Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.032
Filtrar
1.
Ren Fail ; 46(1): 2349113, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38721900

RESUMO

BACKGROUND: Type 3 cardiorenal syndrome (CRS type 3) triggers acute cardiac injury from acute kidney injury (AKI), raising mortality in AKI patients. We aimed to identify risk factors for CRS type 3 and develop a predictive nomogram. METHODS: In this retrospective study, 805 AKI patients admitted at the Department of Nephrology, Second Hospital of Shanxi Medical University from 1 January 2017, to 31 December 2021, were categorized into a study cohort (406 patients from 2017.1.1-2021.6.30, with 63 CRS type 3 cases) and a validation cohort (126 patients from 1 July 2021 to 31 Dec 2021, with 22 CRS type 3 cases). Risk factors for CRS type 3, identified by logistic regression, informed the construction of a predictive nomogram. Its performance and accuracy were evaluated by the area under the curve (AUC), calibration curve and decision curve analysis, with further validation through a validation cohort. RESULTS: The nomogram included 6 risk factors: age (OR = 1.03; 95%CI = 1.009-1.052; p = 0.006), cardiovascular disease (CVD) history (OR = 2.802; 95%CI = 1.193-6.582; p = 0.018), mean artery pressure (MAP) (OR = 1.033; 95%CI = 1.012-1.054; p = 0.002), hemoglobin (OR = 0.973; 95%CI = 0.96--0.987; p < 0.001), homocysteine (OR = 1.05; 95%CI = 1.03-1.069; p < 0.001), AKI stage [(stage 1: reference), (stage 2: OR = 5.427; 95%CI = 1.781-16.534; p = 0.003), (stage 3: OR = 5.554; 95%CI = 2.234-13.805; p < 0.001)]. The nomogram exhibited excellent predictive performance with an AUC of 0.907 in the study cohort and 0.892 in the validation cohort. Calibration and decision curve analyses upheld its accuracy and clinical utility. CONCLUSIONS: We developed a nomogram predicting CRS type 3 in AKI patients, incorporating 6 risk factors: age, CVD history, MAP, hemoglobin, homocysteine, and AKI stage, enhancing early risk identification and patient management.


Assuntos
Injúria Renal Aguda , Síndrome Cardiorrenal , Nomogramas , Humanos , Feminino , Masculino , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/sangue , Estudos Retrospectivos , Pessoa de Meia-Idade , Fatores de Risco , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/complicações , Síndrome Cardiorrenal/etiologia , Idoso , Medição de Risco/métodos , China/epidemiologia , Modelos Logísticos , Adulto
3.
Lipids Health Dis ; 23(1): 153, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783361

RESUMO

BACKGROUND: With the development of pathophysiology, cardiorenal syndrome (CRS), a complex and severe disease, has received increasing attention. Monocyte to high-density lipoprotein-cholesterol ratio (MHR) and body mass index (BMI) are independent risk factors for cardiovascular diseases, but their association with CRS remains unexplored. This study aims to explore the independent and joint effects of MHR and BMI on CRS. METHODS: We included 42,178 NHANES participants. The determination of CRS referred to the simultaneous presence of cardiovascular disease (identified through self-report) and chronic kidney disease (eGFR < 60 mL/min per 1.73 m²). We employed multivariate weighted logistic regression to evaluate the odds ratio (OR) and 95% confidence interval (CI) for the independent and joint associations of MHR and BMI with CRS. We also conducted restricted cubic spines to explore nonlinear associations. RESULTS: The prevalence of CRS was 3.45% among all participants. An increase in both MHR and BMI is associated with a higher risk of CRS (MHR: OR = 1.799, 95% CI = 1.520-2.129, P < 0.001, P-trend < 0.001; BMI: OR = 1.037, 95% CI = 1.023-1.051, P < 0.001). Individuals who simultaneously fall into the highest quartile of MHR and have a BMI of 30 or more face the highest risk of CRS compared to those in the lowest MHR quartile with a BMI of less than 25 (OR = 3.45, 95% CI = 2.40-4.98, P < 0.001). However, there is no interactive association between MHR and BMI with CRS. CONCLUSIONS: Higher MHR and BMI are associated with higher odds of CRS. MHR and BMI can serve as tools for early prevention and intervention of CRS, respectively.


Assuntos
Índice de Massa Corporal , Síndrome Cardiorrenal , HDL-Colesterol , Monócitos , Humanos , Masculino , Feminino , Monócitos/metabolismo , Pessoa de Meia-Idade , Síndrome Cardiorrenal/sangue , Síndrome Cardiorrenal/epidemiologia , HDL-Colesterol/sangue , Idoso , Fatores de Risco , Adulto , Inquéritos Nutricionais , Razão de Chances , Modelos Logísticos
4.
Physiol Res ; 73(2): 173-187, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38710052

RESUMO

Sodium is the main osmotically active ion in the extracellular fluid and its concentration goes hand in hand with fluid volume. Under physiological conditions, homeostasis of sodium and thus amount of fluid is regulated by neural and humoral interconnection of body tissues and organs. Both heart and kidneys are crucial in maintaining volume status. Proper kidney function is necessary to excrete regulated amount of water and solutes and adequate heart function is inevitable to sustain renal perfusion pressure, oxygen supply etc. As these organs are bidirectionally interconnected, injury of one leads to dysfunction of another. This condition is known as cardiorenal syndrome. It is divided into five subtypes regarding timeframe and pathophysiology of the onset. Hemodynamic effects include congestion, decreased cardiac output, but also production of natriuretic peptides. Renal congestion and hypoperfusion leads to kidney injury and maladaptive activation of renin-angiotensin-aldosterone system and sympathetic nervous system. In cardiorenal syndromes sodium and water excretion is impaired leading to volume overload and far-reaching negative consequences, including higher morbidity and mortality of these patients. Keywords: Cardiorenal syndrome, Renocardiac syndrome, Volume overload, Sodium retention.


Assuntos
Síndrome Cardiorrenal , Homeostase , Sódio , Equilíbrio Hidroeletrolítico , Humanos , Síndrome Cardiorrenal/metabolismo , Síndrome Cardiorrenal/fisiopatologia , Animais , Homeostase/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Sódio/metabolismo , Rim/metabolismo , Rim/fisiopatologia , Desequilíbrio Hidroeletrolítico/metabolismo , Desequilíbrio Hidroeletrolítico/fisiopatologia , Água/metabolismo
5.
Methods Mol Biol ; 2803: 145-162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676891

RESUMO

Cardiorenal syndrome (CRS) is a clinical disorder involving combined heart and kidney dysfunction, which leads to poor clinical outcomes. To understand the complex pathophysiology and mechanisms that lie behind this disease setting, and design/evaluate appropriate treatment strategies, suitable animal models are required. Described here are the protocols for establishing surgically induced animal models of CRS including important methods to determine clinically relevant measures of cardiac and renal function, commonly used to assess the degree of organ dysfunction in the model and treatment efficacy when evaluating novel therapeutic strategies.


Assuntos
Síndrome Cardiorrenal , Modelos Animais de Doenças , Síndrome Cardiorrenal/fisiopatologia , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/etiologia , Animais , Ratos , Rim/fisiopatologia , Rim/patologia , Coração/fisiopatologia , Masculino , Humanos
6.
Adv Kidney Dis Health ; 31(2): 127-132, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38649216

RESUMO

Hepatorenal syndrome has conventionally been regarded as a multisystem syndrome in which pathophysiologic pathways that link cirrhosis with impairment in kidney function are followed by dysfunction of several organs such as the heart. The advances in cardiac studies have helped diagnose more subtle cardiac abnormalities that would have otherwise remained unnoticed in a significant subset of patients with advanced liver disease and cirrhosis. Accumulating data suggests that in many instances, the cardiac dysfunction precedes and predicts development of kidney disease in such patients. These observations point to the heart as a key player in hepatorenal syndrome and challenge the notion that the cardiac abnormalities are either the consequence of aberrancies in hepatorenal interactions or have only minor effects. As such, the disturbances traditionally bundled within hepatorenal syndrome may indeed represent a hepatic form of cardiorenal syndrome whereby the liver affects the kidney in part through cardiorenal pathways (that is, hepato-cardio-renal syndrome).


Assuntos
Síndrome Cardiorrenal , Síndrome Hepatorrenal , Humanos , Síndrome Cardiorrenal/fisiopatologia , Síndrome Cardiorrenal/diagnóstico , Síndrome Hepatorrenal/diagnóstico , Síndrome Hepatorrenal/fisiopatologia , Síndrome Hepatorrenal/etiologia , Síndrome Hepatorrenal/terapia , Cirrose Hepática/complicações , Cirrose Hepática/fisiopatologia
8.
Cardiorenal Med ; 14(1): 235-250, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432220

RESUMO

BACKGROUND: The coexistence of heart and kidney diseases, also called cardiorenal syndrome, is very common, leads to increased morbidity and mortality, and poses diagnostic and therapeutic difficulties. There is a risk-treatment paradox, such that patients with the highest risk are treated with lesser disease-modifying medical therapies. SUMMARY: In this document, different scientific societies propose a practical approach to address and optimize cardiorenal therapies and related comorbidities systematically in chronic cardiorenal disease beyond congestion. Cardiorenal programs have emerged as novel models that may assist in delivering coordinated and holistic management for these patients. KEY MESSAGES: (1) Cardiorenal disease is a ubiquitous entity in clinical practice and is associated with numerous barriers that limit medical treatment. (2) The present article focuses on the practical approaches to managing chronic cardiorenal disease beyond congestion to overcome some of these barriers and improve the treatment of this high-risk population.


Assuntos
Síndrome Cardiorrenal , Humanos , Síndrome Cardiorrenal/terapia , Síndrome Cardiorrenal/fisiopatologia , Gerenciamento Clínico
9.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542302

RESUMO

Cardiorenal syndrome (CRS) involves joint dysfunction of the heart and kidney. Acute forms share biochemical alterations like hyperuricaemia (HU) with tumour lysis syndrome (TLS). The mainstay treatment of acute CRS with systemic overload is diuretics, but rasburicase is used in TLS to prevent and treat hyperuricaemia. An observational, retrospective study was performed to assess the effectiveness and safety of a single dose of rasburicase in hospitalized patients with cardiorenal syndrome, worsening renal function and uric acid levels above 9 mg/dL. Rasburicase improved diuresis and systemic congestion in the 35 patients included. A total of 86% of patients did not need to undergo RRT, and early withdrawal was possible in the remaining five. Creatinine (Cr) decreased after treatment with rasburicase from a peak of 3.6 ± 1.27 to 1.79 ± 0.83 mg/dL, and the estimated glomerular filtration rate (eGFR) improved from 17 ± 8 to 41 ± 20 mL/min/1.73 m2 (p = 0.0001). The levels of N-terminal type B Brain Natriuretic Peptide (Nt-ProBNP) and C-reactive protein (CRP) were also significantly reduced. No relevant adverse events were detected. Our results show that early treatment with a dose of rasburicase in patients with CRS and severe HU is effective to improve renal function and systemic congestion, avoiding the need for sustained extrarenal clearance, regardless of comorbidities and ventricular function.


Assuntos
Síndrome Cardiorrenal , Hiperuricemia , Síndrome de Lise Tumoral , Humanos , Hiperuricemia/tratamento farmacológico , Síndrome Cardiorrenal/tratamento farmacológico , Estudos Retrospectivos , Síndrome de Lise Tumoral/tratamento farmacológico , Síndrome de Lise Tumoral/etiologia , Síndrome de Lise Tumoral/prevenção & controle , Urato Oxidase/uso terapêutico
10.
BMC Cardiovasc Disord ; 24(1): 142, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443814

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important regulatory factors in the normal developmental stages of the heart and kidney. However, it is currently unclear how miRNA is expressed in type 2 cardiorenal syndrome (CRS). This study aimed to detect the differential expression of miRNAs and to clarify the main enrichment pathways of differentially expressed miRNA target genes in type 2 CRS. METHODS: Five cases of healthy control (Group 1), eight of chronic heart failure (CHF, Group 2) and seven of type 2 CRS (Group 3) were enrolled, respectively. Total RNA was extracted from the peripheral blood of each group. To predict the miRNA target genes and biological signalling pathways closely related to type 2 CRS, the Agilent miRNA microarray platform was used for miRNA profiling and bioinformatics analysis of the isolated total RNA samples. RESULTS: After the microarray analysis was done to screen for differentially expressed circulating miRNAs among the three different groups of samples, the target genes and bioinformatic pathways of the differential miRNAs were predicted. A total of 38 differential miRNAs (15 up- and 23 down-regulated) were found in Group 3 compared with Group 1, and a total of 42 differential miRNAs (11 up- and 31 down-regulated) were found in Group 3 compared to Group 2. According to the Gene Ontology (GO) function and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis, the top 10 lists of molecular functions, cellular composition and biological processes, and the top 30 signalling pathways of predicted gene targets of the differentially expressed miRNAs were discriminated among the three groups. CONCLUSION: Between the patients with CHF and type 2 CRS, miRNAs were differentially expressed. Prediction of target genes of differentially expressed miRNAs and the use of GO function and KEGG pathway analysis may reveal the molecular mechanisms of CRS. Circulating miRNAs may contribute to the diagnosis of CRS, and further and larger studies are needed to enhance the robustness of our findings.


Assuntos
Síndrome Cardiorrenal , MicroRNA Circulante , MicroRNAs , Humanos , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/genética , MicroRNAs/genética , Rim , Coração , Biologia Computacional
11.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38473905

RESUMO

Chronic kidney disease (CKD) affects > 10% of the global adult population and significantly increases the risk of cardiovascular disease (CVD), which remains the leading cause of death in this population. The development and progression of CVD-compared to the general population-is premature and accelerated, manifesting as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. CKD and CV disease combine to cause multimorbid cardiorenal syndrome (CRS) due to contributions from shared risk factors, including systolic hypertension, diabetes mellitus, obesity, and dyslipidemia. Additional neurohormonal activation, innate immunity, and inflammation contribute to progressive cardiac and renal deterioration, reflecting the strong bidirectional interaction between these organ systems. A shared molecular pathophysiology-including inflammation, oxidative stress, senescence, and hemodynamic fluctuations characterise all types of CRS. This review highlights the evolving paradigm and recent advances in our understanding of the molecular biology of CRS, outlining the potential for disease-specific therapies and biomarker disease detection.


Assuntos
Síndrome Cardiorrenal , Doenças Cardiovasculares , Insuficiência Cardíaca , Insuficiência Renal Crônica , Humanos , Doença Crônica , Insuficiência Renal Crônica/complicações , Inflamação/complicações
12.
Cardiorenal Med ; 14(1): 136-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38301611

RESUMO

BACKGROUND: Heart failure is frequently associated with kidney disease, and patients with kidney disease are at increased risk of heart failure. The co-occurrence of both entities not only significantly increases morbidity and mortality but also complicates therapy. SUMMARY: Cardiorenal syndrome often requires a broad, comprehensive, and multidisciplinary approach. As a result, a need has arisen to create specialized cardiorenal units that allow for rigorous and personalized management of this condition. Moreover, in some cases, cardiorenal syndrome is more complex, owing to an acute and critical situation that requires the concept of the cardiorenal unit to be extended toward advanced diagnostic and therapeutic positions, thus confirming the need for an advanced cardiorenal unit. The creation of these units constitutes a real challenge, necessitating a specific multilevel action plan, covering governance and management, type of patient, personnel requirements, service portfolio, care process, information systems, and other resources. Specific lines of action must be proposed for each of the relevant points in order to facilitate development of these units, together with continuous evaluation of unit activity through specific indicators, and to detect areas for improvement. KEY MESSAGES: This study addresses the conditions and organizational characteristics that enable the creation, development, and continuous improvement of advanced cardiorenal units.


Assuntos
Síndrome Cardiorrenal , Humanos , Síndrome Cardiorrenal/terapia , Síndrome Cardiorrenal/fisiopatologia , Síndrome Cardiorrenal/diagnóstico , Insuficiência Cardíaca/terapia , Unidades Hospitalares/organização & administração
13.
Cardiorenal Med ; 14(1): 129-135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38342088

RESUMO

BACKGROUND: The vascular endothelium serves as a semi-selective permeable barrier as a conduit for transport of fluid, solutes, and various cell populations between the vessel lumen and tissues. The endothelium thus has a dynamic role in the regulation of coagulation, immune system, lipid and electrolyte transport, as well as neurohumoral influences on vascular tone and end-organ injury to tissues such as the heart and kidney. SUMMARY: Within this framework, pharmacologic strategies for heart and kidney diseases including blood pressure, glycemic control, and lipid reduction provide significant risk reduction, yet certain populations are at risk for substantial residual risk for disease progression and treatment resistance and often have unwanted off-target effects leaving the need for adjunct, alternative targeted therapies. Recent advances in techniques in sequencing and spatial transcriptomics have paved the way for the development of new therapies for targeting heart and kidney disease that include various gene, cell, and nano-based therapies. Cell-specific endothelium-specific targeting of viral vectors will enable their use for the treatment of heart and kidney diseases with gene therapy that can avoid unwanted off-target effects, improve treatment resistance, and reduce residual risk for disease progression. KEY MESSAGES: The vascular endothelium is an important therapeutic target for chronic kidney and cardiovascular diseases. Developing endothelial-specific gene therapies can benefit patients who develop resistance to current treatments.


Assuntos
Síndrome Cardiorrenal , Endotélio Vascular , Humanos , Síndrome Cardiorrenal/fisiopatologia , Síndrome Cardiorrenal/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Terapia Genética/métodos , Animais
14.
Int J Med Sci ; 21(3): 547-561, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322592

RESUMO

Type-3 cardiorenal syndrome (CRS-3) is acute kidney injury followed by cardiac injury/dysfunction. Mitochondrial injury may impair myocardial function during CRS-3. Since dual-specificity phosphatase 1 (DUSP1) and prohibitin 2 (PHB2) both promote cardiac mitochondrial quality control, we assessed whether these proteins were dysregulated during CRS-3-related cardiac depression. We found that DUSP1 was downregulated in heart tissues from a mouse model of CRS-3. DUSP1 transgenic (DUSP1Tg) mice were protected from CRS-3-induced myocardial damage, as evidenced by their improved heart function and myocardial structure. CRS-3 induced the inflammatory response, oxidative stress and mitochondrial dysfunction in wild-type hearts, but not in DUSP1Tg hearts. DUSP1 overexpression normalized cardiac mitochondrial quality control during CRS-3 by suppressing mitochondrial fission, restoring mitochondrial fusion, re-activating mitophagy and augmenting mitochondrial biogenesis. We found that DUSP1 sustained cardiac mitochondrial quality control by binding directly to PHB2 and maintaining PHB2 phosphorylation, while CRS-3 disrupted this physiological interaction. Transgenic knock-in mice carrying the Phb2S91D variant were less susceptible to cardiac depression upon CRS-3, due to a reduced inflammatory response, suppressed oxidative stress and improved mitochondrial quality control in their heart tissues. Thus, CRS-3-induced myocardial dysfunction can be attributed to reduced DUSP1 expression and disrupted DUSP1/PHB2 binding, leading to defective cardiac mitochondrial quality control.


Assuntos
Síndrome Cardiorrenal , Fosfatase 1 de Especificidade Dupla , Proibitinas , Animais , Camundongos , Síndrome Cardiorrenal/metabolismo , Coração , Camundongos Transgênicos , Miocárdio/metabolismo , Proibitinas/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Mitocôndrias
15.
Circ Res ; 134(5): 592-613, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38422175

RESUMO

The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.


Assuntos
Síndrome Cardiorrenal , Doenças Vasculares , Humanos , Coração , Rim/metabolismo , Transdução de Sinais , Pulmão/metabolismo
16.
Hypertens Res ; 47(4): 998-1016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302775

RESUMO

The aim was to evaluate the effects of renal denervation (RDN) on autoregulation of renal hemodynamics and the pressure-natriuresis relationship in Ren-2 transgenic rats (TGR) with aorto-caval fistula (ACF)-induced heart failure (HF). RDN was performed one week after creation of ACF or sham-operation. Animals were prepared for evaluation of autoregulatory capacity of renal blood flow (RBF) and glomerular filtration rate (GFR), and of the pressure-natriuresis characteristics after stepwise changes in renal arterial pressure (RAP) induced by aortic clamping. Their basal values of blood pressure and renal function were significantly lower than with innervated sham-operated TGR (p < 0.05 in all cases): mean arterial pressure (MAP) (115 ± 2 vs. 160 ± 3 mmHg), RBF (6.91 ± 0.33 vs. 10.87 ± 0.38 ml.min-1.g-1), urine flow (UF) (11.3 ± 1.79 vs. 43.17 ± 3.24 µl.min-1.g-1) and absolute sodium excretion (UNaV) (1.08 ± 0.27 vs, 6.38 ± 0.76 µmol.min-1.g-1). After denervation ACF TGR showed improved autoregulation of RBF: at lowest RAP level (80 mmHg) the value was higher than in innervated ACF TGR (6.92 ± 0.26 vs. 4.54 ± 0.22 ml.min-1.g-1, p < 0.05). Also, the pressure-natriuresis relationship was markedly improved after RDN: at the RAP of 80 mmHg UF equaled 4.31 ± 0.99 vs. 0.26 ± 0.09 µl.min-1.g-1 recorded in innervated ACF TGR, UNaV was 0.31 ± 0.05 vs. 0.04 ± 0.01 µmol min-1.g-1 (p < 0.05 in all cases). In conclusion, in our model of hypertensive rat with ACF-induced HF, RDN improved autoregulatory capacity of RBF and the pressure-natriuresis relationship when measured at the stage of HF decompensation.


Assuntos
Síndrome Cardiorrenal , Fístula , Insuficiência Cardíaca , Hipertensão , Ratos , Animais , Ratos Transgênicos , Pressão Sanguínea , Natriurese , Rim , Circulação Renal , Simpatectomia , Taxa de Filtração Glomerular
18.
Z Gerontol Geriatr ; 57(2): 152-161, 2024 Mar.
Artigo em Alemão | MEDLINE | ID: mdl-38305795

RESUMO

The unfavorable mutual influence of the kidney and heart functions in acute or chronic kidney and/or heart failure has defined the cardiorenal syndrome (CRS) since a consensus conference in 2004. The pathophysiological considerations and the subsequent treatment approaches determine the classification into five types. The syndrome has a high prevalence in geriatric patients. The interactions of medications on one or the other organ system require an interaction of treatment modalities in order to improve the prognosis and prevent acute deterioration. Exact knowledge of the respective indications, differential treatment approaches and specifics in dealing with CRS can improve the current undertreatment due to concerns about side effects.


Assuntos
Síndrome Cardiorrenal , Insuficiência Cardíaca , Humanos , Idoso , Síndrome Cardiorrenal/diagnóstico , Síndrome Cardiorrenal/terapia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , Doença Crônica , Prognóstico
19.
Sci Total Environ ; 922: 171015, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38369134

RESUMO

Atrazine (ATZ) is the most prevalent herbicide that has been widely used in agriculture to control broadleaf weeds and improve crop yield and quality. The heavy use of ATZ has caused serious environmental pollution and toxicity to human health. Lycopene (LYC), is a carotenoid that exhibits numerous health benefits, such as prevention of cardiovascular diseases and nephropathy. However, it remains unclear that whether ATZ causes cardiorenal injury or even cardiorenal syndrome (CRS) and the beneficial role of LYC on it. To test this hypothesis, mice were treated with LYC and/or ATZ for 21 days by oral gavage. This study demonstrated that ATZ exposure caused cardiorenal morphological alterations, and several inflammatory cell infiltrations mediated by activating NF-κB signaling pathways. Interestingly, dysregulation of MAPK signaling pathways and MAPK phosphorylation caused by ATZ have been implicated in cardiorenal diseases. ATZ exposure up-regulated cardiac and renal injury associated biomarkers levels that suggested the occurrence of CRS. However, these all changes were reverted, and the phenomenon of CAR was disappeared by LYC co-treatment. Based on our findings, we postulated a novel mechanism to elucidate pesticide-induced CRS and indicated that LYC can be a preventive and therapeutic agent for treating CRS by targeting MAPK/NF-κB signaling pathways.


Assuntos
Atrazina , Síndrome Cardiorrenal , Humanos , Camundongos , Animais , Licopeno/metabolismo , Atrazina/toxicidade , NF-kappa B , Síndrome Cardiorrenal/induzido quimicamente , Estresse Oxidativo
20.
Cardiorenal Med ; 14(1): 58-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228113

RESUMO

BACKGROUND: The maladaptive neurohormonal activation, an integral mechanism in the pathophysiology of heart failure (HF) and cardiorenal syndrome, has a profound impact on renal sodium handling. Congestion is the primary reason for hospitalization of patients with HF and the main target of therapy. As sodium is the main determinant of extracellular volume, the goal is to enhance urinary sodium excretion in order to address excess fluid. The interventions to increase natriuresis have conventionally focused on distal nephron as the primary segment that counterbalances the effects of loop diuretics. SUMMARY: Recent developments in the field of cardiorenal medicine have resulted in a shift of attention to renal proximal tubules (e.g., emerging evidence on proximal tubular dysfunction beyond handling of sodium). Herein, we discuss the three main mechanisms of sodium transport in the proximal tubules with emphasis on their intrinsic links to one another as well as to more distal transporters of sodium. Then, we provide an overview of the findings of the most recent clinical studies that have tried to enhance the conventional decongestive strategies through simultaneous blockade of these mechanisms. KEY MESSAGE: Interventions aiming at renal proximal tubules have the potential to significantly improve our ability to decongest patients with acute HF.


Assuntos
Síndrome Cardiorrenal , Insuficiência Cardíaca , Túbulos Renais Proximais , Sódio , Humanos , Túbulos Renais Proximais/fisiopatologia , Túbulos Renais Proximais/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Síndrome Cardiorrenal/fisiopatologia , Síndrome Cardiorrenal/metabolismo , Sódio/metabolismo , Doença Aguda , Natriurese/fisiologia , Diuréticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA