Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.108
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732139

RESUMO

The plant-derived α-linolenic acid (ALA) is an essential n-3 acid highly susceptible to oxidation, present in oils of flaxseeds, walnuts, canola, perilla, soy, and chia. After ingestion, it can be incorporated in to body lipid pools (particularly triglycerides and phospholipid membranes), and then endogenously metabolized through desaturation, elongation, and peroxisome oxidation to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), with a very limited efficiency (particularly for DHA), beta-oxidized as an energy source, or directly metabolized to C18-oxilipins. At this moment, data in the literature about the effects of ALA supplementation on metabolic syndrome (MetS) in humans are inconsistent, indicating no effects or some positive effects on all MetS components (abdominal obesity, dyslipidemia, impaired insulin sensitivity and glucoregulation, blood pressure, and liver steatosis). The major effects of ALA on MetS seem to be through its conversion to more potent EPA and DHA, the impact on the n-3/n-6 ratio, and the consecutive effects on the formation of oxylipins and endocannabinoids, inflammation, insulin sensitivity, and insulin secretion, as well as adipocyte and hepatocytes function. It is important to distinguish the direct effects of ALA from the effects of EPA and DHA metabolites. This review summarizes the most recent findings on this topic and discusses the possible mechanisms.


Assuntos
Síndrome Metabólica , Ácido alfa-Linolênico , Síndrome Metabólica/metabolismo , Humanos , Ácido alfa-Linolênico/metabolismo , Ácido alfa-Linolênico/administração & dosagem , Animais , Ácidos Graxos Insaturados/metabolismo , Suplementos Nutricionais , Resistência à Insulina
2.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732245

RESUMO

Oxidative stress and inflammation are recognized as pivotal contributors and common features of several chronic degenerative diseases, including cancer, metabolic syndrome, type 2 diabetes, cardiovascular diseases and neurodegenerative disorders, affecting a high percentage of the population [...].


Assuntos
Inflamação , Doenças Neurodegenerativas , Estresse Oxidativo , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença Crônica , Diabetes Mellitus Tipo 2/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Síndrome Metabólica/metabolismo
3.
Front Endocrinol (Lausanne) ; 15: 1369600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711979

RESUMO

Background: The Metabolic Score for Insulin Resistance (METS-IR) offers a promising and reliable non-insulin-based approach to assess insulin resistance and evaluate cardiometabolic risk. However, evidence for the association between METS-IR and hypertension was still limited. Methods: Participants from the National Health and Nutrition Examination Survey (NHANES) database from 2007-2016 were selected for weighted multivariable regression analyses, subgroup analyses and restricted cubic spline (RCS) modeling to assess the association between the METS-IR and hypertension, as well as systolic blood pressure (SBP) and diastolic blood pressure (DBP). Results: This study enrolled 7,721 adults aged ≥20 years, 2,926 (34.03%) of whom was diagnosed as hypertension. After adjusting for all potential covariates, an increased METS-IR (log2 conversion, denoted as log2METS-IR) was independently associated with a higher prevalence of hypertension (odd ratio [OR] 3.99, 95% confidence interval [CI] 3.19~5.01). The OR for hypertension in subjects with the highest quartile of METS-IR was 3.89-fold (OR 3.89, 95% CI 3.06~4.94) higher than that in those with the lowest quartile of METS-IR. This positive correlation became more significant as METS-IR increased (p for trend < 0.001). Log2METS-IR was significantly correlated with increase in SBP (ß 6.75, 95% CI 5.65~7.85) and DBP (ß 5.59, 95% CI 4.75~6.43) in a fully adjusted model. Consistent results were obtained in subgroup analyses. Hypertension, SBP and DBP all exhibited a non-linear increase with the rise in METS-IR. The minimal threshold for the beneficial association of METS-IR with hypertension, SBP and DBP were all identified to be 46.88. Conclusion: The findings of this study revealed a significant positive association between METS-IR and hypertension among US adults, suggesting METS-IR as a potential tool for assessing hypertension risk.


Assuntos
Hipertensão , Resistência à Insulina , Inquéritos Nutricionais , Humanos , Hipertensão/epidemiologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/metabolismo , Estados Unidos/epidemiologia , Estudos Transversais , Prevalência , Pressão Sanguínea/fisiologia , Adulto Jovem , Idoso , Fatores de Risco
4.
Front Endocrinol (Lausanne) ; 15: 1382844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689728

RESUMO

Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.


Assuntos
Ração Animal , Cromo , Suplementos Nutricionais , Doenças dos Cavalos , Inflamação , Resistência à Insulina , Magnésio , Manganês , Síndrome Metabólica , Spirulina , Animais , Cavalos , Inflamação/metabolismo , Síndrome Metabólica/veterinária , Síndrome Metabólica/metabolismo , Doenças dos Cavalos/metabolismo , Doenças dos Cavalos/prevenção & controle , Ração Animal/análise , Magnésio/metabolismo , Masculino , Feminino
5.
Sci Rep ; 14(1): 11313, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760452

RESUMO

Physical activity promotes various metabolic benefits by balancing pro and anti-inflammatory adipokines. Recent studies suggest that asprosin might be involved in progression of metabolic syndrome (MetS), however, the underlying mechanisms have not been understood yet. This study aimed to evaluate the effects of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and further detraining on MetS indices, insulin resistance, serum and the liver levels of asprosin, and AMP-activated protein kinase (AMPK) pathway in menopause-induced MetS model of rats. A total of 64 Wistar rats were used in this study and divided into eight groups: Sham1, OVX1 (ovariectomized), Sham2, OVX2, OVX + HIIT, OVX + MICT, OVX + HIIT + Det (detraining), and OVX + MICT + Det. Animals performed the protocols, and then serum concentrations of asprosin, TNF-α, insulin, fasting blood glucose, and lipid profiles (TC, LDL, TG, and HDL) were assessed. Additionally, the liver expression of asprosin, AMPK, and P-AMPK was measured by western blotting. Both HIIT and MICT caused a significant decrease in weight, waist circumference, BMI (P = 0.001), and serum levels of glucose, insulin, asprosin (P = 0.001), triglyceride, total cholesterol, low-density lipoprotein (LDL), and TNF-α (P = 0.001), but an increase in the liver AMPK, P-AMPK, and P-AMPK/AMPK (P = 0.001), compared with OVX2 noexercised group. MICT was superior to HIIT in reducing serum asprosin, TNF-a, TG, LDL (P = 0.001), insulin, fasting blood glucose, HOMA-IR, and QUEKI index (P = 0.001), but an increase in the liver AMPK, and p-AMPK (P = 0.001). Although after two months of de-training almost all indices returned to the pre exercise values (P < 0.05). The findings suggest that MICT effectively alleviates MetS induced by menopause, at least partly through the activation of liver signaling of P-AMPK and the reduction of asprosin and TNF-α. These results have practical implications for the development of exercise interventions targeting MetS in menopausal individuals, emphasizing the potential benefits of MICT in mitigating MetS-related complications.


Assuntos
Proteínas Quinases Ativadas por AMP , Modelos Animais de Doenças , Fibrilina-1 , Síndrome Metabólica , Condicionamento Físico Animal , Ratos Wistar , Transdução de Sinais , Animais , Fibrilina-1/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/terapia , Ratos , Feminino , Proteínas Quinases Ativadas por AMP/metabolismo , Treinamento Intervalado de Alta Intensidade/métodos , Fígado/metabolismo , Resistência à Insulina , Glicemia/metabolismo , Insulina/sangue , Insulina/metabolismo , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/metabolismo
6.
Cardiovasc Toxicol ; 24(6): 576-586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691302

RESUMO

Hypertension is a pathological state of the metabolic syndrome that increases the risk of cardiovascular disease. Managing hypertension is challenging, and we aimed to identify the pathogenic factors and discern therapeutic targets for metabolic hypertension (MHR). An MHR rat model was established with the combined treatment of a high-sugar, high-fat diet and ethanol. Histopathological observations were performed using hematoxylin-eosin and Sirius Red staining. Transcriptome sequencing was performed to screen differentially expressed genes. The role of ubiquitin-specific protease 18 (USP18) in the proliferation, apoptosis, and oxidative stress of HUVECs was explored using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays. Moreover, USP18 downstream signaling pathways in MHR were screened, and the effects of USP18 on these signaling pathways were investigated by western blotting. In the MHR model, total cholesterol and low-density lipoprotein levels increased, while high-density lipoprotein levels decreased. Moreover, high vessel thickness and percentage of collagen were noted along with increased malondialdehyde, decreased superoxide dismutase and catalase levels. The staining results showed that the MHR model exhibited an irregular aortic intima and disordered smooth muscle cells. There were 78 differentially expressed genes in the MHR model, and seven hub genes, including USP18, were identified. USP18 overexpression facilitated proliferation and reduced apoptosis and oxidative stress in HUVECs treated with Ang in vitro. In addition, the JAK/STAT pathway was identified as a USP18 downstream signaling pathway, and USP18 overexpression inhibited the expression of JAK/STAT pathway-related proteins. Conclusively, USP18 restrained MHR progression by promoting cell proliferation, reversing apoptosis and oxidative stress, and suppressing the JAK/STAT pathway.


Assuntos
Apoptose , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Hipertensão , Janus Quinases , Síndrome Metabólica , Estresse Oxidativo , Transdução de Sinais , Ubiquitina Tiolesterase , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Animais , Humanos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Janus Quinases/metabolismo , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/patologia , Hipertensão/enzimologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/enzimologia , Pressão Sanguínea/efeitos dos fármacos , Progressão da Doença , Remodelação Vascular/efeitos dos fármacos , Fatores de Transcrição STAT/metabolismo , Células Cultivadas , Ratos Sprague-Dawley , Regulação da Expressão Gênica , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Ratos
7.
Lipids Health Dis ; 23(1): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741154

RESUMO

INTRODUCTION: Although previous studies have linked obesity and erectile dysfunction, the novel surrogate indicators of adipose accumulation are more essential and dependable factors to consider. Therefore, the primary objective of the current investigation was to examine and clarify the association between metabolic score for visceral fat (METS-VF) and erectile dysfunction. METHODS: Firstly, multivariate logistic regression analysis, smoothed curve fitting, and threshold effect analysis were employed to investigate the association between METS-VF and erectile dysfunction. Mediation analysis was also performed to evaluate the mediating role of homocysteine and inflammation. After that, subgroup analysis was carried out to examine the stability of the correlation of METS-VF with erectile dysfunction in various population settings. Furthermore, the area under the receiver operating characteristic (ROC) curve and eXtreme Gradient Boosting (XGBoost) algorithm were utilized to assess the capability of identifying METS-VF in comparison to the other four obesity-related indicators in identifying erectile dysfunction. RESULTS: After adjusting for all confounding factors, METS-VF was strongly and favourablely correlated with erectile dysfunction. With each additional unit rise in METS-VF, the prevalence of erectile dysfunction increased by 141%. A J-shaped relationship between METS-VF and erectile dysfunction was discovered through smoothed curve fitting. Marital status, physical activity, and smoking status can potentially modify this association. This finding of the ROC curve suggests that METS-VF had a powerful identifying capacity for erectile dysfunction (AUC = 0.7351). Homocysteine and inflammation mediated 4.24% and 2.81%, respectively. CONCLUSION: The findings of the current investigation suggest that METS-VF can be considered a dependable identifying indicator of erectile dysfunction.


Assuntos
Disfunção Erétil , Curva ROC , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Humanos , Pessoa de Meia-Idade , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Biomarcadores/metabolismo , Adulto , Homocisteína/sangue , Homocisteína/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Idoso , Fatores de Risco , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Modelos Logísticos
8.
Front Endocrinol (Lausanne) ; 15: 1388361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745946

RESUMO

Introduction: The pathogenesis of Post-Transplant Diabetes Mellitus (PTDM) is complex and multifactorial and it resembles that of Type-2 Diabetes Mellitus (T2DM). One risk factor specific to PTDM differentiates both entities: the use of immunosuppressive therapy. Specifically, Tacrolimus interacts with obesity and insulin resistance (IR) in accelerating the onset of PTDM. In a genotypic model of IR, the obese Zucker rats, Tacrolimus is highly diabetogenic by promoting the same changes in beta-cell already modified by IR. Nevertheless, genotypic animal models have their limitations and may not resemble the real pathophysiology of diabetes. In this study, we have evaluated the interaction between beta-cell damage and Tacrolimus in a non-genotypic animal model of obesity and metabolic syndrome. Methods: Sprague Dawley rats were fed a high-fat enriched diet during 45 days to induce obesity and metabolic dysregulation. On top of this established obesity, the administration of Tacrolimus (1mg/kg/day) during 15 days induced severe hyperglycaemia and changes in morphological and structural characteristics of the pancreas. Results: Obese animals administered with Tacrolimus showed increased size of islets of Langerhans and reduced beta-cell proliferation without changes in apoptosis. There were also changes in beta-cell nuclear factors such as a decrease in nuclear expression of MafA and a nuclear overexpression of FoxO1A, PDX-1 and NeuroD1. These animals also showed increased levels of pancreatic insulin and glucagon. Discussion: This model could be evidence of the relationship between the T2DM and PTDM physiopathology and, eventually, the model may be instrumental to study the pathogenesis of T2DM.


Assuntos
Modelos Animais de Doenças , Síndrome Metabólica , Obesidade , Ratos Sprague-Dawley , Tacrolimo , Animais , Tacrolimo/farmacologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Síndrome Metabólica/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Ratos , Masculino , Imunossupressores/efeitos adversos , Imunossupressores/farmacologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/efeitos dos fármacos , Fenótipo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Resistência à Insulina , Dieta Hiperlipídica/efeitos adversos
9.
Endocrinol Diabetes Metab ; 7(3): e00479, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590230

RESUMO

OBJECTIVE: We aimed to compare the association of three novel inflammatory indicators with metabolic syndrome (MetS) among Mashhad stroke and heart atherosclerotic disorder (MASHAD) cohort participants. METHODS: According to the International Diabetes Federation (IDF) criteria, the cohort participants were divided into the MetS(+) and MetS(-) groups. The lymphocyte to high-density lipoprotein cholesterol (HDL-C) ratio (LHR), high-sensitivity C-reactive protein (hs-CRP) to HDL-C ratio (HCHR) and hs-CRP to lymphocyte ratio (HCLR) were calculated and were compared between the groups. Binary logistic regression (LR) analysis was performed to find the association of the indices with the presence of MetS among men and women. Receiver-operating characteristic (ROC) curve analysis was used to establish cut-off values in predicting MetS for men and women. p-Values <0.05 were considered as statistically significant. RESULTS: Among a total of 8890 participants (5500 MetS(-) and 3390 MetS(+)), LHR, HCHR and HCLR were significantly higher in the MetS(+) group than in MetS(-) group (p < 0.001). In LR analysis, after adjusting for multiple cofounders, LHR remained an independent factor for the presence of MetS among men (OR: 1.254; 95% CI: 1.202-1.308; p < 0.001) and women (OR: 1.393; 95% CI: 1.340-1.448; p < 0.001). HCHR also remained an independent factor for the presence of MetS only in women (OR: 1.058; 95% CI: 1.043-1.073; p < 0.001). ROC curve analysis showed that LHR had the higher AUC for predicting MetS in both men (AUC: 0.627; 95% CI: 0.611-0.643; p < 0.001) and women (AUC: 0.683; 95% CI: 0.670, 0.696; p < 0.001). CONCLUSION: This suggests that among both genders, the LHR as an inexpensive and easy-to-access marker has a better diagnostic performance and could be a promising alternative to the traditional expensive inflammatory markers such as hs-CRP for the evaluation of inflammation in patients with MetS.


Assuntos
Diabetes Mellitus , Síndrome Metabólica , Humanos , Masculino , Feminino , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Proteína C-Reativa/metabolismo , HDL-Colesterol , Linfócitos/metabolismo
10.
Mol Med Rep ; 29(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606791

RESUMO

Obesity reaches up to epidemic proportions globally and increases the risk for a wide spectrum of co­morbidities, including type­2 diabetes mellitus (T2DM), hypertension, dyslipidemia, cardiovascular diseases, non­alcoholic fatty liver disease, kidney diseases, respiratory disorders, sleep apnea, musculoskeletal disorders and osteoarthritis, subfertility, psychosocial problems and certain types of cancers. The underlying inflammatory mechanisms interconnecting obesity with metabolic dysfunction are not completely understood. Increased adiposity promotes pro­inflammatory polarization of macrophages toward the M1 phenotype, in adipose tissue (AT), with subsequent increased production of pro­inflammatory cytokines and adipokines, inducing therefore an overall, systemic, low­grade inflammation, which contributes to metabolic syndrome (MetS), insulin resistance (IR) and T2DM. Targeting inflammatory mediators could be alternative therapies to treat obesity, but their safety and efficacy remains to be studied further and confirmed in future clinical trials. The present review highlights the molecular and pathophysiological mechanisms by which the chronic low­grade inflammation in AT and the production of reactive oxygen species lead to MetS, IR and T2DM. In addition, focus is given on the role of anti­inflammatory agents, in the resolution of chronic inflammation, through the blockade of chemotactic factors, such as monocytes chemotractant protein­1, and/or the blockade of pro­inflammatory mediators, such as IL­1ß, TNF­α, visfatin, and plasminogen activator inhibitor­1, and/or the increased synthesis of adipokines, such as adiponectin and apelin, in obesity­associated metabolic dysfunction.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Inflamação/metabolismo , Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo
11.
Front Endocrinol (Lausanne) ; 15: 1335269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559697

RESUMO

Objective: To identify plasma lipid characteristics associated with premetabolic syndrome (pre-MetS) and metabolic syndrome (MetS) and provide biomarkers through machine learning methods. Methods: Plasma lipidomics profiling was conducted using samples from healthy individuals, pre-MetS patients, and MetS patients. Orthogonal partial least squares-discriminant analysis (OPLS-DA) models were employed to identify dysregulated lipids in the comparative groups. Biomarkers were selected using support vector machine recursive feature elimination (SVM-RFE), random forest (rf), and least absolute shrinkage and selection operator (LASSO) regression, and the performance of two biomarker panels was compared across five machine learning models. Results: In the OPLS-DA models, 50 and 89 lipid metabolites were associated with pre-MetS and MetS patients, respectively. Further machine learning identified two sets of plasma metabolites composed of PS(38:3), DG(16:0/18:1), and TG(16:0/14:1/22:6), TG(16:0/18:2/20:4), and TG(14:0/18:2/18:3), which were used as biomarkers for the pre-MetS and MetS discrimination models in this study. Conclusion: In the initial lipidomics analysis of pre-MetS and MetS, we identified relevant lipid features primarily linked to insulin resistance in key biochemical pathways. Biomarker panels composed of lipidomics components can reflect metabolic changes across different stages of MetS, offering valuable insights for the differential diagnosis of pre-MetS and MetS.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/metabolismo , Lipidômica/métodos , Lipídeos , Aprendizado de Máquina , Biomarcadores
12.
Cell Metab ; 36(4): 745-761.e5, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569471

RESUMO

There is considerable heterogeneity in the cardiometabolic abnormalities associated with obesity. We evaluated multi-organ system metabolic function in 20 adults with metabolically healthy obesity (MHO; normal fasting glucose and triglycerides, oral glucose tolerance, intrahepatic triglyceride content, and whole-body insulin sensitivity), 20 adults with metabolically unhealthy obesity (MUO; prediabetes, hepatic steatosis, and whole-body insulin resistance), and 15 adults who were metabolically healthy lean. Compared with MUO, people with MHO had (1) altered skeletal muscle biology (decreased ceramide content and increased expression of genes involved in BCAA catabolism and mitochondrial structure/function); (2) altered adipose tissue biology (decreased expression of genes involved in inflammation and extracellular matrix remodeling and increased expression of genes involved in lipogenesis); (3) lower 24-h plasma glucose, insulin, non-esterified fatty acids, and triglycerides; (4) higher plasma adiponectin and lower plasma PAI-1 concentrations; and (5) decreased oxidative stress. These findings provide a framework of potential mechanisms responsible for MHO and the metabolic heterogeneity of obesity. This study was registered at ClinicalTrials.gov (NCT02706262).


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Síndrome Metabólica , Obesidade Metabolicamente Benigna , Adulto , Humanos , Obesidade/metabolismo , Triglicerídeos , Síndrome Metabólica/metabolismo , Índice de Massa Corporal , Fatores de Risco
13.
Braz J Med Biol Res ; 57: e13309, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656073

RESUMO

Diabetic-metabolic syndrome (MetS-D) has a high prevalence worldwide, in which an association with the rupture of the intestinal epithelium barrier function (IEBF) has been pointed out, but the functional and morphological properties are still not well understood. This study aimed to evaluate the impact of acute hyperglycemia diabetes on intestinal tight junction proteins, metabolic failure, intestinal ion and water transports, and IEBF parameters. Diabetes was induced in male Rattus norvegicus (200-310 g) with 0.5 mL of streptozotocin (70 mg/kg). Glycemic and clinical parameters were evaluated every 7 days, and intestinal parameters were evaluated on the 14th day. The MetS-D animals showed a clinical pattern of hyperglycemia, with increases in the area of villi and crypts, lactulose:mannitol ratio, myeloperoxidase (MPO) activity, and intestinal tissue concentrations of malondialdehyde (MDA), but showed a reduction in reduced glutathione (GSH) when these parameters were compared to the control. The MetS-D group had increased secretion of Na+, K+, Cl-, and water compared to the control group in ileal tissue. Furthermore, we observed a reduction in mRNA transcript of claudin-2, claudin-15, and NHE3 and increases of SGLT-1 and ZO-1 in the MetS-D group. These results showed that MetS-D triggered intestinal tissue inflammation, oxidative stress, complex alterations in gene regulatory protein transcriptions of intestinal transporters and tight junctions, damaging the IEBF and causing hydroelectrolyte secretion.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Mucosa Intestinal , Junções Íntimas , Animais , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Junções Íntimas/metabolismo , Ratos , Inflamação/metabolismo , Modelos Animais de Doenças , Ratos Wistar , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia
14.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672484

RESUMO

A detailed phytochemical investigation has been carried out on the aerial parts of G. foetida leading to the isolation of 29 pure compounds, mainly belonging to the amorfrutin and polyphenol classes. Among them, the new amorfrutin N (5) and exiguaflavone L (21) were isolated and their structures elucidated by means of HR-ESIMS and NMR. All the isolated compounds were investigated for modulation of mitochondrial activity and stimulation of glucose uptake via GLUT transporters, two metabolic processes involved in intracellular glucose homeostasis, which, therefore, correlate with the incidence of metabolic syndrome. These experiments revealed that amorfrutins were active on both targets, with amorfrutin M (17) and decarboxyamorfrutin A (2) emerging as mitochondrial stimulators, and amorfrutin 2 (12) as a glucose uptake promoter. However, members of the rich chalcone/flavonoid fraction also proved to contribute to this activity.


Assuntos
Glucose , Síndrome Metabólica , Componentes Aéreos da Planta , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Componentes Aéreos da Planta/química , Humanos , Glucose/metabolismo , Glycyrrhiza/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética
15.
World J Gastroenterol ; 30(15): 2081-2086, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38681989

RESUMO

Over recent years, the nomenclature of non-alcoholic fatty liver disease has undergone significant changes. Indeed, in 2020, an expert consensus panel proposed the term "Metabolic (dysfunction) associated fatty liver disease" (MAFLD) to underscore the close association of fatty liver with metabolic abnormalities, thereby highlighting the cardiometabolic risks (such as metabolic syndrome, type 2 diabetes, insulin resistance, and cardiovascular disease) faced by these patients since childhood. More recently, this term has been further replaced with metabolic associated steatotic liver disease. It is worth noting that emerging evidence not only supports a close and independent association of MAFLD with chronic kidney disease in adults but also indicates its interplay with metabolic impairments. However, comparable pediatric data remain limited. Given the progressive and chronic nature of both diseases and their prognostic cardiometabolic implications, this editorial aims to provide a pediatric perspective on the intriguing relationship between MAFLD and renal function in childhood.


Assuntos
Rim , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Criança , Rim/fisiopatologia , Rim/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/complicações , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/diagnóstico , Resistência à Insulina , Fígado/metabolismo , Fígado/fisiopatologia , Prognóstico , Fatores de Risco Cardiometabólico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/fisiopatologia
16.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673991

RESUMO

This review examines the impact of obesity on the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and focuses on novel mechanisms for HFpEF prevention using a glucagon-like peptide-1 receptor agonism (GLP-1 RA). Obesity can lead to HFpEF through various mechanisms, including low-grade systemic inflammation, adipocyte dysfunction, accumulation of visceral adipose tissue, and increased pericardial/epicardial adipose tissue (contributing to an increase in myocardial fat content and interstitial fibrosis). Glucagon-like peptide 1 (GLP-1) is an incretin hormone that is released from the enteroendocrine L-cells in the gut. GLP-1 reduces blood glucose levels by stimulating insulin synthesis, suppressing islet α-cell function, and promoting the proliferation and differentiation of ß-cells. GLP-1 regulates gastric emptying and appetite, and GLP-1 RA is currently indicated for treating type 2 diabetes (T2D), obesity, and metabolic syndrome (MS). Recent evidence indicates that GLP-1 RA may play a significant role in preventing HFpEF in patients with obesity, MS, or obese T2D. This effect may be due to activating cardioprotective mechanisms (the endogenous counter-regulatory renin angiotensin system and the AMPK/mTOR pathway) and by inhibiting deleterious remodeling mechanisms (the PKA/RhoA/ROCK pathway, aldosterone levels, and microinflammation). However, there is still a need for further research to validate the impact of these mechanisms on humans.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insuficiência Cardíaca , Síndrome Metabólica , Volume Sistólico , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Volume Sistólico/efeitos dos fármacos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico
17.
Adv Med Sci ; 69(1): 176-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38561071

RESUMO

PURPOSE: Metabolic syndrome (MetS) is a common disorder associated with disturbed neurotransmitter homeostasis. Memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, was first used in Alzheimer's disease. Allopregnanolone (Allo), a potent positive allosteric modulator of the Gamma-Amino-Butyric Acid (GABA)-A receptors, decreases in neurodegenerative diseases. The study investigated the impact of Memantine versus Allo administration on the animal model of MetS to clarify whether the mechanism of abnormalities is related more to excitatory or inhibitory neurotransmitter dysfunction. MATERIALS AND METHODS: Fifty-six male rats were allocated into 7 groups: 4 control groups, 1 MetS group, and 2 treated MetS groups. They underwent assessment of cognition-related behavior by open field and forced swimming tests, electroencephalogram (EEG) recording, serum markers confirming the establishment of MetS model and hippocampal Glial Fibrillary Acidic Protein (GFAP) and Brain-Derived Neurotrophic Factor (BDNF). RESULTS: Allo improved anxiety-like behavior and decreased grooming frequency compared to Memantine. Both drugs increased GFAP and BDNF expression, improving synaptic plasticity and cognition-related behaviors. The therapeutic effect of Allo was more beneficial regarding lipid profile and anxiety. We reported progressive slowing of EEG waves in the MetS group with Memantine and Allo treatment with increased relative theta and decreased relative delta rhythms. CONCLUSIONS: Both Allo and Memantine boosted the outcome parameters in the animal model of MetS. Allo markedly improved the anxiety-like behavior in the form of significantly decreased grooming frequency compared to the Memantine-treated groups. Both drugs were associated with increased hippocampal GFAP and BDNF expression, indicating an improvement in synaptic plasticity and so, cognition-related behaviors.


Assuntos
Memantina , Síndrome Metabólica , Plasticidade Neuronal , Receptores de GABA-A , Receptores de N-Metil-D-Aspartato , Animais , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Ratos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacologia , Receptores de GABA-A/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Ratos Wistar , Modelos Animais de Doenças
18.
J Neuroinflammation ; 21(1): 111, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685040

RESUMO

BACKGROUND: It is well known that high-fat diet (HFD)-induced metabolic syndrome plays a crucial role in cognitive decline and brain-blood barrier (BBB) breakdown. However, whether the bone-brain axis participates in this pathological process remains unknown. Here, we report that platelet-derived growth factor-BB (PDGF-BB) secretion by preosteoclasts in the bone accelerates neuroinflammation. The expression of alkaline phosphatase (ALPL), a nonspecific transcytosis marker, was upregulated during HFD challenge. MAIN BODY: Preosteoclast-specific Pdgfb transgenic mice with high PDGF-BB concentrations in the circulation recapitulated the HFD-induced neuroinflammation and transcytosis shift. Preosteoclast-specific Pdgfb knockout mice were partially rescued from hippocampal neuroinflammation and transcytosis shifts in HFD-challenged mice. HFD-induced PDGF-BB elevation aggravated microglia-associated neuroinflammation and interleukin-1ß (IL-1ß) secretion, which increased ALPL expression and transcytosis shift through enhancing protein 1 (SP1) translocation in endothelial cells. CONCLUSION: Our findings confirm the role of bone-secreted PDGF-BB in neuroinflammation and the transcytosis shift in the hippocampal region during HFD challenge and identify a novel mechanism of microglia-endothelial crosstalk in HFD-induced metabolic syndrome.


Assuntos
Becaplermina , Dieta Hiperlipídica , Células Endoteliais , Hipocampo , Síndrome Metabólica , Microglia , Transcitose , Animais , Camundongos , Becaplermina/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Transcitose/fisiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Microglia/metabolismo , Microglia/patologia , Dieta Hiperlipídica/efeitos adversos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos Transgênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Masculino , Osso e Ossos/metabolismo , Osso e Ossos/patologia
19.
PLoS One ; 19(4): e0300420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662716

RESUMO

Discrepancies between the measurement of body mass index (BMI) and metabolic health status have been described for the onset of metabolic diseases. Studying novel biomarkers, some of which are associated with metabolic syndrome, can help us to understand the differences between metabolic health (MetH) and BMI. A group of 1469 young adults with pre-specified anthropometric and blood biochemical parameters were selected. Of these, 80 subjects were included in the downstream analysis that considered their BMI and MetH parameters for selection as follows: norm weight metabolically healthy (MHNW) or metabolically unhealthy (MUNW); overweight/obese metabolically healthy (MHOW) or metabolically unhealthy (MUOW). Our results showed for the first time the differences when the MetH status and the BMI are considered as global MetH statures. First, all the evaluated miRNAs presented a higher expression in the metabolically unhealthy group than the metabolically healthy group. The higher levels of leptin, IL-1b, IL-8, IL-17A, miR-221, miR-21, and miR-29 are directly associated with metabolic unhealthy and OW/OB phenotypes (MUOW group). In contrast, high levels of miR34 were detected only in the MUNW group. We found differences in the SIRT1-PGC1α pathway with increased levels of SIRT1+ cells and diminished mRNA levels of PGCa in the metabolically unhealthy compared to metabolically healthy subjects. Our results demonstrate that even when metabolic diseases are not apparent in young adult populations, MetH and BMI have a distinguishable phenotype print that signals the potential to develop major metabolic diseases.


Assuntos
Índice de Massa Corporal , MicroRNAs , Feminino , Humanos , Masculino , Adulto Jovem , Biomarcadores/sangue , Leptina/sangue , Leptina/genética , Leptina/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , MicroRNAs/genética , MicroRNAs/sangue , MicroRNAs/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fenótipo , Sirtuína 1/genética , Sirtuína 1/metabolismo
20.
Int Immunopharmacol ; 132: 112018, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38588630

RESUMO

Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α). Concerning on the vital role of adipokines, it is proposed that one of the critical pathological factors of obesity is the dysfunctional adipocytic pathways. Among these adipokines, acylation stimulating protein, as an adipokine synthesized by adipocytes during the process of cell differentiation, is shown to activate the metabolism of triglyceride (TG) by regulating the catabolism of glucose and free fatty acid (FFA). Recent attention has paid to explore the underlying mechanism whereby acylation stimulating protein influences the biological function of adipocyte and the pathological development of obesity. In the present review, we summarized the progression of acylation stimulating protein in modulating the physiological and hormonal catabolism which affects fat distribution. Furthermore, the potential mechanisms which acylation stimulating protein regulates the metabolism of adipose tissue and the process of metabolic syndrome were also summarized.


Assuntos
Síndrome Metabólica , Obesidade , Humanos , Síndrome Metabólica/metabolismo , Animais , Obesidade/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Adipócitos/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adipocinas/metabolismo , Progressão da Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA