta , Rotavirus/efeitos dos fármacos , Rotavirus/crescimento & desenvolvimento , Rotavirus/patogenicidade , Infecções por Rotavirus/genética , Infecções por Rotavirus/patologia , Infecções por Rotavirus/virologia , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT2/genética , Transdução de Sinais , Replicação Viral
7.
Food Environ Virol ; 12(3): 218-225, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388732

RESUMO

Environmental monitoring is critical in a developing country like Egypt where there is an insufficient framework for recording and tracking outbreaks. In this study, the prevalence of human adenovirus (HAdV), rotavirus group A (RVA) was determined in urban sewage, activated sludge, drainage water, drainage sediment, Nile water, and Nile sediment, using quantitative polymerase chain reaction (qPCR) analysis. HAdV was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 genome copies/liter (GC/L), 33% of activated sludge with viral concentrations ranging from 103 to 107 GC/kilogram (GC/kg), 95% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 75% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, 50% of Nile water with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile sediment with viral concentrations ranging from 103 to 107 GC/kg. RVA was detected in 50% of urban sewage with viral concentrations ranging from 103 to 107 GC/L, 75% of activated sludge with viral concentrations ranging from 103 to 107 GC/L, 58% of drainage water with viral concentrations ranging from 103 to 107 GC/L, 50% of drainage sediment with viral concentrations ranging from 103 to 107 GC/L, and 45% of Nile water with viral concentrations ranging from 103 to 107 GC/kg. In conclusion, Abu-Rawash WWTP acts as a source of HAdV and RVA, releasing them into El-Rahawy drain then to the River Nile Rosetta branch.


Assuntos
Adenovírus Humanos/isolamento & purificação , Rios/virologia , Rotavirus/isolamento & purificação , Águas Residuárias/virologia , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Adenovírus Humanos/crescimento & desenvolvimento , Egito , Sedimentos Geológicos/virologia , Humanos , Rotavirus/classificação , Rotavirus/genética , Rotavirus/crescimento & desenvolvimento
8.
J Virol ; 94(15)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32461318

RESUMO

Live oral rotavirus vaccines have been developed by serial passaging in cell culture and found to be safe in infants. However, mechanisms for the adaptation and attenuation of rotavirus vaccines are not fully understood. We prepared a human rotavirus vaccine strain, CDC-9 (G1P[8]), which when grown in MA104 cells to passage 11 or 12 (P11/P12) had no nucleotide or amino acid sequence changes from the original virus in stool. Upon adaptation and passages in Vero cells, the strain underwent five amino acid changes at P28 and one additional change at P44/P45 in the VP4 gene. We performed virologic, immunological, and pathogenic characterization of wild-type CDC-9 virus at P11/P12 and its two mutants at P28 or P44/P45 using in vitro and in vivo model systems. We found that mutants CDC-9 P28 and P44 induced upregulated expression of immunomodulatory cytokines. On the other hand, the two mutant viruses induced lower STAT1 phosphorylation and grew to 2-log-higher titers than wild-type virus in human Caco-2 cells and simian Vero cells. In neonatal rats, CDC-9 P45 showed reduced rotavirus shedding in fecal specimens and did not induce diarrhea compared to wild-type virus and modulated cytokine responses comparably to Rotarix infection. These findings indicate that mutant CDC-9 is attenuated and safe. Our study is the first to provide insight into the possible mechanisms of human rotavirus adaptation and attenuation and supports ongoing efforts to develop CDC-9 as a new generation of rotavirus vaccine for live oral or parenteral administration.IMPORTANCE Mechanisms for in vitro adaptation and in vivo attenuation of human rotavirus vaccines are not known. The present study is the first to comprehensively compare the in vitro growth characteristics, virulence, and host response of a wild-type and an attenuated human rotavirus strain, CDC-9, in Caco-2 cells and neonatal rats. Our study identifies critical sequence changes in the genome that render human rotavirus adapted to growth to high levels in Vero cells and attenuated and safe in neonatal rats; thus, the study supports clinical development of CDC-9 for oral or parenteral vaccination in children.


Assuntos
Proteínas do Capsídeo/metabolismo , Mutação de Sentido Incorreto , Vacinas contra Rotavirus/metabolismo , Rotavirus/crescimento & desenvolvimento , Substituição de Aminoácidos , Animais , Células CACO-2 , Proteínas do Capsídeo/genética , Chlorocebus aethiops , Humanos , Rotavirus/genética , Vacinas contra Rotavirus/genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/metabolismo , Células Vero
9.
J Virol ; 94(10)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132235

RESUMO

RNA viruses form a dynamic distribution of mutant swarms (termed "quasispecies") due to the accumulation of mutations in the viral genome. The genetic diversity of a viral population is affected by several factors, including a bottleneck effect. Human-to-human transmission exemplifies a bottleneck effect, in that only part of a viral population can reach the next susceptible hosts. In the present study, two lineages of the rhesus rotavirus (RRV) strain of rotavirus A were serially passaged five times at a multiplicity of infection (MOI) of 0.1 or 0.001, and three phenotypes (infectious titer, cell binding ability, and specific growth rate) were used to evaluate the impact of a bottleneck effect on the RRV population. The specific growth rate values of lineages passaged under the stronger bottleneck (MOI of 0.001) were higher after five passages. The nucleotide diversity also increased, which indicated that the mutant swarms of the lineages under the stronger bottleneck effect were expanded through the serial passages. The random distribution of synonymous and nonsynonymous substitutions on rotavirus genome segments indicated that almost all mutations were selectively neutral. Simple simulations revealed that the presence of minor mutants could influence the specific growth rate of a population in a mutant frequency-dependent manner. These results indicate a stronger bottleneck effect can create more sequence spaces for minor sequences.IMPORTANCE In this study, we investigated a bottleneck effect on an RRV population that may drastically affect the viral population structure. RRV populations were serially passaged under two levels of a bottleneck effect, which exemplified human-to-human transmission. As a result, the genetic diversity and specific growth rate of RRV populations increased under the stronger bottleneck effect, which implied that a bottleneck created a new space in a population for minor mutants originally existing in a hidden layer, which includes minor mutations that cannot be distinguished from a sequencing error. The results of this study suggest that the genetic drift caused by a bottleneck in human-to-human transmission explains the random appearance of new genetic lineages causing viral outbreaks, which can be expected according to molecular epidemiology using next-generation sequencing in which the viral genetic diversity within a viral population is investigated.


Assuntos
Variação Genética , Rotavirus/crescimento & desenvolvimento , Rotavirus/genética , Linhagem Celular , Evolução Molecular , Deriva Genética , Genética Populacional , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fenótipo , Quase-Espécies , Vírus de RNA/genética , RNA Viral/genética , Inoculações Seriadas
10.
Food Environ Virol ; 12(2): 130-136, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32152895

RESUMO

The availability of drinking water is one of the main determinants of quality of life, disease prevention and the promotion of health. Viruses are important agents of waterborne diseases and have been described as important markers of human faecal contamination. This study aimed to investigate viruses' presence as an indicator of drinking water quality in low-income communities in the Manguinhos area, Rio de Janeiro, Brazil. Three hundred and four drinking water samples (2L/each) were collected along the drinking water distribution-to-consumption pathway in households, as well as healthcare and school units. Water samples were collected both directly from the water supply prior to distribution and after storage in tanks and filtration units. Using qPCR, viruses were detected 50 times in 45 water samples (15%), 19 of these being human adenovirus, 17 rotavirus A and 14 norovirus GII. Viral loads recovered ranged from 5E+10 to 8.7E+106 genome copies/Liter. Co-detection was observed in five household water samples and there was no difference regarding virus detection across sampling sites. Precarious and inadequate environmental conditions characterized by the lack of local infrastructure regarding basic sanitation and waste collection in the territory, as well as negligent hygiene habits, could explain viral detection in drinking water in regions with a water supply system.


Assuntos
Adenovírus Humanos/isolamento & purificação , Água Potável/virologia , Gastroenterite/virologia , Norovirus/isolamento & purificação , Rotavirus/isolamento & purificação , Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Adenovírus Humanos/crescimento & desenvolvimento , Brasil/epidemiologia , Água Potável/análise , Gastroenterite/economia , Gastroenterite/epidemiologia , Humanos , Higiene , Norovirus/classificação , Norovirus/genética , Norovirus/crescimento & desenvolvimento , Pobreza , Qualidade de Vida , Características de Residência/estatística & dados numéricos , Rotavirus/classificação , Rotavirus/genética , Rotavirus/crescimento & desenvolvimento , Qualidade da Água , Abastecimento de Água/economia
11.
Viruses ; 12(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054092

RESUMO

Human rotavirus A (RVA) causes acute gastroenteritis in infants and young children. The broad use of two vaccines, which are based on RVA strains from Europe and North America, significantly reduced rotavirus disease burden worldwide. However, a lower vaccine effectiveness is recorded in some regions of the world, such as sub-Saharan Africa, where diverse RVA strains are circulating. Here, a plasmid-based reverse genetics system was used to generate simian RVA reassortants with VP4 and VP7 proteins derived from African human RVA strains not previously adapted to cell culture. We were able to rescue 1/3 VP4 mono-reassortants, 3/3 VP7 mono-reassortants, but no VP4/VP7 double reassortant. Electron microscopy showed typical triple-layered virus particles for the rescued reassortants. All reassortants stably replicated in MA-104 cells; however, the VP4 reassortant showed significantly slower growth compared to the simian RVA or the VP7 reassortants. The results indicate that, at least in cell culture, human VP7 has a high reassortment potential, while reassortment of human VP4 from unadapted human RVA strains with simian RVA seems to be limited. The characterized reassortants may be useful for future studies investigating replication and reassortment requirements of rotaviruses as well as for the development of next generation rotavirus vaccines.


Assuntos
Antígenos Virais/genética , Proteínas do Capsídeo/genética , Genoma Viral , Vírus Reordenados/genética , Rotavirus/genética , África , Animais , Técnicas de Cultura de Células , Linhagem Celular , Genótipo , Haplorrinos/virologia , Humanos , Filogenia , Plasmídeos/genética , Vírus Reordenados/crescimento & desenvolvimento , Genética Reversa , Rotavirus/crescimento & desenvolvimento , Infecções por Rotavirus/virologia , Replicação Viral
12.
Iran Biomed J ; 24(2): 128-135, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31677607

RESUMO

Background: Rotavirus infection is one of the most common gastroenteritis in the world, and a million cases are registered to enter hospital every year. Promyelocytic leukemia proteins (PMLs) are IFN-up-regulated proteins, and one of their critical functions is working as antiviral proteins. Recently, promyelocytic leukemia isoform II (PML-II) has been depicted as an isoform responsible for the antiviral function. Methods: Rotavirus prevalence determination was achieved by PCR and Rapid Adeno/Rota Virus test, while the relative expression assay was carried out by real-time PCR technique. Blood and stool samples were collected from 34 children under five years admitted to the hospital with acute gastroenteritis showing signs of dehydration. RNA samples were extracted from blood specimens and converted to cDNA to be used in gene expression analysis of PML, PML-II, and IFN-γ in rotavirus positive or negative samples. Results: Rapid Adeno/Rota Virus Antigen Combo Test and PCR assay could detect the virus in stool samples in 45% and 17.6% of cases, respectively. PML in positive samples decreased to 104fold less than the level in negative ones. The same trend was noticed in the level of IFN-γ and PML-II expression as their expression reduced to 104 or 13fold in rotavirus-infected samples compared to the control, respectively. Conclusion: Altogether, our data showed that the gene expression of PML, PML-II, and type II IFN considerably diminished in rotavirus-infected samples compared to the negative control.


Assuntos
Gastroenterite/patologia , Interferon gama/biossíntese , Proteína da Leucemia Promielocítica/biossíntese , Infecções por Rotavirus/patologia , Pré-Escolar , Gastroenterite/virologia , Perfilação da Expressão Gênica , Humanos , Lactente , Interferon gama/genética , Proteína da Leucemia Promielocítica/genética , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Rotavirus/crescimento & desenvolvimento
13.
Food Environ Virol ; 12(1): 58-67, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721078

RESUMO

We modeled Group A Rotavirus (RVA) and Norovirus genogroup II (GII NoV) transport experiments in standardized (crystal quartz sand and deionized water with adjusted pH and ionic strength) and natural soil matrix-water systems (MWS). On the one hand, in the standardized MWS, Rotavirus and Norovirus showed very similar breakthrough curves (BTCs), showing a removal rate of 2 and 1.7 log10, respectively. From the numerical modeling of the experiment, transport parameters of the same order of magnitude were obtained for both viruses. On the other hand, in the natural MWS, the two viruses show very different BTCs. The Norovirus transport model showed significant changes; BTC showed a removal rate of 4 log10, while Rotavirus showed a removal rate of 2.6 log10 similar to the 2 log10 observed on the standardized MWS. One possible explanation for this differential behavior is the difference in the isoelectric point value of these two viruses and the increase of the ionic strength on the natural MWS.


Assuntos
Água Doce/virologia , Norovirus/química , Rotavirus/química , Água Doce/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Norovirus/crescimento & desenvolvimento , Concentração Osmolar , Rotavirus/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo
14.
Arch Microbiol ; 202(2): 213-223, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31598756

RESUMO

Coxsackievirus B3 (CVB3) and rotavirus (RV) are pathogens of some chronic human diseases. The aim of this study was to determine in vitro antiviral activity of some cyanobacteria against RV and CVB3 infections. Five cyanobacteria were collected from Egypt, identified, and analyzed biochemically. Then, the inhibition of the cytopathic effect of RV and CVB3 viruses by cyanobacterial extracts was examined. Methanol extract of the cyanobacterial isolates showed high antiviral activity against CVB3 with Therapeutic index (TI) of 50.0, 30.0, 27.6, 16.6, and 20.0 for Leptolyngbya boryana, Arthrospira platensis, Nostoc punctiforme, Oscillatoria sp., and Leptolyngbya sp., respectively. The extracts reduced CVB3 titers comparing to 50% tissue culture infectious doses (TCID50) with values 3.25-5.75 log10 of TCID50. Moreover, extracts of A. platensis, and Oscillatoria sp. exhibited high antiviral activity against RV with TI values of 45 and 42.5, respectively, and a reduction in virus titers by 5.75 log10 and 5.5 log10 of TCID50, respectively. Extracts of L. boryana, Leptolyngbya sp., and N. punctiforme had a moderate to low antiviral activity against RV with TI ranging between 2.8 and 7, respectively, and a reduction in virus titers between 0.5 log10 and 1.5 log10 of TCID50, respectively. This study concluded that extracts of five cyanobacterial isolates possess a potent antiviral effect against CVB3 and RV, making them promising sources of new safe antiviral drugs.


Assuntos
Antibiose/fisiologia , Infecções por Coxsackievirus/prevenção & controle , Cianobactérias/metabolismo , Enterovirus Humano B/crescimento & desenvolvimento , Infecções por Rotavirus/prevenção & controle , Rotavirus/crescimento & desenvolvimento , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Cianobactérias/isolamento & purificação , Humanos , Macaca mulatta , Camundongos Endogâmicos BALB C
15.
Food Environ Virol ; 12(1): 48-57, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691900

RESUMO

Bivalve mollusks as filter-feeders concentrate in their digestive tissue microorganisms likely present in the harvesting water, thus becoming risky food especially if consumed raw or poorly cooked. To eliminate bacteria and viruses eventually accumulated, they must undergo a depuration process which efficacy on viruses is on debate. To better clarify the worth of the depuration process on virus elimination from mussels, in this study we investigated rotavirus kinetics of accumulation and depuration in Mytilus galloprovincialis experimentally contaminated. Depuration process was monitored for 9 days and virus residual presence and infectivity were evaluated by real time quantitative polymerase chain reaction, cell culture and electron microscopy at days 1, 2, 3, 5, 7, 9 of depuration. Variables like presence of ozone and of microalgae feeding were also analyzed as possible depuration enhancers. Results showed a two-phase virus removal kinetic with a high decrease in the first 24 h of depuration and 5 days necessary to completely remove rotavirus.


Assuntos
Mytilus/virologia , Rotavirus/crescimento & desenvolvimento , Frutos do Mar/virologia , Animais , Contaminação de Alimentos/análise , Cinética , Mytilus/química , Rotavirus/química , Rotavirus/classificação , Rotavirus/genética , Frutos do Mar/análise
16.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597778

RESUMO

Many viruses that replicate in the cytoplasm dramatically remodel and stimulate the accumulation of host cell membranes for efficient replication by poorly understood mechanisms. For rotavirus, a critical step in virion assembly requires the accumulation of membranes adjacent to virus replication centers called viroplasms. Early electron microscopy studies describe viroplasm-associated membranes as "swollen" endoplasmic reticulum (ER). We previously demonstrated that rotavirus infection initiates cellular autophagy and that membranes containing the autophagy marker protein LC3 and the rotavirus ER-synthesized transmembrane glycoprotein NSP4 traffic to viroplasms, suggesting that NSP4 must exit the ER. This study aimed to address the mechanism of NSP4 exit from the ER and determine whether the viroplasm-associated membranes are ER derived. We report that (i) NSP4 exits the ER in COPII vesicles, resulting in disrupted COPII vesicle transport and ER exit sites; (ii) COPII vesicles are hijacked by LC3 II, which interacts with NSP4; and (iii) NSP4/LC3 II-containing membranes accumulate adjacent to viroplasms. In addition, the ER transmembrane proteins SERCA and calnexin were not detected in viroplasm-associated membranes, providing evidence that the rotavirus maturation process of "budding" occurs through autophagy-hijacked COPII vesicle membranes. These findings reveal a new mechanism for rotavirus maturation dependent on intracellular host protein transport and autophagy for the accumulation of membranes required for virus replication.IMPORTANCE In a morphogenic step that is exceedingly rare for nonenveloped viruses, immature rotavirus particles assemble in replication centers called viroplasms, and bud through cytoplasmic cellular membranes to acquire the outer capsid proteins for infectious particle assembly. Historically, the intracellular membranes used for particle budding were thought to be endoplasmic reticulum (ER) because the rotavirus nonstructural protein NSP4, which interacts with the immature particles to trigger budding, is synthesized as an ER transmembrane protein. This present study shows that NSP4 exits the ER in COPII vesicles and that the NSP4-containing COPII vesicles are hijacked by the cellular autophagy machinery, which mediates the trafficking of NSP4 to viroplasms. Changing the paradigm for rotavirus maturation, we propose that the cellular membranes required for immature rotavirus particle budding are not an extension of the ER but are COPII-derived autophagy isolation membranes.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/virologia , Células Epiteliais/virologia , Proteínas Associadas aos Microtúbulos/genética , Rotavirus/genética , Toxinas Biológicas/genética , Proteínas não Estruturais Virais/genética , Vírion/genética , Animais , Autofagia/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/ultraestrutura , Calnexina/genética , Calnexina/metabolismo , Linhagem Celular , Chlorocebus aethiops , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Retículo Endoplasmático/virologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Membranas Intracelulares/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Transporte Proteico , Rotavirus/crescimento & desenvolvimento , Rotavirus/metabolismo , Rotavirus/ultraestrutura , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Toxinas Biológicas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Vírion/ultraestrutura , Montagem de Vírus/genética , Replicação Viral/genética
17.
Elife ; 82019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31343403

RESUMO

Rotavirus genome replication and assembly take place in cytoplasmic electron dense inclusions termed viroplasms (VPs). Previous conventional optical microscopy studies observing the intracellular distribution of rotavirus proteins and their organization in VPs have lacked molecular-scale spatial resolution, due to inherent spatial resolution constraints. In this work we employed super-resolution microscopy to reveal the nanometric-scale organization of VPs formed during rotavirus infection, and quantitatively describe the structural organization of seven viral proteins within and around the VPs. The observed viral components are spatially organized as five concentric layers, in which NSP5 localizes at the center of the VPs, surrounded by a layer of NSP2 and NSP4 proteins, followed by an intermediate zone comprised of the VP1, VP2, VP6. In the outermost zone, we observed a ring of VP4 and finally a layer of VP7. These findings show that rotavirus VPs are highly organized organelles.


Assuntos
Células Epiteliais/virologia , Rotavirus/crescimento & desenvolvimento , Proteínas Virais/análise , Replicação Viral , Animais , Linhagem Celular , Macaca mulatta , Microscopia de Fluorescência , Análise Espacial
18.
J Virol ; 93(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31270230

RESUMO

Cellular and viral factors participate in the replication cycle of rotavirus. We report that the guanine nucleotide exchange factor GBF1, which activates the small GTPase Arf1 to induce COPI transport processes, is required for rotavirus replication since knocking down GBF1 expression by RNA interference or inhibiting its activity by treatment with brefeldin A (BFA) or Golgicide A (GCA) significantly reduces the yield of infectious viral progeny. This reduction in virus yield was related to a block in virus assembly, since in the presence of either BFA or GCA, the assembly of infectious mature triple-layered virions was significantly prevented and only double-layered particles were detected. We report that the catalytic activity of GBF1, but not the activation of Arf1, is essential for the assembly of the outer capsid of rotavirus. We show that both BFA and GCA, as well as interfering with the synthesis of GBF1, alter the electrophoretic mobility of glycoproteins VP7 and NSP4 and block the trimerization of the virus surface protein VP7, a step required for its incorporation into virus particles. Although a posttranslational modification of VP7 (other than glycosylation) could be related to the lack of trimerization, we found that NSP4 might also be involved in this process, since knocking down its expression reduces VP7 trimerization. In support, recombinant VP7 protein overexpressed in transfected cells formed trimers only when cotransfected with NSP4.IMPORTANCE Rotavirus, a member of the family Reoviridae, is the major cause of severe diarrhea in children and young animals worldwide. Despite significant advances in the characterization of the biology of this virus, the mechanisms involved in morphogenesis of the virus particle are still poorly understood. In this work, we show that the guanine nucleotide exchange factor GBF1, relevant for COPI/Arf1-mediated cellular vesicular transport, participates in the replication cycle of the virus, influencing the correct processing of viral glycoproteins VP7 and NSP4 and the assembly of the virus surface proteins VP7 and VP4.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Interações Hospedeiro-Patógeno , Rotavirus/crescimento & desenvolvimento , Montagem de Vírus , Replicação Viral , Fator 1 de Ribosilação do ADP/metabolismo , Animais , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Macaca mulatta , Carga Viral , Proteínas Virais/metabolismo
19.
Vopr Virusol ; 64(1): 16-22, 2019.
Artigo em Russo | MEDLINE | ID: mdl-30893525

RESUMO

BACKGROUND: Rоtaviruses are amоng the leading causes of severe diarrhea in children all over the Wоrld. Vaccination is considered to be the mоst effective way to cоntrоl the disease. Currently available vaccines for prevention of rоtavirus infection are based on live attenuated rotavirus strains human оr animal origin. OBJECTIVES: The aim of this investigation was to study the biological and genetic properties of an actual epidemic human rotavirus A (RVA) strain Wa G1P[8] genotype. METHODS: RVA Wa reproduction in a monolayer continuous cell lines, purification and concentration of RVA antigen, PAAG electrophoresis and Western-Blot, electrophoresis of viral genomic RNA segments, sequencing. RESULTS: Human RVA G1P[8] Wa strain biological and molecular genetic properties were assessed in the process of the adaptation to MARC145 continuous cell line. Cell cultured RVA antigen was purified, concentrated and then characterized by the method of PAAG electrophoresis and immunoblot. To verify RVA Wa genome identity, electrophoresis of viral genomic RNA segments was performed. The lack of accumulation of changes in the RVA Wa genome during adaptation to various cell cultures and during serial passages was demonstrated by sequencing fragments of the viral genome. CONCLUSIONS: RVA Wa strain is stable, it possesses high biological activity: it has been successfully adapted to the MARC145 cell line and RVA Wa virus titer after the adaptation reached 7,5-7,7 lg TCID50/ml. The identity of the cultivated RVA to the original strain Wa G1P[8] was confirmed.


Assuntos
Antígenos Virais , Genoma Viral , Filogenia , RNA Viral , Infecções por Rotavirus , Rotavirus , Animais , Antígenos Virais/biossíntese , Antígenos Virais/genética , Linhagem Celular , Chlorocebus aethiops , Genótipo , Humanos , RNA Viral/biossíntese , RNA Viral/genética , Rotavirus/genética , Rotavirus/crescimento & desenvolvimento , Rotavirus/isolamento & purificação , Infecções por Rotavirus/genética , Infecções por Rotavirus/metabolismo , Suínos
20.
J Vis Exp ; (143)2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30741263

RESUMO

Rotavirus is the main etiological factor for infantile diarrhea. It is a double-stranded (ds) RNA virus and forms a genetically diverse population, known as quasispecies, owing to their high mutation rate. Here, we describe how to measure the specific growth rate and the cell-binding ability of rotavirus as its phenotypes. Rotavirus is treated with trypsin to recognize the cell receptor and then inoculated into MA104 cell culture. The supernatant, including viral progenies, is collected intermittently. The plaque assay is used to confirm the virus titer (plaque-forming unit: pfu) of each collected supernatant. The specific growth rate is estimated by fitting time-course data of pfu/mL to the modified Gompertz model. In the assay of cell-binding, MA104 cells in a 24-well plate are infected with rotavirus and incubated for 90 min at 4 °C for rotavirus adsorption to cell receptors. A low temperature restrains rotavirus from invading the host cell. After washing to remove unbound virions, RNA is extracted from virions attached to cell receptors followed by cDNA synthesis and reverse-transcription quantitative PCR (RT-qPCR). These protocols can be applied for investigating the phenotypic differences among viral strains.


Assuntos
Receptores de Superfície Celular/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/crescimento & desenvolvimento , Rotavirus/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Infecções por Rotavirus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA