Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.974
Filtrar
1.
Nutrients ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38732519

RESUMO

Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular diseases (CVDs) that has become a global public health problem. Puerarin (PUE), the principal active compound of Pueraria lobata, has the effects of regulating glucose and lipid metabolism and protecting against cardiovascular damage. This study aimed to investigate whether dietary supplementation with PUE could ameliorate MetS and its associated cardiovascular damage. Rats were randomly divided into three groups: the normal diet group (NC), the high-fat/high-sucrose diet group (HFHS), and the HFHS plus PUE diet group (HFHS-PUE). The results showed that PUE-supplemented rats exhibited enhanced glucose tolerance, improved lipid parameters, and reduced blood pressure compared to those on the HFHS diet alone. Additionally, PUE reversed the HFHS-induced elevations in the atherogenic index (AI) and the activities of serum lactate dehydrogenase (LDH) and creatine kinase (CK). Ultrasonic evaluations indicated that PUE significantly ameliorated cardiac dysfunction and arterial stiffness. Histopathological assessments further confirmed that PUE significantly mitigated cardiac remodeling, arterial remodeling, and neuronal damage in the brain. Moreover, PUE lowered systemic inflammatory indices including C-reactive protein (CRP), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammation index (SII). In conclusion, dietary supplementation with PUE effectively moderated metabolic disorders, attenuated systemic inflammation, and minimized cardiovascular damage in rats with MetS induced by an HFHS diet. These results provide novel insights into the potential benefits of dietary PUE supplementation for the prevention and management of MetS and its related CVDs.


Assuntos
Doenças Cardiovasculares , Dieta Hiperlipídica , Isoflavonas , Síndrome Metabólica , Animais , Síndrome Metabólica/etiologia , Síndrome Metabólica/tratamento farmacológico , Isoflavonas/farmacologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Ratos , Suplementos Nutricionais , Ratos Sprague-Dawley , Pressão Sanguínea/efeitos dos fármacos , Glicemia/metabolismo , Sacarose Alimentar/efeitos adversos , Rigidez Vascular/efeitos dos fármacos , Modelos Animais de Doenças , Lipídeos/sangue , Pueraria/química
2.
ACS Biomater Sci Eng ; 10(5): 3097-3107, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38591966

RESUMO

To develop a peri-implantitis model in a Gottingen minipig and evaluate the effect of local application of salicylic acid poly(anhydride-ester) (SAPAE) on peri-implantitis progression in healthy, metabolic syndrome (MS), and type-2 diabetes mellitus (T2DM) subjects. Eighteen animals were allocated to three groups: (i) control, (ii) MS (diet for obesity induction), and (iii) T2DM (diet plus streptozotocin for T2DM induction). Maxillary and mandible premolars and first molar were extracted. After 3 months of healing, four implants per side were placed in both jaws of each animal. After 2 months, peri-implantitis was induced by plaque formation using silk ligatures. SAPAE polymer was mixed with mineral oil (3.75 mg/µL) and topically applied biweekly for up to 60 days to halt peri-implantitis progression. Periodontal probing was used to assess pocket depth over time, followed by histomorphologic analysis of harvested samples. The adopted protocol resulted in the onset of peri-implantitis, with healthy minipigs taking twice as long to reach the same level of probing depth relative to MS and T2DM subjects (∼3.0 mm), irrespective of jaw. In a qualitative analysis, SAPAE therapy revealed decreased levels of inflammation in the normoglycemic, MS, and T2DM groups. SAPAE application around implants significantly reduced the progression of peri-implantitis after ∼15 days of therapy, with ∼30% lower probing depth for all systemic conditions and similar rates of probing depth increase per week between the control and SAPAE groups. MS and T2DM conditions presented a faster progression of the peri-implant pocket depth. SAPAE treatment reduced peri-implantitis progression in healthy, MS, and T2DM groups.


Assuntos
Peri-Implantite , Ácido Salicílico , Porco Miniatura , Animais , Suínos , Peri-Implantite/tratamento farmacológico , Peri-Implantite/patologia , Ácido Salicílico/administração & dosagem , Ácido Salicílico/farmacologia , Ácido Salicílico/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Progressão da Doença , Hiperglicemia/tratamento farmacológico , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Implantes Dentários
3.
Nutrients ; 16(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674794

RESUMO

Metabolic syndrome (MetS) is a significant health problem. The co-occurrence of obesity, carbohydrate metabolism disorders, hypertension and atherogenic dyslipidaemia is estimated to affect 20-30% of adults worldwide. Researchers are seeking solutions to prevent and treat the conditions related to MetS. Preventive medicine, which focuses on modifiable cardiovascular risk factors, including diet, plays a special role. A diet rich in fruits and vegetables has documented health benefits, mainly due to the polyphenolic compounds it contains. Anthocyanins represent a major group of polyphenols; they exhibit anti-atherosclerotic, antihypertensive, antithrombotic, anti-inflammatory and anticancer activities, as well as beneficial effects on endothelial function and oxidative stress. This review presents recent reports on the mechanisms involved in the protective effects of anthocyanins on the body, especially among people with MetS. It includes epidemiological data, in vivo and in vitro preclinical studies and clinical observational studies. Anthocyanins are effective, widely available compounds that can be used in both the prevention and treatment of MetS and its complications. Increased consumption of anthocyanin-rich foods may contribute to the maintenance of normal body weight and modulation of the lipid profile in adults. However, further investigation is needed to confirm the beneficial effects of anthocyanins on serum glucose levels, improvement in insulin sensitivity and reduction in systolic and diastolic blood pressure.


Assuntos
Antocianinas , Síndrome Metabólica , Antocianinas/farmacologia , Antocianinas/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/prevenção & controle , Humanos , Frutas/química , Estresse Oxidativo/efeitos dos fármacos , Animais
4.
Eur J Pharmacol ; 973: 176605, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653362

RESUMO

The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 µg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-ß (TGF-ß). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-ß). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.


Assuntos
Via de Sinalização Hippo , Nefropatias , Rim , Síndrome Metabólica , Telmisartan , Animais , Telmisartan/farmacologia , Telmisartan/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/patologia , Masculino , Ratos , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , NF-kappa B/metabolismo , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , Ratos Wistar , Metaloproteinase 9 da Matriz/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PPAR gama/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Malondialdeído/metabolismo , Interleucina-6/metabolismo , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico
5.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673991

RESUMO

This review examines the impact of obesity on the pathophysiology of heart failure with preserved ejection fraction (HFpEF) and focuses on novel mechanisms for HFpEF prevention using a glucagon-like peptide-1 receptor agonism (GLP-1 RA). Obesity can lead to HFpEF through various mechanisms, including low-grade systemic inflammation, adipocyte dysfunction, accumulation of visceral adipose tissue, and increased pericardial/epicardial adipose tissue (contributing to an increase in myocardial fat content and interstitial fibrosis). Glucagon-like peptide 1 (GLP-1) is an incretin hormone that is released from the enteroendocrine L-cells in the gut. GLP-1 reduces blood glucose levels by stimulating insulin synthesis, suppressing islet α-cell function, and promoting the proliferation and differentiation of ß-cells. GLP-1 regulates gastric emptying and appetite, and GLP-1 RA is currently indicated for treating type 2 diabetes (T2D), obesity, and metabolic syndrome (MS). Recent evidence indicates that GLP-1 RA may play a significant role in preventing HFpEF in patients with obesity, MS, or obese T2D. This effect may be due to activating cardioprotective mechanisms (the endogenous counter-regulatory renin angiotensin system and the AMPK/mTOR pathway) and by inhibiting deleterious remodeling mechanisms (the PKA/RhoA/ROCK pathway, aldosterone levels, and microinflammation). However, there is still a need for further research to validate the impact of these mechanisms on humans.


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Insuficiência Cardíaca , Síndrome Metabólica , Volume Sistólico , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Volume Sistólico/efeitos dos fármacos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico
6.
Biomolecules ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672484

RESUMO

A detailed phytochemical investigation has been carried out on the aerial parts of G. foetida leading to the isolation of 29 pure compounds, mainly belonging to the amorfrutin and polyphenol classes. Among them, the new amorfrutin N (5) and exiguaflavone L (21) were isolated and their structures elucidated by means of HR-ESIMS and NMR. All the isolated compounds were investigated for modulation of mitochondrial activity and stimulation of glucose uptake via GLUT transporters, two metabolic processes involved in intracellular glucose homeostasis, which, therefore, correlate with the incidence of metabolic syndrome. These experiments revealed that amorfrutins were active on both targets, with amorfrutin M (17) and decarboxyamorfrutin A (2) emerging as mitochondrial stimulators, and amorfrutin 2 (12) as a glucose uptake promoter. However, members of the rich chalcone/flavonoid fraction also proved to contribute to this activity.


Assuntos
Glucose , Síndrome Metabólica , Componentes Aéreos da Planta , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Componentes Aéreos da Planta/química , Humanos , Glucose/metabolismo , Glycyrrhiza/química , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética
7.
Medicina (Kaunas) ; 60(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38674244

RESUMO

Background and Objectives: Hormonal changes physiologically occurring in menopausal women may increase the risk of developing metabolic and vasomotor disturbances, which contribute to increase the risk of developing other concomitant pathologies, such as metabolic syndrome (MetS). Materials and Methods: Retrospective data from 200 menopausal women with MetS and vasomotor symptoms taking one sachet per day of the dietary supplement INOFOLIC® NRT (Farmares srl, Rome, Italy) were collected. Each sachet consisted of myo-Inositol (2000 mg), cocoa polyphenols (30 mg), and soy isoflavones (80 mg, of which 50 mg is genistin). Patients recorded their symptoms through a medical questionnaire at the beginning of the administration (T0) and after 6 months (T1). Results: We observed an improvement in both the frequency and the severity of hot flushes: increased percentage of 2-3 hot flushes (28 at T0 vs. 65% at T1, p value < 0.001) and decreased percentage of 4-9 hot flushes (54% at T0 vs. 18% at T1, p value < 0.001). Moreover, symptoms of depression improved after supplementation (87% at T0 vs. 56% at T1 of patients reported moderate depression symptoms, p value < 0.001). Regarding metabolic profile, women improved body mass index and waist circumference with a reduction in the percentage of overweight and obesity women (88% at T0 vs. 51% at T1, p value = 0.01; 14% at T0 vs. 9% at T1, p value = 0.04). In addition, the number of women suffering from non-insulin dependent diabetes reduced (26% at T0 vs. 16% at T1, p value = 0.04). Conclusions: These data corroborate previously observed beneficial effects of the oral administration of myo-Inositol, cocoa polyphenols, and soy isoflavones against menopausal symptoms in the study population. Considering the promising results of the present study, further prospective controlled clinical trials are needed to deeply understand and support the efficacy of these natural compounds for the management of menopausal symptoms.


Assuntos
Suplementos Nutricionais , Glycine max , Fogachos , Inositol , Isoflavonas , Menopausa , Síndrome Metabólica , Polifenóis , Humanos , Feminino , Síndrome Metabólica/tratamento farmacológico , Estudos Retrospectivos , Isoflavonas/uso terapêutico , Isoflavonas/farmacologia , Isoflavonas/administração & dosagem , Pessoa de Meia-Idade , Polifenóis/administração & dosagem , Polifenóis/uso terapêutico , Polifenóis/análise , Inositol/uso terapêutico , Inositol/administração & dosagem , Inositol/análise , Fogachos/tratamento farmacológico , Menopausa/efeitos dos fármacos , Menopausa/fisiologia , Cacau , Metaboloma/efeitos dos fármacos
8.
Adv Med Sci ; 69(1): 176-189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38561071

RESUMO

PURPOSE: Metabolic syndrome (MetS) is a common disorder associated with disturbed neurotransmitter homeostasis. Memantine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, was first used in Alzheimer's disease. Allopregnanolone (Allo), a potent positive allosteric modulator of the Gamma-Amino-Butyric Acid (GABA)-A receptors, decreases in neurodegenerative diseases. The study investigated the impact of Memantine versus Allo administration on the animal model of MetS to clarify whether the mechanism of abnormalities is related more to excitatory or inhibitory neurotransmitter dysfunction. MATERIALS AND METHODS: Fifty-six male rats were allocated into 7 groups: 4 control groups, 1 MetS group, and 2 treated MetS groups. They underwent assessment of cognition-related behavior by open field and forced swimming tests, electroencephalogram (EEG) recording, serum markers confirming the establishment of MetS model and hippocampal Glial Fibrillary Acidic Protein (GFAP) and Brain-Derived Neurotrophic Factor (BDNF). RESULTS: Allo improved anxiety-like behavior and decreased grooming frequency compared to Memantine. Both drugs increased GFAP and BDNF expression, improving synaptic plasticity and cognition-related behaviors. The therapeutic effect of Allo was more beneficial regarding lipid profile and anxiety. We reported progressive slowing of EEG waves in the MetS group with Memantine and Allo treatment with increased relative theta and decreased relative delta rhythms. CONCLUSIONS: Both Allo and Memantine boosted the outcome parameters in the animal model of MetS. Allo markedly improved the anxiety-like behavior in the form of significantly decreased grooming frequency compared to the Memantine-treated groups. Both drugs were associated with increased hippocampal GFAP and BDNF expression, indicating an improvement in synaptic plasticity and so, cognition-related behaviors.


Assuntos
Memantina , Síndrome Metabólica , Plasticidade Neuronal , Receptores de GABA-A , Receptores de N-Metil-D-Aspartato , Animais , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Ratos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/metabolismo , Memantina/farmacologia , Receptores de GABA-A/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Ratos Wistar , Modelos Animais de Doenças
9.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677560

RESUMO

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Assuntos
Síndrome Metabólica , Quinolinas , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Quinolinas/química , Quinolinas/farmacologia , Quinolinas/síntese química , Relação Estrutura-Atividade , Humanos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Estrutura Molecular , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Relação Dose-Resposta a Droga , Benzopiranos/farmacologia , Benzopiranos/síntese química , Benzopiranos/química , Animais , Camundongos
10.
Pharmacol Res ; 202: 107124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428704

RESUMO

Metabolic syndrome has become major health problems in recent decades, and natural compounds receive considerable attention in the management of metabolic syndrome. Among them, naringin is abundant in citrus fruits and tomatoes. Many studies have investigated the therapeutic effects of naringin in metabolic syndrome. This review discusses in vitro and in vivo studies on naringin and implications for clinical trials on metabolic syndrome such as diabetes mellitus, obesity, nonalcoholic fatty liver disease, dyslipidemia, and hypertension over the past decades, overviews the molecular mechanisms by which naringin targets metabolic syndrome, and analyzes possible correlations between the different mechanisms. This review provides a theoretical basis for the further application of naringin in the treatment of metabolic syndrome.


Assuntos
Flavanonas , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Flavanonas/farmacologia , Flavanonas/uso terapêutico , Obesidade/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
11.
Am J Chin Med ; 52(2): 355-386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533569

RESUMO

Metabolic syndrome (MetS) represents a considerable clinical and public health burden worldwide. Mangiferin (MF), a flavonoid compound present in diverse species such as mango (Mangifera indica L.), papaya (Pseudocydonia sinensis (Thouin) C. K. Schneid.), zhimu (Anemarrhena asphodeloides Bunge), and honeybush tea (Cyclopia genistoides), boasts a broad array of pharmacological effects. It holds promising uses in nutritionally and functionally targeted foods, particularly concerning MetS treatment. It is therefore pivotal to systematically investigate MF's therapeutic mechanism for MetS and its applications in food and pharmaceutical sectors. This review, with the aid of a network pharmacology approach complemented by this experimental studies, unravels possible mechanisms underlying MF's MetS treatment. Network pharmacology results suggest that MF treats MetS effectively through promoting insulin secretion, targeting obesity and inflammation, alleviating insulin resistance (IR), and mainly operating via the phosphatidylinositol 3 kinase (PI3K)/Akt, nuclear factor kappa-B (NF-[Formula: see text]B), microtubule-associated protein kinase (MAPK), and oxidative stress signaling pathways while repairing damaged insulin signaling. These insights provide a comprehensive framework to understand MF's potential mechanisms in treating MetS. These, however, warrant further experimental validation. Moreover, molecular docking techniques confirmed the plausibility of the predicted outcomes. Hereafter, these findings might form the theoretical bedrock for prospective research into MF's therapeutic potential in MetS therapy.


Assuntos
Síndrome Metabólica , Xantonas , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Fosfatidilinositol 3-Quinases , Simulação de Acoplamento Molecular , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
Toxicol Appl Pharmacol ; 485: 116892, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492675

RESUMO

Metabolic syndrome (MetS) is largely coupled with chronic kidney disease (CKD). Glycogen synthase kinase-3ß (GSK-3ß) pathway drives tubular injury in animal models of acute kidney injury; but its contribution in CKD is still elusive. This study investigated the effect empagliflozin and/or pirfenidone against MetS-induced kidney dysfunction, and to clarify additional underpinning mechanisms particularly the GSK-3ß signaling pathway. Adult male rats received 10%w/v fructose in drinking water for 20 weeks to develop MetS, then treated with either drug vehicle, empagliflozin (30 mg/kg/day) and/or pirfenidone (100 mg/kg/day) via oral gavage for subsequent 4 weeks, concurrently with the high dietary fructose. Age-matched rats receiving normal drinking water were used as controls. After 24 weeks, blood and kidneys were harvested for subsequent analyses. Rats with MetS showed signs of kidney dysfunction, structural changes and interstitial fibrosis. Activation of GSK-3ß, decreased cyclinD1 expression and enhanced apoptotic signaling were found in kidneys of MetS rats. There was abundant alpha-smooth muscle actin (α-SMA) expression along with up-regulation of TGF-ß1/Smad3 in kidneys of MetS rats. These derangements were almost alleviated by empagliflozin or pirfenidone, with evidence that the combined therapy was more effective than either individual drug. This study emphasizes a novel mechanism underpinning the beneficial effects of empagliflozin and pirfenidone on kidney dysfunction associated with MetS through targeting GSK-3ß signaling which can mediate the regenerative capacity, anti-apoptotic effects and anti-fibrotic properties of such drugs. These findings recommend the possibility of using empagliflozin and pirfenidone as promising therapies for management of CKD in patients with MetS.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Glicogênio Sintase Quinase 3 beta , Túbulos Renais , Síndrome Metabólica , Piridonas , Animais , Piridonas/farmacologia , Masculino , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Compostos Benzidrílicos/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Ratos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/complicações , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Regeneração/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
Cells ; 13(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474414

RESUMO

The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal function in hyperuricemic patients. We consider the significance of the highly selective inhibition of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS, which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD, and CVD.


Assuntos
Benzotiazóis , Doenças Cardiovasculares , Síndrome Metabólica , Transportadores de Ânions Orgânicos , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Uricosúricos/uso terapêutico , Ácido Úrico/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Glucose
14.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474229

RESUMO

The prevalence of metabolic syndrome is increasing globally due to behavioral and environmental changes. There are many therapeutic agents available for the treatment of chronic metabolic diseases, such as obesity and diabetes, but the data on their efficacy and safety are lacking. Through a pilot study by our group, Zingiber officinale rhizomes used as a spice and functional food were selected as an anti-obesity candidate. In this study, steam-processed ginger extract (GGE) was used and we compared its efficacy at alleviating metabolic syndrome-related symptoms with that of conventional ginger extract (GE). Compared with GE, GGE (25-100 µg/mL) had an increased antioxidant capacity and α-glucosidase inhibitory activity in vitro. GGE was better at suppressing the differentiation of 3T3-L1 adipocytes and lipid accumulation in HepG2 cells and promoting glucose utilization in C2C12 cells than GE. In 16-week high-fat-diet (HFD)-fed mice, GGE (100 and 200 mg/kg) improved biochemical profiles, including lipid status and liver function, to a greater extent than GE (200 mg/kg). The supplementation of HFD-fed mice with GGE (200 mg/kg) resulted in the downregulation of SREBP-1c and FAS gene expression in the liver. Collectively, our results indicate that GGE is a promising therapeutic for the treatment of obesity and metabolic syndrome.


Assuntos
Fármacos Antiobesidade , Síndrome Metabólica , Zingiber officinale , Camundongos , Animais , Vapor , Síndrome Metabólica/tratamento farmacológico , Projetos Piloto , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Extratos Vegetais/farmacologia , Dieta Hiperlipídica , Fármacos Antiobesidade/farmacologia , Lipídeos/farmacologia , Camundongos Endogâmicos C57BL , Células 3T3-L1 , Adipogenia
15.
Diabetes Obes Metab ; 26(6): 2147-2157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433502

RESUMO

AIMS: To describe changes in homeostasis model assessment of insulin resistance index (HOMA-IR) following testosterone therapy in men with hypogonadism and metabolic syndrome (MetS). MATERIALS AND METHODS: A randomized, placebo-controlled, double-blind randomized controlled trial (RCT) comprising 184 men with MetS and hypogonadism (testosterone undecanoate [TU]: 113 men, placebo: 71 men) was conducted. This was followed by an open-label phase in which all men were given TU. We focused on men who were not receiving antiglycaemic agents (TU: 81 men; placebo: 54 men) as these could affect HOMA-IR. Inter-group comparison of HOMA-IR was restricted to the RCT (30 weeks), whilst intra-group comparison was carried out on men provided TU during the RCT and open-label phases (study cohort) and men given placebo during the RCT and then switched to TU during the open-label phase (confirmatory cohort). Regression analysis was performed to identify factors associated with change in HOMA-IR (∆HOMA-IR). RESULTS: The median HOMA-IR was significantly reduced at almost every time point (after 18 weeks) compared to baseline in men receiving TU in both the study and confirmatory cohorts. There was a significant decrease in median values of fasting glucose (30 weeks: -2.1%; 138 weeks: -4.9%) and insulin (30 weeks: -10.5%; 138 weeks: -35.5%) after TU treatment. Placebo was not associated with significant ∆HOMA-IR. The only consistent predictor of HOMA-IR decrease following TU treatment was baseline HOMA-IR (r2 ≥ 0.64). CONCLUSIONS: Baseline HOMA-IR predicted ΔHOMA-IR, with a greater percentage change in insulin than in fasting glucose. In men with MetS/type 2 diabetes (T2DM) not on antiglycaemic therapy, improvements in HOMA-IR may be greater than suggested by change in fasting glucose. Our results suggest that hypogonadism screening be included in the management of men with MetS/T2DM.


Assuntos
Hipogonadismo , Resistência à Insulina , Síndrome Metabólica , Testosterona , Humanos , Masculino , Síndrome Metabólica/tratamento farmacológico , Testosterona/uso terapêutico , Testosterona/sangue , Testosterona/deficiência , Testosterona/análogos & derivados , Método Duplo-Cego , Pessoa de Meia-Idade , Adulto , Hipogonadismo/tratamento farmacológico , Hipogonadismo/sangue , Terapia de Reposição Hormonal/métodos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/análise , Idoso
16.
Diabetes Obes Metab ; 26(6): 2466-2475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38533552

RESUMO

BACKGROUND: Metabolic syndrome (MetS), which can be induced or exacerbated by the current class of antipsychotic drugs, is highly prevalent in patients with schizophrenia and presents significant challenges to lifetime disease management. Supported by initial clinical results, trace amine-associated receptor 1 (TAAR1) agonists have emerged as potential novel treatments for schizophrenia. Notably, non-clinical studies have also shown weight-lowering and glucoregulatory effects of TAAR1 agonists, including the investigational agent ulotaront. However, the translatability of these findings to humans has not been adequately assessed. Given that delayed gastric emptying (GE) was identified as a potential mechanism contributing to the metabolic benefits of TAAR1 agonists in rodents, the aim of this study was to evaluate the effect of ulotaront on GE in patients with schizophrenia and concurrent MetS with prediabetes. METHODS: Patients with schizophrenia were randomized to receive a single oral dose of ulotaront (150 mg) and their previous antipsychotic (PA) in an open-label, crossover, two-sequence design (NCT05402111). Eligible participants fulfilled at least three of five MetS criteria and had prediabetes defined by elevated glycated haemoglobin (5.7-6.4%) and/or fasting homeostatic model assessment of insulin resistance (i.e. ≥2.22). Following an overnight fast and 4 h post-dose, participants ingested a 99mTc-sulphur colloid radiolabelled egg meal (320 kcal, 30% fat). GE was measured by scintigraphy over 4 h. Endpoints included GE of solids half-time (T1/2) and percentage gastric retention at 1, 2 and 4 h. RESULTS: Thirty-one adults were randomized and 27 completed the study. Ulotaront significantly delayed GE of solids [median GE T1/2 ulotaront at 139 min (119, 182) vs. the participant's PA of 124 min (109, 132), p = .006]. A significant increase in gastric retention was seen in the ulotaront versus the PA group at 1 h (80% vs. 75%, p = .015), 2 h (61% vs. 50%, p = .023) and 4 h (17% vs. 7%, p = .002) post-meal. CONCLUSION: Ulotaront delayed the GE of solids in patients with schizophrenia and concurrent MetS with prediabetes. Additional studies are needed to assess whether treatment with TAAR1 agonists is associated with weight loss and glucoregulatory improvement.


Assuntos
Antipsicóticos , Estudos Cross-Over , Esvaziamento Gástrico , Síndrome Metabólica , Naltrexona/análogos & derivados , Estado Pré-Diabético , Receptores Acoplados a Proteínas G , Esquizofrenia , Humanos , Esvaziamento Gástrico/efeitos dos fármacos , Masculino , Feminino , Esquizofrenia/tratamento farmacológico , Esquizofrenia/complicações , Adulto , Pessoa de Meia-Idade , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Estado Pré-Diabético/complicações , Estado Pré-Diabético/tratamento farmacológico , Antipsicóticos/uso terapêutico , Antipsicóticos/efeitos adversos , Receptores Acoplados a Proteínas G/agonistas , Tetra-Hidronaftalenos/uso terapêutico , Tetra-Hidronaftalenos/farmacologia
17.
Nutr Res ; 124: 94-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430822

RESUMO

Anti-inflammatory activities of catechin-rich green tea extract (GTE) in obese rodents protect against metabolic endotoxemia by decreasing intestinal permeability and absorption of gut-derived endotoxin. However, translation to human health has not been established. We hypothesized that GTE would reduce endotoxemia by decreasing gut permeability and intestinal and systemic inflammation in persons with metabolic syndrome (MetS) compared with healthy persons. A randomized, double-blind, placebo-controlled, crossover trial in healthy adults (n = 19, 34 ± 2 years) and adults with MetS (n = 21, 40 ± 3 years) examined 4-week administration of a decaffeinated GTE confection (890 mg/d total catechins) on serum endotoxin, intestinal permeability, gut and systemic inflammation, and cardiometabolic parameters. Compared with the placebo, the GTE confection decreased serum endotoxin (P = .023) in both healthy persons and those with MetS, while increasing concentrations of circulating catechins (P < .0001) and γ-valerolactones (P = .0001). Fecal calprotectin (P = .029) and myeloperoxidase (P = .048) concentrations were decreased by GTE regardless of health status. Following the ingestion of gut permeability probes, urinary lactose/mannitol (P = .043) but not sucralose/erythritol (P > .05) was decreased by GTE regardless of health status. No between-treatment differences (P > .05) were observed for plasma aminotransferases, blood pressure, plasma lipids, or body mass nor were plasma tumor necrosis factor-α, interleukin-6, or the ratio of lipopolysaccharide-binding protein/soluble cluster of differentiation-14 affected. However, fasting glucose in both study groups was decreased (P = .029) by the GTE confection compared with within-treatment arm baseline concentrations. These findings demonstrate that catechin-rich GTE is effective to decrease circulating endotoxin and improve glycemic control in healthy adults and those with MetS, likely by reducing gut inflammation and small intestinal permeability but without affecting systemic inflammation.


Assuntos
Proteínas de Fase Aguda , Glicemia , Proteínas de Transporte , Catequina , Estudos Cross-Over , Endotoxinas , Inflamação , Glicoproteínas de Membrana , Síndrome Metabólica , Permeabilidade , Extratos Vegetais , Chá , Humanos , Síndrome Metabólica/tratamento farmacológico , Método Duplo-Cego , Endotoxinas/sangue , Adulto , Masculino , Feminino , Extratos Vegetais/farmacologia , Chá/química , Catequina/farmacologia , Catequina/análogos & derivados , Catequina/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/sangue , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Endotoxemia/tratamento farmacológico , Jejum , Pessoa de Meia-Idade , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camellia sinensis/química
18.
Braz J Biol ; 83: e276530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422267

RESUMO

A significant public health issue worldwide is metabolic syndrome, a cluster of metabolic illnesses that comprises insulin resistance, obesity, dyslipidemia, hyperglycemia, and hypertension. The creation of natural treatments and preventions for metabolic syndrome is crucial. Chitosan, along with its nanoformulations, is an oligomer of chitin, the second-most prevalent polymer in nature, which is created via deacetylation. Due to its plentiful biological actions in recent years, chitosan and its nanoformulations have drawn much interest. Recently, the chitosan nanoparticle-based delivery of CRISPR-Cas9 has been applied in treating metabolic syndromes. The benefits of chitosan and its nanoformulations on insulin resistance, obesity, diabetes mellitus, dyslipidemia, hyperglycemia, and hypertension will be outlined in the present review, highlighting potential mechanisms for the avoidance and medication of the metabolic syndromes by chitosan and its nanoformulations.


Assuntos
Quitosana , Dislipidemias , Hiperglicemia , Hipertensão , Resistência à Insulina , Síndrome Metabólica , Humanos , Síndrome Metabólica/tratamento farmacológico , Quitosana/uso terapêutico , Obesidade
19.
PLoS One ; 19(2): e0296052, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408107

RESUMO

HDL-apolipoprotein A-I exchange (HAE) measures a functional property associated with HDL's ability to mediate reverse cholesterol transport. HAE has been used to examine HDL function in case-control studies but not in studies of therapeutics that alter HDL particle composition. This study investigates whether niacin and omega-3 fatty acids induce measurable changes in HAE using a cohort of fifty-six subjects with metabolic syndrome (MetS) who were previously recruited to a double-blind trial where they were randomized to 16 weeks of treatment with dual placebo, extended-release niacin (ERN, 2g/day), prescription omega-3 ethyl esters (P-OM3, 4g/day), or the combination. HAE was assessed at the beginning and end of the study. Compared to placebo, ERN and P-OM3 alone significantly increased HAE by 15.1% [8.2, 22.0] (P<0.0001) and 11.1% [4.5, 17.7] (P<0.0005), respectively, while in combination they increased HAE by 10.0% [2.5, 15.8] (P = 0.005). When HAE was evaluated per unit mass of apoA-I ERN increased apoA-I specific exchange activity by 20% (2, 41 CI, P = 0.02) and P-OM3 by 28% (9.6, 48 CI, P<0.0006). However the combination had no statistically significant effect, 10% (-9, 31 CI, P = 0.39). With regard to P-OM3 therapy in particular, the HAE assay detected an increase in this property in the absence of a concomitant rise in HDL-C and apoA-I levels, suggesting that the assay can detect functional changes in HDL that occur in the absence of traditional biomarkers.


Assuntos
Ácidos Graxos Ômega-3 , Síndrome Metabólica , Niacina , Humanos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Niacina/uso terapêutico , Apolipoproteína A-I/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , HDL-Colesterol , Método Duplo-Cego
20.
Molecules ; 29(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398510

RESUMO

Metabolic syndromes (MetS) and related cardiovascular diseases (CVDs) pose a serious threat to human health. MetS are metabolic disorders characterized by obesity, dyslipidemia, and hypertension, which increase the risk of CVDs' initiation and development. Although there are many availabile drugs for treating MetS and related CVDs, some side effects also occur. Considering the low-level side effects, many natural products have been tried to treat MetS and CVDs. A five-cyclic triterpenoid natural product, oleanolic acid (OA), has been reported to have many pharmacologic actions such as anti-hypertension, anti-hyperlipidemia, and liver protection. OA has specific advantages in the treatment of MetS and CVDs. OA achieves therapeutic effects through a variety of pathways, attracting great interest and playing a vital role in the treatment of MetS and CVDs. Consequently, in this article, we aim to review the pharmacological actions and potential mechanisms of OA in treating MetS and related CVDs.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Síndrome Metabólica , Ácido Oleanólico , Humanos , Síndrome Metabólica/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Obesidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA