Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948128

RESUMO

Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, caused by loss-of-function mutations in the SBDS gene, a factor involved in ribosome biogenesis. By analyzing osteoblasts from SDS patients (SDS-OBs), we show that SDS-OBs displayed reduced SBDS gene expression and reduced/undetectable SBDS protein compared to osteoblasts from healthy subjects (H-OBs). SDS-OBs cultured in an osteogenic medium displayed a lower mineralization capacity compared to H-OBs. Whole transcriptome analysis showed significant differences in the gene expression of SDS-OBs vs. H-OBs, particularly in the ossification pathway. SDS-OBs expressed lower levels of the main genes responsible for osteoblastogenesis. Of all downregulated genes, Western blot analyses confirmed lower levels of alkaline phosphatase and collagen type I in SDS-OBs than in H-OBs. Interestingly, SDS-OBs showed higher protein levels of p53, an inhibitor of osteogenesis, compared to H-OBs. Silencing of Tp53 was associated with higher collagen type I and alkaline phosphatase protein levels and an increase in SDS-OB mineralization capacity. In conclusion, our results show that the reduced capacity of SDS-OBs to mineralize is mediated, at least in part, by the high levels of p53 and highlight an important role of SBDS in osteoblast functions.


Assuntos
Calcificação Fisiológica , Osteoblastos/metabolismo , Síndrome de Shwachman-Diamond/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células Cultivadas , Feminino , Humanos , Masculino , Osteoblastos/patologia , Proteínas/genética , Proteínas/metabolismo , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Proteína Supressora de Tumor p53/genética
2.
Nat Commun ; 12(1): 5044, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413298

RESUMO

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes. Here, we identify diverse mosaic somatic genetic events (point mutations, interstitial deletion, reciprocal chromosomal translocation) in SDS hematopoietic cells that reduce eIF6 expression or disrupt its interaction with the 60S subunit, thereby conferring a selective advantage over non-modified cells. SDS-related somatic EIF6 missense mutations that reduce eIF6 dosage or eIF6 binding to the 60S subunit suppress the defects in ribosome assembly and protein synthesis across multiple SBDS-deficient species including yeast, Dictyostelium and Drosophila. Our data suggest that SGR is a universal phenomenon that may influence the clinical evolution of diverse Mendelian disorders and support eIF6 suppressor mimics as a therapeutic strategy in SDS.


Assuntos
Mutação , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/genética , Ribossomos/patologia , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Adolescente , Adulto , Animais , Fenômenos Biológicos , Células Cultivadas , Criança , Pré-Escolar , Dictyostelium , Drosophila , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Células Germinativas , Humanos , Lactente , Simulação de Dinâmica Molecular , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Proteínas/genética , Proteínas/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Síndrome de Shwachman-Diamond/metabolismo , Adulto Jovem
3.
Leukemia ; 35(6): 1751-1762, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33077869

RESUMO

Shwachman-Diamond syndrome (SDS) is a bone marrow failure (BMF) syndrome associated with an increased risk of myelodysplasia and leukemia. The molecular mechanisms of SDS are not fully understood. We report that primitive hematopoietic cells from SDS patients present with a reduced activity of the small RhoGTPase Cdc42 and concomitantly a reduced frequency of HSCs polar for polarity proteins. The level of apolarity of SDS HSCs correlated with the magnitude of HSC depletion in SDS patients. Importantly, exogenously provided Wnt5a or GDF11 that elevates the activity of Cdc42 restored polarity in SDS HSCs and increased the number of HSCs in SDS patient samples in surrogate ex vivo assays. Single cell level RNA-Seq analyses of SDS HSCs and daughter cells demonstrated that SDS HSC treated with GDF11 are transcriptionally more similar to control than to SDS HSCs. Treatment with GDF11 reverted pathways in SDS HSCs associated with rRNA processing and ribosome function, but also viral infection and immune function, p53-dependent DNA damage, spindle checkpoints, and metabolism, further implying a role of these pathways in HSC failure in SDS. Our data suggest that HSC failure in SDS is driven at least in part by low Cdc42 activity in SDS HSCs. Our data thus identify novel rationale approaches to attenuate HSCs failure in SDS.


Assuntos
Células da Medula Óssea/citologia , Polaridade Celular , Células-Tronco Hematopoéticas/citologia , Síndrome de Shwachman-Diamond/prevenção & controle , Proteína cdc42 de Ligação ao GTP/metabolismo , Células da Medula Óssea/metabolismo , Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Fatores de Diferenciação de Crescimento/química , Fatores de Diferenciação de Crescimento/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Prognóstico , Síndrome de Shwachman-Diamond/etiologia , Síndrome de Shwachman-Diamond/metabolismo , Síndrome de Shwachman-Diamond/patologia , Proteína Wnt-5a/química , Proteína Wnt-5a/metabolismo , Proteína cdc42 de Ligação ao GTP/química
4.
Neurosci Lett ; 739: 135449, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33115644

RESUMO

Genetic defects in ribosome biogenesis result in a group of diseases called ribosomopathies. Patients with ribosomopathies manifest multiorgan phenotypes, including neurological impairments. A well-characterized ribosomopathy, Shwachman-Diamond syndrome (SDS), is mainly associated with loss-of-function mutations in the causal gene SBDS. Children with SDS have neurodevelopmental disorders; however, the neurological consequences of SBDS dysfunction remain poorly defined. In the present study, we investigated the phenotype of Drosophila melanogaster following knockdown of CG8549, the Drosophila ortholog of human SBDS, to provide evidence for the neurological consequences of reduction in physiological SBDS functions. The pan-neuron-specific knockdown of CG8549 was associated with locomotive disabilities, mechanically induced seizures, hyperactivity, learning impairments, and anatomical defects in presynaptic terminals. These results provide the first evidence of a direct link between a reduction in physiological SBDS function and neurological impairments.


Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/genética , Transtornos do Neurodesenvolvimento/genética , Síndrome de Shwachman-Diamond/genética , Animais , Comportamento Animal , Drosophila melanogaster , Técnicas de Silenciamento de Genes , Humanos , Masculino , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/psicologia , Neurônios/patologia , Proteínas/genética , Síndrome de Shwachman-Diamond/patologia , Síndrome de Shwachman-Diamond/psicologia
5.
Sci Rep ; 10(1): 14859, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908229

RESUMO

Shwachman-Diamond syndrome (SDS), an autosomal recessive disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, and skeletal abnormalities, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene, which plays a role in ribosome biogenesis. Although the causative genes of congenital disorders frequently involve regulation of embryogenesis, the role of the SBDS gene in early hematopoiesis remains unclear, primarily due to the lack of a suitable experimental model for this syndrome. In this study, we established induced pluripotent stem cells (iPSCs) from patients with SDS (SDS-iPSCs) and analyzed their in vitro hematopoietic and endothelial differentiation potentials. SDS-iPSCs generated hematopoietic and endothelial cells less efficiently than iPSCs derived from healthy donors, principally due to the apoptotic predisposition of KDR+CD34+ common hemoangiogenic progenitors. By contrast, forced expression of SBDS gene in SDS-iPSCs or treatment with a caspase inhibitor reversed the deficiency in hematopoietic and endothelial development, and decreased apoptosis of their progenitors, mainly via p53-independent mechanisms. Patient-derived iPSCs exhibited the hematological abnormalities associated with SDS even at the earliest hematopoietic stages. These findings will enable us to dissect the pathogenesis of multiple disorders associated with ribosomal dysfunction.


Assuntos
Diferenciação Celular , Células Endoteliais , Hematopoese , Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Síndrome de Shwachman-Diamond , Apoptose/genética , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Japão , Masculino , Mutação , Proteínas/genética , Síndrome de Shwachman-Diamond/metabolismo , Síndrome de Shwachman-Diamond/patologia
6.
Am J Med Genet A ; 182(9): 2010-2020, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32657013

RESUMO

Shwachman-Diamond syndrome (SDS) is a rare multisystem ribosomal biogenesis disorder characterized by exocrine pancreatic insufficiency, hematologic abnormalities and bony abnormalities. About 90% of patients have biallelic mutations in SBDS gene. Three additional genes-EFL1, DNAJC21 and SRP54 have been reported in association with a SDS phenotype. However, the cause remains unknown for ~10% of patients. Herein, we report a 6-year-old Chinese boy, who presented in the neonatal period with pancytopenia, liver transaminitis with hepatosplenomegaly and developmental delay, and subsequently developed pancreatic insufficiency complicated by malabsorption and poor growth. Exome sequencing identified a novel de novo heterozygous variant in EIF6 (c.182G>T, p.Arg61Leu). EIF6 protein inhibits ribosomal maturation and is removed in the late steps of ribosomal maturation by SBDS and EFL1 protein. Given the interaction of EIF6 with SBDS and EFL1, we postulate heterozygous variants in EIF6 as a novel cause of Shwachman-Diamond-like phenotype. We compared the phenotype of our patient with those in patients with mutation in SBDS, EFL1, DNAJC21, and SRP54 genes to support this association. Identification of more cases of this novel phenotype would strengthen the association with the genetic etiology.


Assuntos
Fatores de Iniciação em Eucariotos/genética , Predisposição Genética para Doença , Síndrome de Shwachman-Diamond/genética , Criança , Heterozigoto , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fenótipo , Proteínas/genética , Síndrome de Shwachman-Diamond/patologia , Sequenciamento do Exoma
7.
Am J Med Genet A ; 182(7): 1754-1760, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293785

RESUMO

Shwachman-Diamond syndrome (SDS) is an autosomal recessive multisystem disorder characterized by exocrine pancreatic dysfunction, bone marrow failure, and leukemia predisposition. Approximately 90% of cases are due to biallelic mutations in the Shwachman-Bodian-Diamond (SBDS) gene. Additional phenotypic features variably associated with SDS include skeletal, neurologic, hepatic, cardiac, endocrine, and dental abnormalities. We report five subjects with SDS who developed a range of inflammatory manifestations. Three patients developed inflammatory eye conditions. Single cases of juvenile idiopathic arthritis, chronic recurrent multifocal osteomyelitis, and scleroderma were also noted. Clinical presentation and treatment responses are described. Proteomic analysis revealed increased inflammatory signatures in SDS subjects as compared to controls. Treatment of inflammatory manifestations in patients with SDS may be complicated by potential myelosuppressive toxicities of anti-rheumatic medications. Further research is needed to better understand the potential link between inflammatory disorders and SDS to inform effective treatment strategies.


Assuntos
Doenças Autoimunes/genética , Inflamação/genética , Proteínas/genética , Síndrome de Shwachman-Diamond/genética , Adolescente , Adulto , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/patologia , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Criança , Pré-Escolar , Sistema Endócrino/patologia , Feminino , Humanos , Inflamação/diagnóstico , Inflamação/patologia , Lipomatose/diagnóstico , Lipomatose/genética , Lipomatose/patologia , Masculino , Mutação/genética , Fenótipo , Proteômica , Síndrome de Shwachman-Diamond/diagnóstico , Síndrome de Shwachman-Diamond/patologia , Adulto Jovem
8.
Lancet Haematol ; 7(3): e238-e246, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31879230

RESUMO

BACKGROUND: Data to inform surveillance and treatment for leukaemia predisposition syndromes are scarce and recommendations are largely based on expert opinion. This study aimed to investigate the clinical features and outcomes of patients with myelodysplastic syndrome or acute myeloid leukaemia and Shwachman-Diamond syndrome, an inherited bone marrow failure disorder with high risk of developing myeloid malignancies. METHODS: We did a multicentre, retrospective, cohort study in collaboration with the North American Shwachman-Diamond Syndrome Registry. We reviewed patient medical records from 17 centres in the USA and Canada. Patients with a genetic (biallelic mutations in the SBDS gene) or clinical diagnosis (cytopenias and pancreatic dysfunction) of Shwachman-Diamond syndrome who developed myelodysplastic syndrome or acute myeloid leukaemia were eligible without additional restriction. Medical records were reviewed between March 1, 2001, and Oct 5, 2017. Masked central review of bone marrow pathology was done if available to confirm leukaemia or myelodysplastic syndrome diagnosis. We describe the clinical features and overall survival of these patients. FINDINGS: We initially identified 37 patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia. 27 patients had samples available for central pathology review and were reclassified accordingly (central diagnosis concurred with local in 15 [56%] cases), 10 had no samples available and were classified based on the local review data, and 1 patient was excluded at this stage as not eligible. 36 patients were included in the analysis, of whom 10 (28%) initially presented with acute myeloid leukaemia and 26 (72%) initially presented with myelodysplastic syndrome. With a median follow-up of 4·9 years (IQR 3·9-8·4), median overall survival for patients with myelodysplastic syndrome was 7·7 years (95% CI 0·8-not reached) and 0·99 years (95% CI 0·2-2·4) for patients with acute myeloid leukaemia. Overall survival at 3 years was 11% (95% CI 1-39) for patients with leukaemia and 51% (29-68) for patients with myelodysplastic syndrome. Management and surveillance were variable. 18 (69%) of 26 patients with myelodysplastic syndrome received upfront therapy (14 haematopoietic stem cell transplantation and 4 chemotherapy), 4 (15%) patients received no treatment, 2 (8%) had unavailable data, and 2 (8%) progressed to acute myeloid leukaemia before receiving treatment. 12 patients received treatment for acute myeloid leukaemia-including the two patients initially diagnosed with myelodysplastic who progressed- two (16%) received HSCT as initial therapy and ten (83%) received chemotherapy with intent to proceed with HSCT. 33 (92%) of 36 patients (eight of ten with leukaemia and 25 of 26 with myelodysplastic syndrome) were known to have Shwachman-Diamond syndrome before development of a myeloid malignancy and could have been monitored with bone marrow surveillance. Bone marrow surveillance before myeloid malignancy diagnosis was done in three (33%) of nine patients with leukaemia for whom surveillance status was confirmed and 11 (46%) of 24 patients with myelodysplastic syndrome. Patients monitored had a 3-year overall survival of 62% (95% CI 32-82; n=14) compared with 28% (95% CI 10-50; n=19; p=0·13) without surveillance. Six (40%) of 15 patients with available longitudinal data developed myelodysplastic syndrome in the setting of stable blood counts. INTERPRETATION: Our results suggest that prognosis is poor for patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia owing to both therapy-resistant disease and treatment-related toxicities. Improved surveillance algorithms and risk stratification tools, studies of clonal evolution, and prospective trials are needed to inform effective prevention and treatment strategies for leukaemia predisposition in patients with Shwachman-Diamond syndrome. FUNDING: National Institute of Health.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/mortalidade , Leucemia Mieloide Aguda/mortalidade , Síndromes Mielodisplásicas/mortalidade , Síndrome de Shwachman-Diamond/mortalidade , Adolescente , Adulto , Criança , Pré-Escolar , Terapia Combinada , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/terapia , Prognóstico , Estudos Retrospectivos , Síndrome de Shwachman-Diamond/patologia , Síndrome de Shwachman-Diamond/terapia , Taxa de Sobrevida , Adulto Jovem
9.
JCI Insight ; 52019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31039138

RESUMO

Monosomy 7 or deletion of 7q (del(7q)) are common clonal cytogenetic abnormalities associated with high grade myelodysplastic syndrome (MDS) arising in inherited and acquired bone marrow failure. Current non-transplant approaches to treat marrow failure may be complicated by stimulation of clonal outgrowth. To study the biological consequences of del(7q) within the context of a failing marrow, we generated induced pluripotent stem cells (iPSCs) derived from patients with Shwachman Diamond Syndrome (SDS), a bone marrow failure disorder with MDS predisposition, and genomically engineered a 7q deletion. The TGFß pathway was the top differentially regulated pathway in transcriptomic analysis of SDS versus SDSdel(7q) iPSCs. SMAD2 phosphorylation was increased in SDS relative to wild type cells consistent with hyperactivation of the TGFbeta pathway in SDS. Phospho-SMAD2 levels were reduced following 7q deletion in SDS cells and increased upon restoration of 7q diploidy. Inhibition of the TGFbeta pathway rescued hematopoiesis in SDS-iPSCs and in bone marrow hematopoietic cells from SDS patients while it had no impact on the SDSdel(7q) cells. These results identified a potential targetable vulnerability to improve hematopoiesis in an MDS-predisposition syndrome, and highlight the importance of the germline context of somatic alterations to inform precision medicine approaches to therapy.


Assuntos
Medula Óssea/patologia , Síndromes Mielodisplásicas/prevenção & controle , Medicina de Precisão/métodos , Síndrome de Shwachman-Diamond/terapia , Medula Óssea/efeitos dos fármacos , Engenharia Celular , Deleção Cromossômica , Cromossomos Humanos Par 7/genética , Células HEK293 , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Cariotipagem , Síndromes Mielodisplásicas/genética , Fosforilação/genética , RNA-Seq , Síndrome de Shwachman-Diamond/diagnóstico , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
10.
Curr Opin Hematol ; 26(1): 34-40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431463

RESUMO

PURPOSE OF REVIEW: The development of a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) in patients with congenital neutropenia is now the major cause of mortality. Treatment options are limited and there are no effective prevention strategies. This review focuses on mechanisms of leukemic transformation in severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome (SDS), the two most common types of congenital neutropenia. RECENT FINDINGS: AML/MDS that develops in the setting of congenital neutropenia has distinct molecular features. Clonal hematopoiesis because of TP53 mutations is seen in nearly 50% of patients with SDS, but is not seen in patients with SCN. Accordingly, there is a very high frequency of TP53 mutations in AML/MDS arising in the setting of SDS but not SCN. The rate of mutation accumulation in hematopoietic stem cells (HSCs) from patients with congenital neutropenia is not increased. SUMMARY: Both HSC cell-intrinsic and noncell-intrinsic changes contribute to the development of clonal hematopoiesis in congenital neutropenia and likely accounts for the high rate of leukemic transformation. In SCN, the persistently high levels of granulocyte colony-stimulating factor drive expansion of HSCs carrying truncation mutations of CSF3R. In SDS, impaired ribosome biogenesis induces p53-mediated growth inhibition and drives expansion of HSCs carrying TP53 mutations.


Assuntos
Transformação Celular Neoplásica , Síndrome Congênita de Insuficiência da Medula Óssea , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Neutropenia/congênito , Síndrome de Shwachman-Diamond , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Mutação , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Neutropenia/complicações , Neutropenia/genética , Neutropenia/metabolismo , Neutropenia/patologia , Receptores de Fator Estimulador de Colônias/genética , Síndrome de Shwachman-Diamond/complicações , Síndrome de Shwachman-Diamond/genética , Síndrome de Shwachman-Diamond/metabolismo , Síndrome de Shwachman-Diamond/patologia , Proteína Supressora de Tumor p53/genética
11.
Br J Haematol ; 184(6): 974-981, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30585299

RESUMO

In Shwachman-Diamond syndrome (SDS), deletion of the long arm of chromosome 20, del(20)(q), often acquired in bone marrow (BM), may imply a lower risk of developing myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), due to the loss of the EIF6 gene. The genes L3MBTL1 and SGK2, also on chromosome 20, are in a cluster of imprinted genes, and their loss implies dysregulation of BM function. We report here the results of array comparative genomic hybridization (a-CGH) performed on BM DNA of six patients which confirmed the consistent loss of EIF6 gene. Interestingly, array single nucleotide polymorphisms (SNPs) showed copy neutral loss of heterozygosity for EIF6 region in cases without del(20)(q). No preferential parental origin of the deleted chromosome 20 was detected by microsatellite analysis in six SDS patients. Our patients showed a very mild haematological condition, and none evolved into BM aplasia or MDS/AML. We extend the benign prognostic significance of del(20)(q) and loss of EIF6 to the haematological features of these patients, consistently characterized by mild hypoplastic BM, no or mild neutropenia, anaemia and thrombocytopenia. Some odd results obtained in microsatellite and SNP-array analysis demonstrate a peculiar genomic instability, in an attempt to improve BM function through the acquisition of the del(20)(q).


Assuntos
Cromossomos Humanos Par 20/genética , Instabilidade Genômica/genética , Síndrome de Shwachman-Diamond/genética , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Prognóstico , Síndrome de Shwachman-Diamond/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA