Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.961
Filtrar
1.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739166

RESUMO

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Assuntos
Modelos Animais de Doenças , Síndrome de Down , Neurogênese , Animais , Síndrome de Down/tratamento farmacológico , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Síndrome de Down/complicações , Síndrome de Down/genética , Neurogênese/efeitos dos fármacos , Camundongos , Feminino , Gravidez , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Quinases Dyrk , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Masculino , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/patologia
2.
Genes (Basel) ; 15(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38674386

RESUMO

Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS.


Assuntos
Síndrome de Down , Fluoxetina , Proteômica , Vesículas Sinápticas , Animais , Fluoxetina/farmacologia , Camundongos , Síndrome de Down/metabolismo , Síndrome de Down/tratamento farmacológico , Síndrome de Down/genética , Síndrome de Down/patologia , Masculino , Proteômica/métodos , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/efeitos dos fármacos , Modelos Animais de Doenças , Proteoma/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Sinaptossomos/metabolismo , Sinaptossomos/efeitos dos fármacos , Trissomia/genética
3.
Exp Eye Res ; 241: 109818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38422787

RESUMO

Down syndrome (DS) is the most common chromosomal disorder in humans. DS is associated with increased prevalence of several ocular sequelae, including characteristic blue-dot cerulean cataract. DS is accompanied by age-dependent accumulation of Alzheimer's disease (AD) amyloid-ß (Aß) peptides and amyloid pathology in the brain and comorbid early-onset Aß amyloidopathy and colocalizing cataracts in the lens. Quasi-elastic light scattering (QLS) is an established optical technique that noninvasively measures changes in protein size distributions in the human lens in vivo. In this cross-sectional study, lenticular QLS correlation time was decreased in adolescent subjects with DS compared to age-matched control subjects. Clinical QLS was consistent with alterations in relative particle hydrodynamic radius in lenses of adolescents with DS. These correlative results suggest that noninvasive QLS can be used to evaluate molecular changes in the lenses of individuals with DS.


Assuntos
Doença de Alzheimer , Catarata/congênito , Síndrome de Down , Cristalino , Humanos , Adolescente , Síndrome de Down/complicações , Síndrome de Down/patologia , Estudos Transversais , Doença de Alzheimer/metabolismo , Cristalino/metabolismo , Peptídeos beta-Amiloides/metabolismo
4.
Open Biol ; 14(2): 230319, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350611

RESUMO

Transient abnormal myelopoiesis (TAM) is a Down syndrome-related pre-leukaemic condition characterized by somatic mutations in the haematopoietic transcription factor GATA-1 that result in exclusive production of its shorter isoform (GATA-1S). Given the common hallmark of altered miRNA expression profiles in haematological malignancies and the pro-leukaemic role of GATA-1S, we aimed to search for miRNAs potentially able to modulate the expression of GATA-1 isoforms. Starting from an in silico prediction of miRNA binding sites in the GATA-1 transcript, miR-1202 came into our sight as potential regulator of GATA-1 expression. Expression studies in K562 cells revealed that miR-1202 directly targets GATA-1, negatively regulates its expression, impairs GATA-1S production, reduces cell proliferation, and increases apoptosis sensitivity. Furthermore, data from TAM and myeloid leukaemia patients provided substantial support to our study by showing that miR-1202 down-modulation is accompanied by increased GATA-1 levels, with more marked effects on GATA-1S. These findings indicate that miR-1202 acts as an anti-oncomiR in myeloid cells and may impact leukaemogenesis at least in part by down-modulating GATA-1S levels.


Assuntos
Síndrome de Down , Leucemia Mieloide , Reação Leucemoide , MicroRNAs , Humanos , Síndrome de Down/genética , Síndrome de Down/complicações , Síndrome de Down/patologia , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Reação Leucemoide/complicações , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Anticancer Res ; 44(2): 489-495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38307564

RESUMO

BACKGROUND/AIM: Individuals with Down syndrome (DS), attributed to triplication of human chromosome 21 (Hsa21), exhibit a reduced incidence of solid tumors. However, the prevalence of glioblastoma among individuals with DS remains a contentious issue in epidemiological studies. Therefore, this study examined the gliomagenicity in Ts1Cje mice, a murine model of DS. MATERIALS AND METHODS: We employed the Sleeping Beauty transposon system for the integration of human oncogenes into cells of the subventricular zone of neonatal mice. RESULTS: Notably, Sleeping Beauty-mediated de novo murine gliomagenesis was significantly suppressed in Ts1Cje mice compared to wild-type mice. In glioblastomas of Ts1je mice, we observed an augmented presence of M1-polarized tumor-associated macrophages and microglia, known for their anti-tumor efficacy in the early stage of tumor development. CONCLUSION: Our findings in a mouse model of DS offer novel perspectives on the diminished gliomagenicity observed in individuals with DS.


Assuntos
Síndrome de Down , Camundongos , Animais , Humanos , Síndrome de Down/genética , Síndrome de Down/patologia , Modelos Animais de Doenças
6.
Biochem Soc Trans ; 52(1): 1-13, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38174740

RESUMO

Intersectin (ITSN) is a multi-domain scaffold protein with a diverse array of functions including regulation of endocytosis, vesicle transport, and activation of various signal transduction pathways. There are two ITSN genes located on chromosomes 21 and 2 encoding for proteins ITSN1 and ITSN2, respectively. Each ITSN gene encodes two major isoforms, ITSN-Long (ITSN-L) and ITSN-Short (ITSN-S), due to alternative splicing. ITSN1 and 2, collectively referred to as ITSN, are implicated in many physiological and pathological processes, such as neuronal maintenance, actin cytoskeletal rearrangement, and tumor progression. ITSN is mis-regulated in many tumors, such as breast, lung, neuroblastomas, and gliomas. Altered expression of ITSN is also found in several neurodegenerative diseases, such as Down Syndrome and Alzheimer's disease. This review summarizes recent studies on ITSN and provides an overview of the function of this important family of scaffold proteins in various biological processes.


Assuntos
Síndrome de Down , Transdução de Sinais , Humanos , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Endocitose/fisiologia
7.
J Anat ; 244(6): 1007-1014, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38264931

RESUMO

Mouse models are central to studying and understanding the genotypic-to-phenotypic outcomes of Down syndrome (DS), a complex condition caused by an extra copy of the long arm of human chromosome 21. The recently developed TcMAC21-a transchromosomic mouse strain with comparable gene dosage to human chromosome 21 (Hsa21)-includes more Hsa21 genes than any other model of DS. Recent studies on TcMAC21 have provided valuable insight into the molecular, physiological, and neuroanatomical aspects of the model. However, relatively little is known about the craniofacial phenotype of TcMAC21 mice, particularly as it compares to the widely studied Ts65Dn model. Here we conducted a quantitative study of the cranial morphology of TcMAC21 and Ts65Dn mice and their respective unaffected littermates. Our comparative data comprise forty three-dimensional cranial measurements taken on micro-computed tomography scans of the heads of TcMAC21 and Ts65Dn mice. Our results show that TcMAC21 exhibit similar patterns of craniofacial change to Ts65Dn. However, the DS-specific morphology is more pronounced in Ts65Dn mice. Specifically, Ts65Dn present with more medio-lateral broadening and retraction of the snout compared to TcMAC21. Our findings reveal the complexity of potential gene interaction in the production of craniofacial phenotypes.


Assuntos
Modelos Animais de Doenças , Síndrome de Down , Crânio , Síndrome de Down/patologia , Síndrome de Down/genética , Animais , Camundongos , Crânio/diagnóstico por imagem , Microtomografia por Raio-X , Masculino , Fenótipo
8.
Pathobiology ; 91(1): 89-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36996802

RESUMO

INTRODUCTION: The incidence of myelodysplastic syndrome and acute myeloid leukemia is significantly increased in children with Down syndrome (DS). Within the revised 2016 WHO edition, these entities are jointly classified as myeloid leukemia associated with DS (ML-DS). Additionally, infants with DS may develop transient abnormal myelopoiesis (TAM) which is histomorphologically similar to ML-DS. While TAM is self-limiting, it is associated with an increased risk of subsequently developing ML-DS. Differentiating TAM and ML-DS is challenging but clinically critical. METHODS: We performed a retrospective review of ML-DS and TAM cases collected from five large academic institutions in the USA. We assessed clinical, pathological, immunophenotypical, and molecular features to identify differentiating criteria. RESULTS: Forty cases were identified: 28 ML-DS and 12 TAM. Several features were diagnostically distinct, including younger age in TAM (p < 0.05), as well as presentation with clinically significant anemia and thrombocytopenia in ML-DS (p < 0.001). Dyserythropoiesis was unique to ML-DS, as well as structural cytogenetic abnormalities aside from the constitutional trisomy 21. Immunophenotypic characteristics of TAM and ML-DS were indistinguishable, including the aberrant expression of CD7 and CD56 by the myeloid blasts. DISCUSSION: The findings of the study confirm marked biological similarities between TAM and ML-DS. At the same time, several significant clinical, morphological, and genetic differences were observed between TAM and ML-DS. The clinical approach and the differential diagnosis between these entities are discussed in detail.


Assuntos
Síndrome de Down , Leucemia Mieloide Aguda , Reação Leucemoide , Lactente , Criança , Humanos , Síndrome de Down/complicações , Síndrome de Down/genética , Síndrome de Down/patologia , Mutação , Reação Leucemoide/diagnóstico , Reação Leucemoide/genética , Reação Leucemoide/complicações
9.
Ann Clin Transl Neurol ; 11(1): 143-155, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158639

RESUMO

OBJECTIVE: Alzheimer's disease (AD) is a major health concern for aging adults with Down syndrome (DS), but conventional diagnostic techniques are less reliable in those with severe baseline disability. Likewise, acquisition of magnetic resonance imaging to evaluate cerebral atrophy is not straightforward, as prolonged scanning times are less tolerated in this population. Computed tomography (CT) scans can be obtained faster, but poor contrast resolution limits its function for morphometric analysis. We implemented an automated analysis of CT scans to characterize differences across dementia stages in a cross-sectional study of an adult DS cohort. METHODS: CT scans of 98 individuals were analyzed using an automatic algorithm. Voxel-based correlations with clinical dementia stages and AD plasma biomarkers (phosphorylated tau-181 and neurofilament light chain) were identified, and their dysconnectomic patterns delineated. RESULTS: Dementia severity was negatively correlated with gray (GM) and white matter (WM) volumes in temporal lobe regions, including parahippocampal gyri. Dysconnectome analysis revealed an association between WM loss and temporal lobe GM volume reduction. AD biomarkers were negatively associated with GM volume in hippocampal and cingulate gyri. INTERPRETATION: Our automated algorithm and novel dysconnectomic analysis of CT scans successfully described brain morphometric differences related to AD in adults with DS, providing a new avenue for neuroimaging analysis in populations for whom magnetic resonance imaging is difficult to obtain.


Assuntos
Doença de Alzheimer , Síndrome de Down , Adulto , Humanos , Síndrome de Down/diagnóstico por imagem , Síndrome de Down/patologia , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética/métodos , Biomarcadores
10.
Int J Mol Sci ; 24(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895004

RESUMO

The molecular basis of Down syndrome (DS) predisposition to leukemia is not fully understood but involves various factors such as chromosomal abnormalities, oncogenic mutations, epigenetic alterations, and changes in selection dynamics. Myeloid leukemia associated with DS (ML-DS) is preceded by a preleukemic phase called transient abnormal myelopoiesis driven by GATA1 gene mutations and progresses to ML-DS via additional mutations in cohesin genes, CTCF, RAS, or JAK/STAT pathway genes. DS-related ALL (ALL-DS) differs from non-DS ALL in terms of cytogenetic subgroups and genetic driver events, and the aberrant expression of CRLF2, JAK2 mutations, and RAS pathway-activating mutations are frequent in ALL-DS. Recent advancements in single-cell multi-omics technologies have provided unprecedented insights into the cellular and molecular heterogeneity of DS-associated hematologic neoplasms. Single-cell RNA sequencing and digital spatial profiling enable the identification of rare cell subpopulations, characterization of clonal evolution dynamics, and exploration of the tumor microenvironment's role. These approaches may help identify new druggable targets and tailor therapeutic interventions based on distinct molecular profiles, ultimately improving patient outcomes with the potential to guide personalized medicine approaches and the development of targeted therapies.


Assuntos
Síndrome de Down , Neoplasias Hematológicas , Humanos , Síndrome de Down/complicações , Síndrome de Down/genética , Síndrome de Down/patologia , Janus Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição STAT/metabolismo , Mutação , Neoplasias Hematológicas/genética , Microambiente Tumoral
11.
Stem Cell Res ; 72: 103204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37734318

RESUMO

Down syndrome (DS) is caused by trisomy of Homo sapiens chromosome 21 (HSA21) and is by far the most common chromosomal disorder accompanied by neurodevelopmental disorders and congenital heart disease. Here, we generated two induced pluripotent stem cell (iPSC) lines from two patients with DS. These two lines exhibited normal morphology, trisomy 21 karyotype, pluripotency and differentiation capability into derivatives of three germ layers. The patient-specific iPSC lines arean invaluable resource in research to model DS-related cellular and molecular pathologies and test possible therapeutic strategies for DS.


Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Humanos , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trissomia/patologia , Diferenciação Celular/genética
12.
Acta Neuropathol Commun ; 11(1): 132, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580797

RESUMO

Cathepsin B is a cysteine protease that is implicated in multiple aspects of Alzheimer's disease pathogenesis. The endogenous inhibitor of this enzyme, cystatin B (CSTB) is encoded on chromosome 21. Thus, individuals who have Down syndrome, a genetic condition caused by having an additional copy of chromosome 21, have an extra copy of an endogenous inhibitor of the enzyme. Individuals who have Down syndrome are also at significantly increased risk of developing early-onset Alzheimer's disease (EOAD). The impact of the additional copy of CSTB on Alzheimer's disease development in people who have Down syndrome is not well understood. Here we compared the biology of cathepsin B and CSTB in individuals who had Down syndrome and Alzheimer's disease, with disomic individuals who had Alzheimer's disease or were ageing healthily. We find that the activity of cathepsin B enzyme is decreased in the brain of people who had Down syndrome and Alzheimer's disease compared with disomic individuals who had Alzheimer's disease. This change occurs independently of an alteration in the abundance of the mature enzyme or the number of cathepsin B+ cells. We find that the abundance of CSTB is significantly increased in the brains of individuals who have Down syndrome and Alzheimer's disease compared to disomic individuals both with and without Alzheimer's disease. In mouse and human cellular preclinical models of Down syndrome, three-copies of CSTB increases CSTB protein abundance but this is not sufficient to modulate cathepsin B activity. EOAD and Alzheimer's disease-Down syndrome share many overlapping mechanisms but differences in disease occur in individuals who have trisomy 21. Understanding this biology will ensure that people who have Down syndrome access the most appropriate Alzheimer's disease therapeutics and moreover will provide unique insight into disease pathogenesis more broadly.


Assuntos
Doença de Alzheimer , Síndrome de Down , Humanos , Camundongos , Animais , Síndrome de Down/patologia , Doença de Alzheimer/patologia , Cistatina B/genética , Catepsina B , Microglia/metabolismo
13.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511361

RESUMO

Limited comparative data exist on the molecular spectrum of amyloid-beta (Aß) and tau deposition in individuals with Down syndrome (DS) and sporadic Alzheimer's disease (sAD). We assessed Aß and tau deposition severity in the temporal lobe and cerebellum of ten DS and ten sAD cases. Immunohistochemistry was performed using antibodies against eight different Aß epitopes (6F/3D, Aß38, Aß39, Aß40, Aß42, Aß43, pyroglutamate Aß at third glutamic acid (AßNp3E), phosphorylated- (p-)Aß at 8th serine (AßpSer8)), and six different pathological tau epitopes (p-Ser202/Thr205, p-Thr231, p-Ser396, Alz50, MC1, GT38). Findings were evaluated semi-quantitatively and quantitatively using digital pathology. DS cases had significantly higher neocortical parenchymal deposition (Aß38, Aß42, and AßpSer8), and cerebellar parenchymal deposition (Aß40, Aß42, AßNp3E, and AßpSer8) than sAD cases. Furthermore, DS cases had a significantly larger mean plaque size (6F/3D, Aß42, AßNp3E) in the temporal lobe, and significantly greater deposition of cerebral and cerebellar Aß42 than sAD cases in the quantitative analysis. Western blotting corroborated these findings. Regarding tau pathology, DS cases had significantly more severe cerebral tau deposition than sAD cases, especially in the white matter (p-Ser202/Thr205, p-Thr231, Alz50, and MC1). Greater total tau deposition in the white matter (p-Ser202/Thr205, p-Thr231, and Alz50) of DS cases was confirmed by quantitative analysis. Our data suggest that the Aß and tau molecular signatures in DS are distinct from those in sAD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Síndrome de Down , Proteínas tau , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Cerebelo/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Fragmentos de Peptídeos , Proteínas tau/genética , Proteínas tau/metabolismo , Lobo Temporal/metabolismo
14.
Sci Adv ; 9(30): eadg1925, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494443

RESUMO

Lysosome dysfunction arises early and propels Alzheimer's disease (AD). Herein, we show that amyloid precursor protein (APP), linked to early-onset AD in Down syndrome (DS), acts directly via its ß-C-terminal fragment (ßCTF) to disrupt lysosomal vacuolar (H+)-adenosine triphosphatase (v-ATPase) and acidification. In human DS fibroblasts, the phosphorylated 682YENPTY internalization motif of APP-ßCTF binds selectively within a pocket of the v-ATPase V0a1 subunit cytoplasmic domain and competitively inhibits association of the V1 subcomplex of v-ATPase, thereby reducing its activity. Lowering APP-ßCTF Tyr682 phosphorylation restores v-ATPase and lysosome function in DS fibroblasts and in vivo in brains of DS model mice. Notably, lowering APP-ßCTF Tyr682 phosphorylation below normal constitutive levels boosts v-ATPase assembly and activity, suggesting that v-ATPase may also be modulated tonically by phospho-APP-ßCTF. Elevated APP-ßCTF Tyr682 phosphorylation in two mouse AD models similarly disrupts v-ATPase function. These findings offer previously unknown insight into the pathogenic mechanism underlying faulty lysosomes in all forms of AD.


Assuntos
Doença de Alzheimer , Síndrome de Down , Camundongos , Humanos , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Doença de Alzheimer/metabolismo , Adenosina Trifosfatases/metabolismo , Lisossomos/metabolismo , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
15.
Clin Transl Med ; 13(7): e1310, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461266

RESUMO

BACKGROUND: Down syndrome (DS), which is characterized by various malfunctions, is the most common chromosomal disorder. As the DS population continues to grow and most of those with DS live beyond puberty, early-onset health problems have become apparent. However, the cellular landscape and molecular alterations have not been thoroughly studied. METHODS: This study utilized single-cell resolution techniques to examine DS in humans and mice, spanning seven distinct organs. A total of 71 934 mouse and 98 207 human cells were analyzed to uncover the molecular alterations occurring in different cell types and organs related to DS, specifically starting from the fetal stage. Additionally, SA-ß-Gal staining, western blot, and histological study were employed to verify the alterations. RESULTS: In this study, we firstly established the transcriptomic profile of the mammalian DS, deciphering the cellular map and molecular mechanism. Our analysis indicated that DS cells across various types and organs experienced senescence stresses from as early as the fetal stage. This was marked by elevated SA-ß-Gal activity, overexpression of cell cycle inhibitors, augmented inflammatory responses, and a loss of cellular identity. Furthermore, we found evidence of mitochondrial disturbance, an increase in ribosomal protein transcription, and heightened apoptosis in fetal DS cells. This investigation also unearthed a regulatory network driven by an HSA21 gene, which leads to genome-wide expression changes. CONCLUSION: The findings from this study offer significant insights into the molecular alterations that occur in DS, shedding light on the pathological processes underlying this disorder. These results can potentially guide future research and treatment development for DS.


Assuntos
Síndrome de Down , Humanos , Camundongos , Animais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Mamíferos
16.
PLoS Biol ; 21(4): e3002078, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37079499

RESUMO

Down syndrome (DS) is caused by the trisomy of human chromosome 21 (HSA21). A major challenge in DS research is to identify the HSA21 genes that cause specific symptoms. Down syndrome cell adhesion molecule (DSCAM) is encoded by a HSA21 gene. Previous studies have shown that the protein level of the Drosophila homolog of DSCAM determines the size of presynaptic terminals. However, whether the triplication of DSCAM contributes to presynaptic development in DS remains unknown. Here, we show that DSCAM levels regulate GABAergic synapses formed on neocortical pyramidal neurons (PyNs). In the Ts65Dn mouse model for DS, where DSCAM is overexpressed due to DSCAM triplication, GABAergic innervation of PyNs by basket and chandelier interneurons is increased. Genetic normalization of DSCAM expression rescues the excessive GABAergic innervations and the increased inhibition of PyNs. Conversely, loss of DSCAM impairs GABAergic synapse development and function. These findings demonstrate excessive GABAergic innervation and synaptic transmission in the neocortex of DS mouse models and identify DSCAM overexpression as the cause. They also implicate dysregulated DSCAM levels as a potential pathogenic driver in related neurological disorders.


Assuntos
Síndrome de Down , Neocórtex , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Drosophila , Interneurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo
17.
Viruses ; 15(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112973

RESUMO

Individuals with Down syndrome (DS) are more prone to develop severe respiratory tract infections. Although a RSV infection has a high clinical impact and severe outcome in individuals with DS, no vaccine nor effective therapeutics are available. Any research into infection pathophysiology or prophylactic and therapeutic antiviral strategies in the specific context of DS would greatly benefit this patient population, but currently such relevant animal models are lacking. This study aimed to develop and characterize the first mouse model of RSV infection in a DS-specific context. Ts65Dn mice and wild type littermates were inoculated with a bioluminescence imaging-enabled recombinant human RSV to longitudinally track viral replication in host cells throughout infection progression. This resulted in an active infection in the upper airways and lungs with similar viral load in Ts65Dn mice and euploid mice. Flow cytometric analysis of leukocytes in lungs and spleen demonstrated immune alterations with lower CD8+ T cells and B-cells in Ts65Dn mice. Overall, our study presents a novel DS-specific mouse model of hRSV infection and shows that potential in using the Ts65Dn preclinical model to study immune-specific responses of RSV in the context of DS and supports the need for models representing the pathological development.


Assuntos
Síndrome de Down , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Camundongos , Animais , Síndrome de Down/patologia , Pulmão/patologia , Modelos Animais de Doenças , Imagem Multimodal
18.
BMC Ophthalmol ; 23(1): 106, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932345

RESUMO

BACKGROUND: Down syndrome (DS) or Trisomy 21 is the most common chromosomal disease and is characterized by possible heart defects, cognitive impairment and visual disorders. CASE PRESENTATION: We describe for the first time a 17-year-old Caucasian girl suffering from Down syndrome associated with vernal keratoconjunctivitis (VKC), a rare disorder of the anterior segment of the eye, characterized by intense photophobia, redness, watering eyes and itching due to an inflammatory-allergic reaction of the cornea and conjunctiva. On slit-lamp examination, the girl showed conjunctival hyperemia, papillary hypertrophy, giant papillae and corneal leukoma in right eye as a result of a previous corneal ulcer. A successful topical immunosuppressant therapy with cyclosporin 1% was started. CONCLUSION: So far, to our knowledge, this is the first description of VKC in a patient with DS. Finding an inflammatory-allergic disease such as VKC in DS is unusual but it must be taken into account because keratoconus, one of the most frequent eye pathologies in DS, can be secondary to an unrecognized VKC.


Assuntos
Conjuntivite Alérgica , Síndrome de Down , Feminino , Humanos , Adolescente , Conjuntivite Alérgica/complicações , Conjuntivite Alérgica/diagnóstico , Síndrome de Down/complicações , Síndrome de Down/patologia , Túnica Conjuntiva/patologia , Ciclosporina/uso terapêutico , Córnea/patologia , Inflamação
19.
Stem Cell Rev Rep ; 19(4): 1116-1123, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36652145

RESUMO

Down syndrome (DS, or trisomy 21, T21), is the most common genetic cause of intellectual disability. Alterations in the complex process of cerebral cortex development contribute to the neurological deficits in DS, although the underlying molecular and cellular mechanisms are not completely understood. Human cerebral organoids (COs) derived from three-dimensional (3D) cultures of induced pluripotent stem cells (iPSCs) provide a new avenue for gaining a better understanding of DS neuropathology. In this study, we aimed to generate iPSCs from individuals with DS (T21-iPSCs) and euploid controls using urine-derived cells, which can be easily and noninvasively obtained from most individuals, and examine their ability to differentiate into neurons and astrocytes grown in monolayer cultures, as well as into 3D COs. We employed nonintegrating episomal vectors to generate urine-derived iPSC lines, and a simple-to-use system to produce COs with forebrain identity. We observed that both T21 and control urine-derived iPSC lines successfully differentiate into neurons and astrocytes in monolayer, as well as into COs that recapitulate early features of human cortical development, including organization of neural progenitor zones, programmed differentiation of excitatory and inhibitory neurons, and upper-and deep-layer cortical neurons as well as astrocytes. Our findings demonstrate for the first time the suitability of using urine-derived iPSC lines to produce COs for modeling DS.


Assuntos
Cérebro , Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Neurogênese , Organoides , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Cérebro/citologia , Cérebro/crescimento & desenvolvimento , Síndrome de Down/genética , Síndrome de Down/patologia , Síndrome de Down/urina , Técnicas de Cultura de Células em Três Dimensões , Humanos , Neurônios/citologia , Astrócitos/citologia , Linhagem da Célula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA