Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 567
Filtrar
1.
Neuropharmacology ; 260: 110116, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39151654

RESUMO

Congenital Myasthenic Syndromes (CMS) are a set of genetic diseases that affect the neuromuscular transmission causing muscular weakness. The standard pharmacological treatment aims at ameliorating the myasthenic symptom by acetylcholinesterase inhibitors. Most patients respond well in the short and medium term, however, over time the beneficial effects rapidly fade, and the efficacy of the treatment diminishes. Increasing evidence shows that ß2-adrenergic agonists can be a suitable choice for the treatment of neuromuscular disorders, including CMS, as they promote beneficial effects in the neuromuscular system. The exact mechanism on which they rely is not completely understood, although patients and animal models respond well to the treatment, especially over extended periods. Here, we report the use of the long-lasting specific ß2-adrenergic agonist formoterol in a myasthenic mouse model (mnVAChT-KD), featuring deletion of VAChT (Vesicular Acetylcholine Transporter) specifically in the α-motoneurons. Our findings demonstrate that formoterol treatment (300 µg/kg/day; sc) for 30 days increased the neuromuscular junction area, induced skeletal muscle hypertrophy and altered fibre type composition in myasthenic mice. Interestingly, ß2-adrenergic agonists have shown efficacy even in the absence of ACh (acetylcholine). Our data provide important evidence supporting the potential of ß2-adrenergic agonists in treating neuromuscular disorders of pre-synaptic origin and characterized by disruptions in nerve-muscle communication, through a direct and beneficial action within the motor unit.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2 , Modelos Animais de Doenças , Fumarato de Formoterol , Síndromes Miastênicas Congênitas , Junção Neuromuscular , Proteínas Vesiculares de Transporte de Acetilcolina , Animais , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Camundongos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Camundongos Endogâmicos C57BL , Masculino
2.
BMC Med Genomics ; 17(1): 207, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135055

RESUMO

BACKGROUND: Congenital Myasthenic Syndromes (CMS) are rare genetic diseases, which share as a common denominator muscle fatigability due to failure of neuromuscular transmission. A distinctive clinical feature of presynaptic CMS variants caused by defects of the synthesis of acetylcholine is the association with life-threatening episodes of apnea. One of these variants is caused by mutations in the SLC5A7 gene, which encodes the sodium-dependent HC-3 high-affinity choline transporter 1 (CHT1). To our knowledge there are no published cases of this CMS type in Latin America. CASE PRESENTATION: We present two cases of CHT1-CMS. Both patients were males presenting with repeated episodes of apnea, hypotonia, weakness, ptosis, mild ophthalmoparesis, and bulbar deficit. The first case also presented one isolated seizure, while the second case showed global developmental delay. Both cases, exhibited incomplete improvement with treatment with pyridostigmine. CONCLUSIONS: This report emphasizes the broad incidence of CMS with episodic apnea caused by mutations in the SLC5A7 gene and the frequent association of this condition with serious manifestations of central nervous system involvement.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Masculino , Mutação , Simportadores/genética , Criança , Pré-Escolar
3.
Handb Clin Neurol ; 203: 69-88, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39174255

RESUMO

The neuromuscular junction is a prototypic synapse that has been extensively studied and provides a model for smaller and less accessible central synapses. Central to transmission at the neuromuscular synapse is the muscle acetylcholine receptor cation channel. Studies of the genetic disorders affecting the neuromuscular junction, termed congenital myasthenic syndromes, have illustrated how impaired signal transmission may be caused by a variety of mutations both within the ion channel itself and by the context of the ion channel within the synapse. Thus, multiple pathogenic mutations are also identified in proteins affecting the clustering, location, and density of the receptor within the overall synaptic structure. Disease severity ranges from death in childhood to mild disability throughout life. In addition, in utero, fetal akinesia due to impaired neuromuscular transmission may cause developmental abnormalities. Early studies identified mutations in the genes encoding the acetylcholine receptor subunits that impair ion channel gating or reduce the number of endplate receptors or a combination of the two, giving rise to "slow channel," "fast channel," or deficiency syndromes. Subsequently, it became clear that myasthenic syndromes also stem from mutations in proteins involved in neurotransmitter release, the formation and maintenance of the neuromuscular synapse, or glycosylation. This chapter describes the patient phenotypes, the diverse range of molecular mechanisms for synaptic dysfunction, and the corresponding therapeutic strategies, including drug combinations, that can be tailored to the many subtypes.


Assuntos
Síndromes Miastênicas Congênitas , Junção Neuromuscular , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/fisiopatologia , Mutação/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/genética , Animais
4.
Curr Opin Neurol ; 37(5): 493-501, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39051439

RESUMO

PURPOSE OF REVIEW: Congenital myasthenia syndromes (CMS) are treatable, inherited disorders affecting neuromuscular transmission. We highlight that the involvement of an increasing number of proteins is making the understanding of the disease mechanisms and potential treatments progressively more complex. RECENT FINDINGS: Although early studies identified mutations of proteins directly involved in synaptic transmission at the neuromuscular junction, recently, next-generation sequencing has facilitated the identification of many novel mutations in genes that encode proteins that have a far wider expression profile, some even ubiquitously expressed, but whose defective function leads to impaired neuromuscular transmission. Unsurprisingly, mutations in these genes often causes a wider phenotypic disease spectrum where defective neuromuscular transmission forms only one component. This has implications for the management of CMS patients. SUMMARY: Given the widening nonneuromuscular junction phenotypes in the newly identified forms of CMS, new therapies need to include disease-modifying approaches that address not only neuromuscular weakness but also the multisystem involvement. Whilst the current treatments for CMS are highly effective for many subtypes there remains, in a proportion of CMS patients, an unmet need for more efficacious therapies.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/terapia , Junção Neuromuscular/genética , Junção Neuromuscular/fisiopatologia , Mutação/genética , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
5.
J Neuromuscul Dis ; 11(5): 1011-1020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995797

RESUMO

Background: Congenital myasthenic syndromes (CMS) are a group of rare but often treatable inherited disorders of neuromuscular transmission characterized by fatigable skeletal muscle weakness. In this paper we present the largest phenotypic analysis to date of a cohort of patients carrying the pathogenic variant c.1327delG in the CHRNE gene, leading to CHRNE-CMS. Objective: This study aims to identify the phenotypic variability in CMS associated with c.1327delG mutation in the CHRNE gene. Methods: Disease specific symptoms were assessed using specific standardized tests for autoimmune myasthenia (Quantitative Myasthenia Gravis score) as well as patient-reported scales for symptom severity. Evaluated clinical manifestations included ocular symptoms (ophthalmoparesis and ptosis), bulbar weakness, axial muscle weakness, proximal and distal muscle weakness, and respiratory function. Patients were allocated into three groups according to clinical impression of disease severity: mild, moderate, and severe. Results: We studied 91 Bulgarian Roma patients, carrying the same causative homozygous CHRNE c.1327delG mutation. Bulbar weakness was present in patients throughout all levels of severity of CHRNE-CMS in this study. However, difficulties in eating and swallowing are more prominent characteristics in the moderate and severe clinical phenotypes. Diplopia and ptosis resulting from fatigue of the extraocular muscles were permanent features regardless of disease severity or age. Levels of axial, proximal and distal muscle weakness were variable between disease groups. The statistical analysis showed significant differences between the patients in the three groups, emphasizing a possible variation in symptom manifestation in the evaluated patient population despite the disease originating from the same genetic mutation. Impairment of respiratory function was more prominent in severely affected patients, which might result from loss of compensatory muscle function in those individuals. Conclusion: Results from our study indicate significant phenotypic heterogeneity leading to mild, moderate, or severe clinical manifestation in CHRNE-CMS, despite the genotypic homogeneity.


Assuntos
Mutação da Fase de Leitura , Síndromes Miastênicas Congênitas , Fenótipo , Receptores Nicotínicos , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Masculino , Feminino , Adulto , Adolescente , Adulto Jovem , Criança , Receptores Nicotínicos/genética , Pessoa de Meia-Idade , Pré-Escolar , Índice de Gravidade de Doença , Bulgária , Debilidade Muscular/genética , Debilidade Muscular/fisiopatologia
6.
Pediatr Neurol ; 158: 57-65, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964204

RESUMO

BACKGROUND: Congenital myasthenic syndromes (CMS) are a group of genetic disorders characterized by impaired neuromuscular transmission. CMS typically present at a young age with fatigable muscle weakness, often with an abnormal response after repetitive nerve stimulation (RNS). Pharmacologic treatment can improve symptoms, depending on the underlying defect. Prevalence is likely underestimated. This study reports on patients with CMS followed in Belgium in 2022. METHODS: Data were gathered retrospectively from the medical charts. Only likely pathogenic and pathogenic variants were included in the analysis. RESULTS: We identified 37 patients, resulting in an estimated prevalence of 3.19 per 1,000,000. The patients harbored pathogenic variants in CHRNE, RAPSN, DOK7, PREPL, CHRNB1, CHRNG, COLQ, MUSK, CHRND, GFPT1, and GMPPB. CHRNE was the most commonly affected gene. Most patients showed disease onset at birth, during infancy, or during childhood. Symptom onset was at adult age in seven patients, caused by variants in CHRNE, DOK7, MUSK, CHRND, and GMPPB. Severity and distribution of weakness varied, as did the presence of respiratory involvement, feeding problems, and extraneuromuscular manifestations. RNS was performed in 23 patients of whom 18 demonstrated a pathologic decrement. Most treatment responses were predictable based on the genotype. CONCLUSIONS: This is the first pooled characterization of patients with CMS in Belgium. We broaden the phenotypical spectrum of pathogenic variants in CHRNE with adult-onset CMS. Systematically documenting larger cohorts of patients with CMS can aid in better clinical characterization and earlier recognition of this rare disease. We emphasize the importance of establishing a molecular genetic diagnosis to tailor treatment choices.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Síndromes Miastênicas Congênitas/diagnóstico , Bélgica/epidemiologia , Masculino , Feminino , Adulto , Criança , Estudos Retrospectivos , Adolescente , Adulto Jovem , Pré-Escolar , Lactente , Pessoa de Meia-Idade , Prevalência
7.
JCI Insight ; 9(17)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39078710

RESUMO

Congenital myasthenic syndrome-22 (CMS22, OMIM 616224) is a rare genetic disorder caused by deleterious genetic variation in the prolyl endopeptidase-like (PREPL) gene. Previous reports have described patients with deletions and nonsense variants in PREPL, but nothing is known about the effect of missense variants in the pathology of CMS22. In this study, we have functionally characterized missense variants in PREPL from 3 patients with CMS22, all with hallmark phenotypes. Biochemical evaluation revealed that these missense variants do not impair hydrolase activity, thereby challenging the conventional diagnostic criteria and disease mechanism. Structural analysis showed that the variants affect regions most likely involved in intraprotein or protein-protein interactions. Indeed, binding to a selected group of known interactors was differentially reduced for the 3 variants. The importance of nonhydrolytic functions of PREPL was investigated in catalytically inactive PREPL p.Ser559Ala cell lines, which showed that hydrolytic activity of PREPL is needed for normal mitochondrial function but not for regulating AP1-mediated transport in the transgolgi network. In conclusion, these studies showed that CMS22 can be caused not only by deletion and truncation of PREPL but also by missense variants that do not necessarily result in a loss of hydrolytic activity of PREPL.


Assuntos
Mutação de Sentido Incorreto , Síndromes Miastênicas Congênitas , Prolil Oligopeptidases , Humanos , Prolil Oligopeptidases/metabolismo , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Masculino , Feminino , Fenótipo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/genética
9.
BMC Neurol ; 24(1): 206, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886633

RESUMO

BACKGROUND: Mutations in the SLC5A7 gene cause congenital myasthenia, a rare genetic disorder. Mutation points in the SLC5A7 gene differ among individuals and encompass various genetic variations; however, exon deletion variants have yet to be reported in related cases. This study aims to explore the clinical phenotype and genetic traits of a patient with congenital myasthenic syndrome due to SLC5A7 gene variation and those of their family members. CASE PRESENTATION: We describe a case of a Chinese male with congenital myasthenic syndrome presenting fluctuating limb weakness. Genetic testing revealed a heterozygous deletion mutation spanning exons 1-9 in the SLC5A7 gene. QPCR confirmed a deletion in exon 9 of the SLC5A7 gene in the patient's mother and brother. Clinical symptoms of myasthenia improved following treatment with pyridostigmine. CONCLUSION: Exons 1, 5, and 9 of the SLC5A7 gene encode the choline transporter's transmembrane region. Mutations in these exons can impact the stability and plasma membrane levels of the choline transporter. Thus, a heterozygous deletion in exons 1-9 of the SLC5A7 gene could be the pathogenic cause for this patient. In patients exhibiting fluctuating weakness, positive RNS, and seronegativity for myasthenia gravis antibodies, a detailed family history should be considered, and enhanced genetic testing is recommended to determine the cause.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/diagnóstico , Masculino , Mutação , Linhagem , Adulto , Testes Genéticos/métodos , Feminino , Simportadores/genética
10.
BMC Neurol ; 24(1): 211, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907197

RESUMO

BACKGROUND: Congenital myasthenic syndromes (CMS) are among the most challenging differential diagnoses in the neuromuscular domain, consisting of diverse genotypes and phenotypes. A mutation in the Docking Protein 7 (Dok-7) is a common cause of CMS. DOK7 CMS requires different treatment than other CMS types. Regarding DOK7's special considerations and challenges ahead of neurologists, we describe seven DOK7 patients and evaluate their response to treatment. METHODS: The authors visited these patients in the neuromuscular clinics of Tehran and Kerman Universities of Medical Sciences Hospitals. They diagnosed these patients based on clinical findings and neurophysiological studies, which Whole Exome Sequencing confirmed. For each patient, we tried unique medications and recorded the clinical response. RESULTS: The symptoms started from birth to as late as the age of 33, with the mean age of onset being 12.5. Common symptoms were: Limb-girdle weakness in 6, fluctuating symptoms in 5, ptosis in 4, bifacial weakness in 3, reduced extraocular movement in 3, bulbar symptoms in 2 and dyspnea in 2 3-Hz RNS was decremental in 5 out of 6 patients. Salbutamol was the most effective. c.1124_1127dupTGCC is the most common variant; three patients had this variant. CONCLUSION: We strongly recommend that neurologists consider CMS in patients with these symptoms and a similar familial history. We recommend prescribing salbutamol as the first-choice treatment option for DOK7 patients.


Assuntos
Proteínas Musculares , Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/fisiopatologia , Masculino , Feminino , Proteínas Musculares/genética , Adulto , Adulto Jovem , Adolescente , Criança , Mutação
11.
Pediatr Neurol ; 157: 5-13, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833907

RESUMO

BACKGROUND: Congenital myasthenic syndromes (CMS) are a group of inherited neuromuscular junction (NMJ) disorders arising from gene variants encoding diverse NMJ proteins. Recently, the VAMP1 gene, responsible for encoding the vesicle-associated membrane protein 1 (VAMP1), has been associated with CMS. METHODS: This study presents a characterization of five new individuals with VAMP1-related CMS, providing insights into the phenotype. RESULTS: The individuals with VAMP1-related CMS exhibited early disease onset, presenting symptoms prenatally or during the neonatal period, alongside severe respiratory involvement and feeding difficulties. Generalized weakness at birth was a common feature, and none of the individuals achieved independent walking ability. Notably, all cases exhibited scoliosis. The clinical course remained stable, without typical exacerbations seen in other CMS types. The response to anticholinesterase inhibitors and salbutamol was only partial, but the addition of 3,4-diaminopyridine (3,4-DAP) led to significant and substantial improvements, suggesting therapeutic benefits of 3,4-DAP for managing VAMP1-related CMS symptoms. Noteworthy is the identification of the VAMP1 (NM_014231.5): c.340delA; p.Ile114SerfsTer72 as a founder variant in the Iberian Peninsula and Latin America. CONCLUSIONS: This study contributes valuable insights into VAMP1-related CMS, emphasizing their early onset, arthrogryposis, facial and generalized weakness, respiratory involvement, and feeding difficulties. Furthermore, the potential efficacy of 3,4-DAP as a useful therapeutic option warrants further exploration. The findings have implications for clinical management and genetic counseling in affected individuals. Additional research is necessary to elucidate the long-term outcomes of VAMP1-related CMS.


Assuntos
Amifampridina , Síndromes Miastênicas Congênitas , Fenótipo , Proteína 1 Associada à Membrana da Vesícula , Humanos , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Feminino , Masculino , Amifampridina/farmacologia , Proteína 1 Associada à Membrana da Vesícula/genética , Criança , Adolescente , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/farmacologia , 4-Aminopiridina/uso terapêutico , Pré-Escolar , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Lactente
13.
Neuromuscul Disord ; 39: 30-32, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723581

RESUMO

LAMB2 gene disorders present with different phenotypes. Pierson syndrome (PS) is a common phenotype associated with LAMB2 variants. Neuromuscular phenotype has been reported including hypotonia and developmental delay. However, neuromuscular junction abnormalities represented as congenital myasthenic syndrome (CMS) was reported in one adult patient only. Here, in this paper, we present two pediatric cases with a severe presentation of PS and have CMS so expanding the knowledge of LAMB2 related phenotypes. The first patient had hypotonia and global developmental delay. Targeted genetic testing panel demonstrated homozygous pathogenic variant in the LAMB2 gene (c.5182C>T, pGln1728*) which was reported by Maselli et al. 2009. Repetitive nerve stimulation (RNS) showed a decremental response at low frequency of 3 Hz. On the other hand, the second patient had profound weakness since birth. Tri-Whole exome sequencing showed homozygous pathogenic variant in the LAMB2 gene c.2890C>T, pArg964*. A trial of salbutamol did not improve the symptoms. Both patients passed away from sequala of PS. The spectrum of phenotypic changes associated with LAMB2 mutations is still expanding, and further investigation into the various clinical and morphologic presentations associated with these mutations is important to better identify and manage affected individuals.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , Síndromes Miastênicas Congênitas/diagnóstico , Masculino , Feminino , Anormalidades do Olho/genética , Anormalidades do Olho/complicações , Laminina/genética , Fenótipo , Mutação , Anormalidades Múltiplas/genética , Lactente , Doenças da Junção Neuromuscular/genética , Pré-Escolar , Síndrome Nefrótica , Distúrbios Pupilares
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167175, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38626828

RESUMO

Loss of prolyl endopeptidase-like (PREPL) encoding a serine hydrolase with (thio)esterase activity leads to the recessive metabolic disorder Congenital Myasthenic Syndrome-22 (CMS22). It is characterized by severe neonatal hypotonia, feeding problems, growth retardation, and hyperphagia leading to rapid weight gain later in childhood. The phenotypic similarities with Prader-Willi syndrome (PWS) are striking, suggesting that similar pathways are affected. The aim of this study was to identify changes in the hypothalamic-pituitary axis in mouse models for both disorders and to examine mitochondrial function in skin fibroblasts of patients and knockout cell lines. We have demonstrated that Prepl is downregulated in the brains of neonatal PWS-IC-p/+m mice. In addition, the hypothalamic-pituitary axis is similarly affected in both Prepl-/- and PWS-IC-p/+m mice resulting in defective orexigenic signaling and growth retardation. Furthermore, we demonstrated that mitochondrial function is altered in PREPL knockout HEK293T cells and can be rescued with the supplementation of coenzyme Q10. Finally, PREPL-deficient and PWS patient skin fibroblasts display defective mitochondrial bioenergetics. The mitochondrial dysfunction in PWS fibroblasts can be rescued by overexpression of PREPL. In conclusion, we provide the first molecular parallels between CMS22 and PWS, raising the possibility that PREPL substrates might become therapeutic targets for treating both disorders.


Assuntos
Camundongos Knockout , Síndromes Miastênicas Congênitas , Síndrome de Prader-Willi , Prolil Oligopeptidases , Animais , Humanos , Síndrome de Prader-Willi/metabolismo , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/patologia , Camundongos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/patologia , Células HEK293 , Prolil Oligopeptidases/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/genética , Redes e Vias Metabólicas/genética , Modelos Animais de Doenças , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Masculino , Feminino
16.
HGG Adv ; 5(3): 100288, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38566418

RESUMO

Biallelic loss-of-function variants in the MUSK gene result in two allelic disorders: (1) congenital myasthenic syndrome (CMS; OMIM: 616325), a neuromuscular disorder that has a range of severity from severe neonatal-onset weakness to mild adult-onset weakness, and (2) fetal akinesia deformation sequence (OMIM: 208150), a form of pregnancy loss characterized by severe muscle weakness in the fetus. The MUSK gene codes for muscle-specific kinase (MuSK), a receptor tyrosine kinase involved in the development of the neuromuscular junction. Here, we report a case of neonatal-onset MUSK-related CMS in a patient harboring compound heterozygous deletions in the MUSK gene, including (1) a deletion of exons 2-3 leading to an in-frame MuSK protein lacking the immunoglobulin 1 (Ig1) domain and (2) a deletion of exons 7-11 leading to an out-of-frame, truncated MuSK protein. Individual domains of the MuSK protein have been elucidated structurally; however, a complete MuSK structure generated by machine learning algorithms has clear inaccuracies. We modify a predicted AlphaFold structure and integrate previously reported domain-specific structural data to suggest a MuSK protein that dimerizes in two locations (Ig1 and the transmembrane domain). We analyze known pathogenic variants in MUSK to discover domain-specific genotype-phenotype correlations; variants that lead to a loss of protein expression, disruption of the Ig1 domain, or Dok-7 binding are associated with the most severe phenotypes. A conceptual model is provided to explain the severe phenotypes seen in Ig1 variants and the poor response of our patient to pyridostigmine.


Assuntos
Receptores Proteína Tirosina Quinases , Receptores Colinérgicos , Humanos , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/patologia , Síndromes Miastênicas Congênitas/diagnóstico , Domínios Proteicos/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Receptores Colinérgicos/química , Índice de Gravidade de Doença , Masculino , Feminino , Recém-Nascido
17.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 450-455, 2024 Apr 10.
Artigo em Chinês | MEDLINE | ID: mdl-38565511

RESUMO

OBJECTIVE: To explore the clinical and genetic characteristics of a fetus diagnosed with Congenital myasthenic syndrome type 16 (CMS16). METHODS: A couple who had visited Tianjin Medical University General Hospital in February 2018 due to "adverse outcome of two pregnancies" was selected as the study subject. Clinical data was gathered. Peripheral blood and amniotic fluid samples were collected and subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing. Low-depth whole-genome sequencing was carried out to detect copy number variation (CNV) in the fetus. RESULTS: The couple's first pregnancy had resulted in a miscarriage at 27+5 weeks, when ultrasound had revealed pleural effusion and polyhydramnios in the fetus. Their second pregnancy was terminated at 30+5 weeks due to fetal hand malformations, polyhydramnios and pleural fluid. Both couple had denied family history of genetic conditions. For their third pregnancy, no CNV abnormality was detected, whilst a compound heterozygous variants, including a maternally derived c.3172C>T (p.R1058W) and paternal c.1431delG (p.K477fs*89) in the SCN4A gene were detected. Based on the guidelines from the American College of Medical Genetics and Genomics, the c.3172C>T (p.R1058W) was predicted as a likely pathogenic variant (PM1+PM2_supporting+PP3+PP4), whilst the c.1431delG (p.K477fs*89) was predicted as a pathogenic variant (PVS1+PM2_supporting+PP4). CONCLUSION: The c.3172C>T (p.R1058W) and c.1431delG (p.K477fs*89) compound heterozygous variants of the SCN4A gene probably underlay the CMS16 in the third fetus.


Assuntos
Aborto Espontâneo , Síndromes Miastênicas Congênitas , Poli-Hidrâmnios , Feminino , Humanos , Gravidez , Variações do Número de Cópias de DNA , Mutação , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Canal de Sódio Disparado por Voltagem NAV1.4 , Diagnóstico Pré-Natal
18.
Neuropediatrics ; 55(3): 200-204, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531369

RESUMO

Congenital myasthenic syndrome-25 (CMS-25) is an autosomal recessive neuromuscular disorder caused by a homozygous mutation in VAMP1 gene. To date, only eight types of allelic variants in VAMP1 gene have been reported in 12 cases of CMS-25. Here, we report on an 8-year-old boy with motor developmental delay, axial hypotonia, myopathic face, muscle weakness, strabismus, ptosis, pectus carinatum, kyphoscoliosis, joint contractures, joint laxity, seizures, and recurrent nephrolithiasis. He also had feeding difficulties and recurrent aspiration pneumonia. Brain magnetic resonance imaging at 20 months of age showed left focal cerebellar hypoplasia. Genetic analysis revealed a homozygous missense variant of c.202C > T (p.Arg68Ter) in the VAMP1 gene. Treatment with oral pyridostigmine was started, which resulted in mild improvement in muscle strength. Salbutamol syrup was added a few months later, but no significant improvement was observed. This case report presents novel findings such as focal cerebellar hypoplasia and nephrolithiasis in VAMP1-related CMS-25. Consequently, this case report extends the clinical spectrum. Further studies are needed to expand the genotype-phenotype correlations in VAMP1-related CMS-25.


Assuntos
Síndromes Miastênicas Congênitas , Proteína 1 Associada à Membrana da Vesícula , Humanos , Masculino , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/fisiopatologia , Síndromes Miastênicas Congênitas/diagnóstico , Criança , Proteína 1 Associada à Membrana da Vesícula/genética , Mutação de Sentido Incorreto
20.
Mol Genet Genomic Med ; 12(3): e2409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511267

RESUMO

BACKGROUND: Congenital myasthenic syndrome is a heterogeneous group of inherited neuromuscular transmission disorders. Variants in RAPSN are a common cause of CMS, accounting for approximately 14%-27% of all CMS cases. Whether preimplantation genetic testing for monogenic disease (PGT-M) could be used to prevent the potential birth of CMS-affected children is unclear. METHODS: Application of WES (whole-exome sequencing) for carrier testing and guidance for the PGT-M in the absence of a genetically characterized index patient as well as assisted reproductive technology were employed to prevent the occurrence of birth defects in subsequent pregnancy. The clinical phenotypes of stillborn fetuses were also assessed. RESULTS: The family carried two likely pathogenic variants in RAPSN(NM_005055.5): c.133G>A (p.V45M) and c.280G>A (p.E94K). And the potential birth of CMS-affected child was successfully prevented, allowing the family to have offspring devoid of disease-associated variants and exhibiting a normal phenotype. CONCLUSION: This report constitutes the first documented case of achieving a CMS-free offspring through PGT-M in a CMS-affected family. By broadening the known variant spectrum of RAPSN in the Chinese population, our findings underscore the feasibility and effectiveness of PGT-M for preventing CMS, offering valuable insights for similarly affected families.


Assuntos
Síndromes Miastênicas Congênitas , Criança , Feminino , Gravidez , Humanos , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Testes Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA