Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Adv Exp Med Biol ; 1448: 103-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117810

RESUMO

Secondary hemophagocytic lymphohistiocytosis (sHLH) has historically been defined as a cytokine storm syndrome (CSS) occurring in the setting of triggers leading to strong and dysregulated immunological activation, without known genetic predilection. However, recent studies have suggested that existing underlying genetic factors may synergize with particular diseases and/or environmental triggers (including infection, autoimmune/autoinflammatory disorder, certain biologic therapies, or malignant transformation), leading to sHLH. With the recent advances in genetic testing technology, more patients are examined for genetic variations in primary HLH (pHLH)-associated genes, including through whole exome and whole genome sequencing. This expanding genetic and genomic evidence has revealed HLH as a more complex phenomenon, resulting from specific immune challenges in patients with a susceptible genetic background. Rather than a simple, binary definition of pHLH and sHLH, HLH represents a spectrum of diseases, from a severe complication of common infections (EBV, influenza) to early onset familial diseases that can only be cured by transplantation.


Assuntos
Síndrome da Liberação de Citocina , Predisposição Genética para Doença , Linfo-Histiocitose Hemofagocítica , Humanos , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/terapia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/etiologia
2.
Adv Exp Med Biol ; 1448: 129-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117812

RESUMO

Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.


Assuntos
Linfócitos T CD8-Positivos , Síndrome da Liberação de Citocina , Linfo-Histiocitose Hemofagocítica , Humanos , Linfócitos T CD8-Positivos/imunologia , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Animais , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/genética , Células Matadoras Naturais/imunologia , Perforina/genética , Perforina/metabolismo , Citotoxicidade Imunológica/genética , Interferon gama/imunologia , Interferon gama/genética , Interferon gama/metabolismo
3.
Adv Exp Med Biol ; 1448: 481-496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39117835

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory disease caused by mutations in effectors and regulators of cytotoxicity in cytotoxic T cells (CTL) and natural killer (NK) cells. The complexity of the immune system means that in vivo models are needed to efficiently study diseases like HLH. Mice with defects in the genes known to cause primary HLH (pHLH) are available. However, these mice only develop the characteristic features of HLH after the induction of an immune response (typically through infection with lymphocytic choriomeningitis virus). Nevertheless, murine models have been invaluable for understanding the mechanisms that lead to HLH. For example, the cytotoxic machinery (e.g., the transport of cytotoxic vesicles and the release of granzymes and perforin after membrane fusion) was first characterized in the mouse. Experiments in murine models of pHLH have emphasized the importance of cytotoxic cells, antigen-presenting cells (APC), and cytokines in hyperinflammatory positive feedback loops (e.g., cytokine storms). This knowledge has facilitated the development of treatments for human HLH, some of which are now being tested in the clinic.


Assuntos
Síndrome da Liberação de Citocina , Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica , Animais , Linfo-Histiocitose Hemofagocítica/imunologia , Linfo-Histiocitose Hemofagocítica/genética , Camundongos , Humanos , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Citocinas/metabolismo , Citocinas/genética , Linfócitos T Citotóxicos/imunologia , Células Matadoras Naturais/imunologia
4.
J Infect Dis ; 229(6): 1740-1749, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38871359

RESUMO

BACKGROUND: We examined effects of single-nucleotide variants (SNVs) of IL1RN, the gene encoding the anti-inflammatory interleukin 1 receptor antagonist (IL-1Ra), on the cytokine release syndrome (CRS) and mortality in patients with acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: IL1RN CTA haplotypes formed from 3 SNVs (rs419598, rs315952, rs9005) and the individual SNVs were assessed for association with laboratory markers of inflammation and mortality. We studied 2589 patients hospitalized with SARS-CoV-2 between March 2020 and March 2021. RESULTS: Mortality was 15.3% and lower in women than men (13.1% vs 17.3%, P = .0003). Carriers of the CTA-1/2 IL1RN haplotypes exhibited decreased inflammatory markers and increased plasma IL-1Ra. Evaluation of the individual SNVs of the IL1RN, carriers of the rs419598 C/C SNV exhibited significantly reduced inflammatory biomarker levels and numerically lower mortality compared to the C/T-T/T genotype (10.0% vs 17.8%, P = .052) in men, with the most pronounced association observed in male patients ≤74 years old, whose mortality was reduced by 80% (3.1% vs 14.0%, P = .030). CONCLUSIONS: The IL1RN haplotype CTA and C/C variant of rs419598 are associated with attenuation of the CRS and decreased mortality in men with acute SARS-CoV-2 infection. The data suggest that the IL1RN pathway modulates the severity of coronavirus disease 2019 (COVID-19) via endogenous anti-inflammatory mechanisms.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Haplótipos , Proteína Antagonista do Receptor de Interleucina 1 , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/sangue , COVID-19/mortalidade , COVID-19/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , SARS-CoV-2/genética , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/mortalidade , Adulto , Genótipo , Biomarcadores/sangue
5.
Viruses ; 16(4)2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675991

RESUMO

Tumor necrosis factor (TNF) and interferon-gamma (IFNγ) are important inflammatory mediators in the development of cytokine storm syndrome (CSS). Single nucleotide polymorphisms (SNPs) regulate the expression of these cytokines, making host genetics a key factor in the prognosis of COVID-19. In this study, we investigated the associations of the TNF -308G/A and IFNG +874T/A polymorphisms with COVID-19. We analyzed the frequencies of the two polymorphisms in the control groups (CG: TNF -308G/A, n = 497; IFNG +874T/A, n = 397), a group of patients with COVID-19 (CoV, n = 222) and among the subgroups of patients with nonsevere (n = 150) and severe (n = 72) COVID-19. We found no significant difference between the genotypic and allelic frequencies of TNF -308G/A in the groups analyzed; however, both the frequencies of the high expression genotype (TT) (CoV: 13.51% vs. CG: 6.30%; p = 0.003) and the *T allele (CoV: 33.56% vs. CG: 24. 81%; p = 0.001) of the IFNG +874T/A polymorphism were higher in the COVID-19 group than in the control group, with no differences between the subgroups of patients with nonsevere and severe COVID-19. The *T allele of IFNG +874T/A (rs2430561) is associated with susceptibility to symptomatic COVID-19. These SNPs provided valuables clues about the potential mechanism involved in the susceptibility to developing symptomatic COVID-19.


Assuntos
COVID-19 , Predisposição Genética para Doença , Genótipo , Interferon gama , SARS-CoV-2 , Feminino , Humanos , Masculino , Alelos , COVID-19/genética , COVID-19/virologia , Síndrome da Liberação de Citocina/genética , Frequência do Gene , Interferon gama/genética , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/patogenicidade , Fator de Necrose Tumoral alfa/genética
6.
Front Immunol ; 14: 1211816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854611

RESUMO

SARS-COV-2 infection-induced excessive or uncontrolled cytokine storm may cause injury of host tissue or even death. However, the mechanism by which SARS-COV-2 causes the cytokine storm is unknown. Here, we demonstrated that SARS-COV-2 protein NSP9 promoted cytokine production by interacting with and activating TANK-binding kinase-1 (TBK1). With an rVSV-NSP9 virus infection model, we discovered that an NSP9-induced cytokine storm exacerbated tissue damage and death in mice. Mechanistically, NSP9 promoted the K63-linked ubiquitination and phosphorylation of TBK1, which induced the activation and translocation of IRF3, thereby increasing downstream cytokine production. Moreover, the E3 ubiquitin ligase Midline 1 (MID1) facilitated the K48-linked ubiquitination and degradation of NSP9, whereas virus infection inhibited the interaction between MID1 and NSP9, thereby inhibiting NSP9 degradation. Additionally, we identified Lys59 of NSP9 as a critical ubiquitin site involved in the degradation. These findings elucidate a previously unknown mechanism by which a SARS-COV-2 protein promotes cytokine storm and identifies a novel target for COVID-19 treatment.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Proteínas Serina-Treonina Quinases , SARS-CoV-2 , Animais , Camundongos , COVID-19/complicações , COVID-19/genética , COVID-19/imunologia , Tratamento Farmacológico da COVID-19 , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Citocinas , Modelos Animais de Doenças , Imunidade Inata , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
7.
Yi Chuan ; 44(8): 672-681, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384666

RESUMO

The coronavirus disease 2019 (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. COVID-19 has a variety of clinical manifestations, ranging from asymptomatic infection or mild symptoms to severe symptoms. Severe COVID-19 patients experience cytokine storm, resulting in multi-organ failure and even death. Male gender, old age, and pre-existing comorbidities (such as hypertension and diabetes ) are risk factors for COVID-19 severity. Recently, a series of studies suggested that genetic defects might also be related to disease severity and the cytokine storm occurence. Genetic variants in key viral immune genes, such as TLR7 and UNC13D, have been identified in severe COVID-19 patients from previous reports. In this review, we summarize the mechanisms underlying immune responses against SARS-CoV-2 and genetic variants that associated with the severity of COVID-19. The study of genetic basis of COVID-19 will be of great benefit for early disease detection and intervention.


Assuntos
COVID-19 , Humanos , Masculino , COVID-19/genética , Predisposição Genética para Doença , Síndrome da Liberação de Citocina/genética , SARS-CoV-2/genética , Proteínas de Membrana
8.
Front Immunol ; 13: 958801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091002

RESUMO

Fatal influenza (flu) virus infection often activates excessive inflammatory signals, leading to multi-organ failure and death, also referred to as cytokine storm. PPARγ (Peroxisome proliferator-activated receptor gamma) agonists are well-known candidates for cytokine storm modulation. The present study identified that influenza infection reduced PPARγ expression and decreased PPARγ transcription activity in human alveolar macrophages (AMs) from different donors. Treatment with PPARγ agonist Troglitazone ameliorated virus-induced proinflammatory cytokine secretion but did not interfere with the IFN-induced antiviral pathway in human AMs. In contrast, PPARγ antagonist and knockdown of PPARγ in human AMs further enhanced virus-stimulated proinflammatory response. In a mouse model of influenza infection, flu virus dose-dependently reduced PPARγ transcriptional activity and decreased expression of PPARγ. Moreover, PPARγ agonist troglitazone significantly reduced high doses of influenza infection-induced lung pathology. In addition, flu infection reduced PPARγ expression in all mouse macrophages, including AMs, interstitial macrophages, and bone-marrow-derived macrophages but not in alveolar epithelial cells. Our results indicate that the influenza virus specifically targets the PPARγ pathway in macrophages to cause acute injury to the lung.


Assuntos
Antivirais , Influenza Humana , Pulmão , Macrófagos , PPAR gama , Troglitazona , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Animais , Antivirais/imunologia , Antivirais/uso terapêutico , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Influenza Humana/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Camundongos , Orthomyxoviridae , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , PPAR gama/agonistas , PPAR gama/genética , PPAR gama/imunologia , Troglitazona/imunologia , Troglitazona/uso terapêutico
9.
Int J Biol Sci ; 18(13): 4901-4913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982898

RESUMO

Background: In 2019, the coronavirus pandemic emerged, resulting in the highest mortality and morbidity rate globally. It has a prevailing transmission rate and continues to be a global burden. There is a paucity of data regarding the role of long non-coding RNAs (lncRNAs) in COVID-19. Therefore, the current study aimed to investigate lncRNAs, particularly NEAT1 and TUG1, and their association with IL-6, CCL2, and TNF-α in COVID-19 patients with moderate and severe disease. Methods: The study was conducted on 80 COVID-19 patients (35 with severe and 45 with moderate infection) and 40 control subjects. Complete blood count (CBC), D-dimer assay, serum ferritin, and CRP were assayed. qRT-PCR was used to measure RNAs and lncRNAs. Results: NEAT1 and TUG1 expression levels were higher in COVID-19 patients compared with controls (P<0.001). Furthermore, CCL2, IL-6, and TNF-α expressions were higher in COVID-19 patients compared to controls (P<0.001). CCL2 and IL-6 expression levels were significantly higher in patients with severe compared to those with moderate COVID-19 infection (P<0.001). IL-6 had the highest accuracy in distinguishing COVID-19 patients (AUC=1, P<0.001 at a cutoff of 0.359), followed by TUG1 (AUC=0.999, P<0.001 at a cutoff of 2.28). NEAT1 and TUG1 had significant correlations with the measured cytokines, and based on the multivariate regression analysis, NEAT1 is the independent predictor for survival in COVID-19 patients (P=0.02). Conclusion: In COVID-19 patients, significant overexpression of NEAT1 and TUG1 was observed, consistent with cytokine storm. TUG1 could be an efficient diagnostic biomarker, whereas NEAT1 was an independent predictor for overall survival.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , RNA Longo não Codificante , COVID-19/complicações , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/virologia , Humanos , Incidência , Interleucina-6 , RNA Longo não Codificante/genética , Fator de Necrose Tumoral alfa
10.
J Virol ; 96(14): e0043822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758667

RESUMO

In this study, we assessed the potential synergistic effect of the Erns RNase activity and the poly-U insertion in the 3' untranslated region (UTR) of the low-virulence classical swine fever virus (CSFV) isolate Pinar de Rio (PdR) in innate and adaptive immunity regulation and its relationship with classical swine fever (CSF) pathogenesis in pigs. We knocked out the Erns RNase activity of PdR and replaced the long polyuridine sequence of the 3' UTR with 5 uridines found typically at this position, resulting in a double mutant, vPdR-H30K-5U. This mutant induced severe CSF in 5-day-old piglets and 3-week-old pigs, with higher lethality in the newborn (89.5%) than in the older (33.3%) pigs. However, the viremia and viral excretion were surprisingly low, while the virus load was high in the tonsils. Only alpha interferon (IFN-α) and interleukin 12 (IL-12) were highly and consistently elevated in the two groups. Additionally, high IL-8 levels were found in the newborn but not in the older pigs. This points toward a role of these cytokines in the CSF outcome, with age-related differences. The disproportional activation of innate immunity might limit systemic viral spread from the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms. Infection with vPdR-H30K-5U resulted in poor neutralizing antibody responses compared with results obtained previously with the parent and RNase knockout PdR. This study shows for the first time the synergistic effect of the 3' UTR and the Erns RNase function in regulating innate immunity against CSFV, favoring virus replication in target tissue and thus contributing to disease severity. IMPORTANCE CSF is one of the most relevant viral epizootic diseases of swine, with high economic and sanitary impact. Systematic stamping out of infected herds with and without vaccination has permitted regional virus eradication. However, the causative agent, CSFV, persists in certain areas of the world, leading to disease reemergence. Nowadays, low- and moderate-virulence strains that could induce unapparent CSF forms are prevalent, posing a challenge for disease eradication. Here, we show for the first time the synergistic role of lacking the Erns RNase activity and the 3' UTR polyuridine insertion from a low-virulence CSFV isolate in innate immunity disproportional activation. This might limit systemic viral spread to the tonsils and increase virus clearance, inducing strong cytokine-mediated symptoms, thus contributing to disease severity. These results highlight the role played by the Erns RNase activity and the 3' UTR in CSFV pathogenesis, providing new perspectives for novel diagnostic tools and vaccine strategies.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Síndrome da Liberação de Citocina , Regiões 3' não Traduzidas/genética , Imunidade Adaptativa/genética , Animais , Peste Suína Clássica/imunologia , Peste Suína Clássica/patologia , Peste Suína Clássica/virologia , Vírus da Febre Suína Clássica/enzimologia , Vírus da Febre Suína Clássica/genética , Vírus da Febre Suína Clássica/imunologia , Vírus da Febre Suína Clássica/patogenicidade , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Citocinas , Imunidade Inata/genética , Interferon-alfa/imunologia , Interleucina-12/imunologia , Ribonucleases/genética , Ribonucleases/metabolismo , Suínos , Vacinas Virais , Virulência/genética
11.
J Med Virol ; 94(9): 4088-4096, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35538614

RESUMO

Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.


Assuntos
COVID-19 , Citocinas , Receptores de Citocinas , Receptores Toll-Like , COVID-19/genética , COVID-19/fisiopatologia , Síndrome da Liberação de Citocina/genética , Citocinas/genética , Humanos , Receptores de Citocinas/genética , SARS-CoV-2 , Receptores Toll-Like/genética
12.
Protein Pept Lett ; 29(6): 514-537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382714

RESUMO

BACKGROUND: Interleukin-11 is a pleiotropic cytokine that is known to play an important role in the progression of various forms of cancer by modulating the survival and proliferation of tumour cells. IL11 also demonstrates a structural homology to IL6, the predominant cytokine involved in COVID-19. This makes IL11 a potential therapeutic target in both diseases. OBJECTIVE: This study aimed to evaluate the impact of the two-point mutations, R135E and R190E, on the stability of IL11 and their effect on the binding affinity of IL11 with its receptor IL11Rα. It is a molecular level analysis based on the existing experimental validation. METHODS: Computer-aided drug designing techniques, such as molecular modelling, molecular docking, and molecular dynamics simulations, were employed to determine the consequential effects of the two-point mutations. RESULTS: Our analysis revealed that the two mutations led to a decrease in the overall stability of IL11. This was evident by the increased atomic fluctuations in the mutated regions as well as the corresponding elevation in the deviations seen through RMSD and Rg values. It was also accompanied by a loss in the secondary structural organisation in the mutated proteins. Moreover, mutation R135E led to an increase in the binding affinity of IL11 with IL11Rα and the formation of a more stable complex in comparison to the wild-type protein with its receptor. CONCLUSION: Mutation R190E led to the formation of a less stable complex than the wild-type, which suggests a decrease in the binding affinity between IL11 and IL11Rα.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , Interleucina-11 , Neoplasias , COVID-19/genética , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/virologia , Citocinas , Humanos , Interleucina-11/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neoplasias/genética
14.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35163833

RESUMO

Preventing the cytokine storm observed in COVID-19 is a crucial goal for reducing the occurrence of severe acute respiratory failure and improving outcomes. Here, we identify Aldo-Keto Reductase 1B10 (AKR1B10) as a key enzyme involved in the expression of pro-inflammatory cytokines. The analysis of transcriptomic data from lung samples of patients who died from COVID-19 demonstrates an increased expression of the gene encoding AKR1B10. Measurements of the AKR1B10 protein in sera from hospitalised COVID-19 patients suggests a significant link between AKR1B10 levels and the severity of the disease. In macrophages and lung cells, the over-expression of AKR1B10 induces the expression of the pro-inflammatory cytokines Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß) and Tumor Necrosis Factor a (TNFα), supporting the biological plausibility of an AKR1B10 involvement in the COVID-19-related cytokine storm. When macrophages were stressed by lipopolysaccharides (LPS) exposure and treated by Zopolrestat, an AKR1B10 inhibitor, the LPS-induced production of IL-6, IL-1ß, and TNFα is significantly reduced, reinforcing the hypothesis that the pro-inflammatory expression of cytokines is AKR1B10-dependant. Finally, we also show that AKR1B10 can be secreted and transferred via extracellular vesicles between different cell types, suggesting that this protein may also contribute to the multi-organ systemic impact of COVID-19. These experiments highlight a relationship between AKR1B10 production and severe forms of COVID-19. Our data indicate that AKR1B10 participates in the activation of cytokines production and suggest that modulation of AKR1B10 activity might be an actionable pharmacological target in COVID-19 management.


Assuntos
Aldo-Ceto Redutases/fisiologia , COVID-19/genética , Síndrome da Liberação de Citocina/genética , Síndrome do Desconforto Respiratório/genética , Aldo-Ceto Redutases/antagonistas & inibidores , Aldo-Ceto Redutases/genética , Animais , COVID-19/complicações , COVID-19/metabolismo , COVID-19/patologia , Estudos de Casos e Controles , Células Cultivadas , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Gravidade do Paciente , Células RAW 264.7 , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/fisiologia , Transcriptoma
15.
J Food Biochem ; 46(5): e14079, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35060145

RESUMO

Cytokine storm is a phrase used to refer to an abrupt upsurge in the circulating levels of various pro-inflammatory cytokines, causing increased stimulation and activity of immune cells during disease conditions. The binding of pattern recognition receptors to pathogen-associated molecular patterns during COVID-19 infection recruits response machinery involving the activation of transcription factors and proteins required for a robust immune response by host cells. These immune responses could be influenced by epigenetic modifications as evidenced by significant variations in COVID-19 pathophysiology and response to therapy observed among patients across the globe. Considering that circulating levels of interleukin 1, tumor necrosis factor-α, and interleukin 6 are significantly elevated during cytokine storm in COVID-19 patients, genetic and epigenetic variations in the expression and function of these proteins could enhance our understanding of the disease pathogenesis. Treatment options that repress the transcription of specific cytokine genes during COVID-19 infection could serve as possible targets to counteract cytokine storm in COVID-19. Therefore, the present article reviews the roles of cytokines and associated genes in the COVID-19 cytokine storm, identifies epigenetic modifications associated with the disease progression, and possible ameliorative effects of some vitamins and minerals obtained as epigenetic modifiers for the control of cytokine storm and disease severity in COVID-19 patients. PRACTICAL APPLICATIONS: COVID-19 causes mortality and morbidity that adversely affect global economies. Despite a global vaccination campaign, side effects associated with vaccination, misconceptions, and a number of other factors have affected the expected successes. Cytokine storm in COVID-19 patients contributes to the disease pathogenesis and response to therapy. Epigenetic variations in the expression of various cytokines could be implicated in the different outcomes observed in COVID-19 patients. Certain vitamins and minerals have been shown to interfere with the expression and activity of cytokines implicated in cytokine storm, thereby counteracting observed pathologies. This review examines cytokines implicated in cytokine storm in COVID-19, epigenetic modifications that contribute to increased expression of identified cytokines, specific foods rich in the identified vitamins and minerals, and suggests their possible ameliorative benefits. The article will be beneficial to both scientists and the general public who are interested in the role of vitamins and minerals in ameliorating COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome da Liberação de Citocina , COVID-19/genética , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/genética , Citocinas/genética , Epigênese Genética , Humanos , Minerais , SARS-CoV-2 , Vitamina A , Vitaminas
16.
J Cell Mol Med ; 26(1): 228-234, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821008

RESUMO

The outbreak of COVID-19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID-19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS-CoV-2 entry has been detected in all MSC samples. These results are of particular importance for future MSC-based cell therapies to treat severe cases after COVID-19 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Síndrome da Liberação de Citocina/terapia , Transplante de Células-Tronco Mesenquimais/métodos , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , COVID-19/genética , COVID-19/patologia , COVID-19/virologia , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cultura Primária de Células , Ligação Proteica , SARS-CoV-2/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo
17.
Front Immunol ; 12: 755579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867988

RESUMO

During the COVID-19 pandemic, a phenomenon emerged in which some patients with severe disease were critically ill and could not be discharged from the ICU even though they exhibited negative viral tests. To explore the underlying mechanism, we collected blood samples from these patients and analyzed the gene expression profiles of peripheral immune cells. We found that all enrolled patients, regardless of changes in genes related to different symptoms and inflammatory responses, showed universally and severely decreased expression of adaptive immunity-related genes, especially those related to T/B cell arms and HLA molecules, and that these patients exhibited long-term secondary infections. In addition, no significant change was found in the expression of classic immunosuppression molecules including PD-1, PD-L1, and CTLA-4, suggesting that the adaptive immune suppression may not be due to the change of these genes. According to the published literatures and our data, this adaptive immunosuppression is likely to be caused by the "dysregulated host response" to severe infection, similar to the immunosuppression that exists in other severely infected patients with sepsis.


Assuntos
Imunidade Adaptativa/imunologia , COVID-19/imunologia , Tolerância Imunológica/imunologia , Imunidade Adaptativa/genética , Idoso , COVID-19/diagnóstico , COVID-19/genética , Coinfecção/diagnóstico , Coinfecção/genética , Coinfecção/imunologia , Estudos Transversais , Síndrome da Liberação de Citocina/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Tolerância Imunológica/genética , Inflamação/genética , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Alta do Paciente , SARS-CoV-2/isolamento & purificação , Olfato/genética , Paladar/genética
18.
Mutat Res Rev Mutat Res ; 788: 108395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34893160

RESUMO

In this review we bring together evidence that (i) RNA viruses are a cause of chromosomal instability and micronuclei (MN), (ii) those individuals with high levels of lymphocyte MN have a weakened immune response and are more susceptible to RNA virus infection and (iii) both RNA virus infection and MN formation can induce inflammatory cytokine production. Based on these observations we propose a hypothesis that those who harbor elevated frequencies of MN within their cells are more prone to RNA virus infection and are more likely, through combined effects of leakage of self-DNA from MN and RNA from viruses, to escalate pro-inflammatory cytokine production via the cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING) and the Senescence Associated Secretory Phenotype (SASP) mechanisms to an extent that is unresolvable and therefore confers high risk of causing tissue damage by an excessive and overtly toxic immune response. The corollaries from this hypothesis are (i) those with abnormally high MN frequency are more prone to infection by RNA viruses; (ii) the extent of cytokine production and pro-inflammatory response to infection by RNA viruses is enhanced and possibly exceeds threshold levels that may be unresolvable in those with elevated MN levels in affected organs; (iii) reduction of MN frequency by improving nutrition and life-style factors increases resistance to RNA virus infection and moderates inflammatory cytokine production to a level that is immunologically efficacious and survivable.


Assuntos
COVID-19/complicações , Síndrome da Liberação de Citocina/virologia , Micronúcleos com Defeito Cromossômico , COVID-19/genética , COVID-19/imunologia , Instabilidade Cromossômica , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Humanos , SARS-CoV-2/patogenicidade
19.
Cell Rep Med ; 2(10): 100422, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755134

RESUMO

Provoked by sterile/nonsterile insults, prolonged monocyte mobilization and uncontrolled monocyte/macrophage activation can pose imminent or impending harm to the affected organs. Curiously, folate receptor beta (FRß), with subnanomolar affinity for the vitamin folic acid (FA), is upregulated during immune activation in hematopoietic cells of the myeloid lineage. This phenomenon has inspired a strong interest in exploring FRß-directed diagnostics/therapeutics. Previously, we have reported that FA-targeted aminopterin (AMT) therapy can modulate macrophage function and effectively treat animal models of inflammation. Our current investigation of a lead compound (EC2319) leads to discovery of a highly FR-specific mechanism of action independent of the root causes against inflammatory monocytes. We further show that EC2319 suppresses interleukin-6/interleukin-1ß release by FRß+ monocytes in a triple co-culture leukemic model of cytokine release syndrome with anti-CD19 chimeric antigen receptor T cells. Because of its chemical stability and metabolically activated linker, EC2319 demonstrates favorable pharmacokinetic characteristics and cross-species translatability to support future pre-clinical and clinical development.


Assuntos
Aminopterina/farmacologia , Síndrome da Liberação de Citocina/prevenção & controle , Receptor 2 de Folato/genética , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Macrófagos/efeitos dos fármacos , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Células CHO , Cricetulus , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/patologia , Feminino , Receptor 1 de Folato/antagonistas & inibidores , Receptor 1 de Folato/genética , Receptor 1 de Folato/imunologia , Receptor 2 de Folato/antagonistas & inibidores , Receptor 2 de Folato/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Modelos Biológicos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Células RAW 264.7 , Ratos , Ratos Endogâmicos Lew , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/patologia
20.
Front Immunol ; 12: 738490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691044

RESUMO

Tumor progression locus 2 (Tpl2) is a serine-threonine kinase known to promote inflammation in response to various pathogen-associated molecular patterns (PAMPs), inflammatory cytokines and G-protein-coupled receptors and consequently aids in host resistance to pathogens. We have recently shown that Tpl2-/- mice succumb to infection with a low-pathogenicity strain of influenza (x31, H3N2) by an unknown mechanism. In this study, we sought to characterize the cytokine and immune cell profile of influenza-infected Tpl2-/- mice to gain insight into its host protective effects. Although Tpl2-/- mice display modestly impaired viral control, no virus was observed in the lungs of Tpl2-/- mice on the day of peak morbidity and mortality suggesting that morbidity is not due to virus cytopathic effects but rather to an overactive antiviral immune response. Indeed, increased levels of interferon-ß (IFN-ß), the IFN-inducible monocyte chemoattractant protein-1 (MCP-1, CCL2), Macrophage inflammatory protein 1 alpha (MIP-1α; CCL3), MIP-1ß (CCL4), RANTES (CCL5), IP-10 (CXCL10) and Interferon-γ (IFN-γ) was observed in the lungs of influenza-infected Tpl2-/- mice at 7 days post infection (dpi). Elevated cytokine and chemokines were accompanied by increased infiltration of the lungs with inflammatory monocytes and neutrophils. Additionally, we noted that increased IFN-ß correlated with increased CCL2, CXCL1 and nitric oxide synthase (NOS2) expression in the lungs, which has been associated with severe influenza infections. Bone marrow chimeras with Tpl2 ablation localized to radioresistant cells confirmed that Tpl2 functions, at least in part, within radioresistant cells to limit pro-inflammatory response to viral infection. Collectively, this study suggests that Tpl2 tempers inflammation during influenza infection by constraining the production of interferons and chemokines which are known to promote the recruitment of detrimental inflammatory monocytes and neutrophils.


Assuntos
Síndrome da Liberação de Citocina/metabolismo , Citocinas/sangue , Vírus da Influenza A Subtipo H3N2/patogenicidade , Pulmão/metabolismo , MAP Quinase Quinase Quinases/deficiência , Monócitos/metabolismo , Neutrófilos/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Animais , Biomarcadores/sangue , Síndrome da Liberação de Citocina/genética , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Citocinas/genética , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H3N2/imunologia , Pulmão/imunologia , Pulmão/virologia , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/virologia , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/virologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Proteínas Proto-Oncogênicas/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA