Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.052
Filtrar
1.
Arch Microbiol ; 206(6): 270, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767668

RESUMO

Candida tropicalis is a human pathogen and one of the most prevalent non-Candida albicans Candida (NCAC) species causing invasive infections. Azole antifungal resistance in C. tropicalis is also gradually increasing with the increasing incidence of infections. The pathogenic success of C. tropicalis depends on its effective response in the host microenvironment. To become a successful pathogen, cellular metabolism, and physiological status determine the ability of the pathogen to counter diverse stresses inside the host. However, to date, limited knowledge is available on the impact of carbon substrate metabolism on stress adaptation and azole resistance in C. tropicalis. In this study, we determined the impact of glucose, fructose, and sucrose as the sole carbon source on the fluconazole resistance and osmotic (NaCl), oxidative (H2O2) stress adaptation in C. tropicalis clinical isolates. We confirmed that the abundance of carbon substrates influences or increases drug resistance and osmotic and oxidative stress tolerance in C. tropicalis. Additionally, both azole-resistant and susceptible isolates showed similar stress adaptation phenotypes, confirming the equal efficiency of becoming successful pathogens irrespective of drug susceptibility profile. To the best of our knowledge, our study is the first on C. tropicalis to demonstrate the direct relation between carbon substrate metabolism and stress tolerance or drug resistance.


Assuntos
Antifúngicos , Candida tropicalis , Carbono , Farmacorresistência Fúngica , Fluconazol , Testes de Sensibilidade Microbiana , Estresse Oxidativo , Candida tropicalis/efeitos dos fármacos , Candida tropicalis/fisiologia , Antifúngicos/farmacologia , Humanos , Fluconazol/farmacologia , Carbono/metabolismo , Candidíase/microbiologia , Pressão Osmótica , Glucose/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Frutose/metabolismo , Frutose/farmacologia , Estresse Fisiológico
2.
Funct Plant Biol ; 512024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38739736

RESUMO

The forage quality of alfalfa (Medicago sativa ) stems is greater than the leaves. Sucrose hydrolysis provides energy for stem development, with starch being enzymatically converted into sucrose to maintain energy homeostasis. To understand the physiological and molecular networks controlling stem development, morphological characteristics and transcriptome profiles in the stems of two alfalfa cultivars (Zhungeer and WL168) were investigated. Based on transcriptome data, we analysed starch and sugar contents, and enzyme activity related to starch-sugar interconversion. Zhungeer stems were shorter and sturdier than WL168, resulting in significantly higher mechanical strength. Transcriptome analysis showed that starch and sucrose metabolism were significant enriched in the differentially expressed genes of stems development in both cultivars. Genes encoding INV , bglX , HK , TPS and glgC downregulated with the development of stems, while the gene encoding was AMY upregulated. Weighted gene co-expression network analysis revealed that the gene encoding glgC was pivotal in determining the variations in starch and sucrose contents between the two cultivars. Soluble carbohydrate, sucrose, and starch content of WL168 were higher than Zhungeer. Enzyme activities related to sucrose synthesis and hydrolysis (INV, bglX, HK, TPS) showed a downward trend. The change trend of enzyme activity was consistent with gene expression. WL168 stems had higher carbohydrate content than Zhungeer, which accounted for more rapid growth and taller plants. WL168 formed hollow stems were formed during rapid growth, which may be related to the redistribution of carbohydrates in the pith tissue. These results indicated that starch and sucrose metabolism play important roles in the stem development in alfalfa.


Assuntos
Medicago sativa , Caules de Planta , Amido , Sacarose , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crescimento & desenvolvimento , Amido/metabolismo , Caules de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Metabolismo dos Carboidratos/genética , Perfilação da Expressão Gênica
3.
J Plant Physiol ; 297: 154259, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705079

RESUMO

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Assuntos
Arabidopsis , Ácidos Indolacéticos , Fenazinas , Raízes de Plantas , Pseudomonas chlororaphis , Sacarose , Sacarose/metabolismo , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Pseudomonas chlororaphis/metabolismo , Fenazinas/metabolismo , Ácidos Indolacéticos/metabolismo
4.
Plant Sci ; 344: 112108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705480

RESUMO

Ureides, the degraded products of purine catabolism in Arabidopsis, have been shown to act as antioxidant and nitrogen sources. Herein we elucidate purine degraded metabolites as a carbon source using the Arabidopsis Atxdh1, Ataln, and Ataah knockout (KO) mutants vis-à-vis wild-type (WT) plants. Plants were grown under short-day conditions on agar plates containing half-strength MS medium with or without 1% sucrose. Notably, the absence of sucrose led to diminished biomass accumulation in both shoot and root tissues of the Atxdh1, Ataln, and Ataah mutants, while no such effect was observed in WT plants. Moreover, the application of sucrose resulted in a reduction of purine degradation metabolite levels, specifically xanthine and allantoin, predominantly within the roots of WT plants. Remarkably, an increase in proteins associated with the purine degradation pathway was observed in WT plants in the presence of sucrose. Lower glyoxylate levels in the roots but not in the shoot of the Atxdh1 mutant in comparison to WT, were observed under sucrose limitation, and improved by sucrose application in root, indicating that purine degradation provided glyoxylate in the root. Furthermore, the deficit of purine-degraded metabolites in the roots of mutants subjected to carbon starvation was partially mitigated through allantoin application. Collectively, these findings signify that under conditions of sucrose limitation and short-day growth, purines are primarily remobilized within the root system to augment the availability of ureides, serving as an additional carbon (as well as nitrogen) source to support plant growth.


Assuntos
Arabidopsis , Carbono , Raízes de Plantas , Sacarose , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Carbono/metabolismo , Sacarose/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Alantoína/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Purinas/metabolismo , Ureia/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Glioxilatos/metabolismo
5.
Sci Rep ; 14(1): 11285, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760389

RESUMO

Feeding behaviors are determined by two main factors. One is the internal state, such as hunger or previous experiences; the other is external factors, such as sensory stimulation. During starvation, animals must balance food-seeking behavior with energy conservation. The fruit fly, Drosophila melanogaster, serves as a useful model for studying food selectivity and various behaviors related to food intake. However, few studies have directly connected food selectivity with other behaviors, such as locomotor activity and sleep. In this study, we report that flies exhibited a preference for specific positions and spent more time in the proximity of sweet sugars, such as sucrose and sucralose, but not non-sweet and nutritious sugars like xylitol and sorbitol. On the other hand, prolonged exposure to sorbitol increased the staying time of flies in the proximity of sorbitol. Additionally, after starvation, flies immediately exhibited a position preference in the proximity of sorbitol. These findings suggest that flies prefer the proximity of sweet food, and starvation alters their preference for nutritious food, which may be beneficial for their survival.


Assuntos
Drosophila melanogaster , Comportamento Alimentar , Açúcares , Animais , Drosophila melanogaster/fisiologia , Comportamento Alimentar/fisiologia , Inanição , Preferências Alimentares/fisiologia , Sorbitol/farmacologia , Sacarose/metabolismo
6.
Biotechnol J ; 19(5): e2400178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719574

RESUMO

Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose into isomaltulose, a functional sugar extensively used in the food industry. However, the lack of safe and efficient heterologous expression systems for SIase has constrained its production and application. In this study, an engineered Bacillus subtilis strain for antibiotic-free SIase production was developed via a food-grade expression system. First, the B. subtilis strain TEA was modified through the CRISPR/Cas9 system, resulting in a mutant strain TEA4, which exhibited enhanced capabilities for recombinant protein expression. For efficient and safe production of SIase, different constitutive and inducible promoters were evaluated. The maltose-inducible promoter Poglv was found to have an extracellular SIase activity of 21.7 U mL-1 in engineered strain TEA4. Subsequent optimization of the culture medium further increased SIase activity to 26.4 U mL-1 during shake flask cultivation. Eventually, using the crude enzyme solution of the engineered strain in biotransformation reactions resulted in a high yield of isomaltulose under high concentrations sucrose, achieving a maximum yield of 83.1%. These findings demonstrated an engineered B. subtilis strain for antibiotic-free SIase production, paving the way for its scale-up industrial production and application.


Assuntos
Bacillus subtilis , Glucosiltransferases , Isomaltose , Proteínas Recombinantes , Sacarose , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Isomaltose/metabolismo , Isomaltose/análogos & derivados , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Sacarose/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas/genética , Sistemas CRISPR-Cas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
PLoS One ; 19(5): e0298239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38691547

RESUMO

The sweet taste receptor, TAS1R2-TAS1R3, is expressed in taste bud cells, where it conveys sweetness, and also in intestinal enteroendocrine cells, where it may facilitate glucose absorption and assimilation. In the present study, our objective was to determine whether TAS1R2-TAS1R3 influences glucose metabolism bidirectionally via hyperactivation with 5 mM sucralose (n = 12) and inhibition with 2 mM sodium lactisole (n = 10) in mixture with 75 g glucose loads during oral glucose tolerance tests (OGTTs) in healthy humans. Plasma glucose, insulin, and glucagon were measured before, during, and after OGTTs up to 120 minutes post-prandially. We also assessed individual participants' sweet taste responses to sucralose and their sensitivities to lactisole sweetness inhibition. The addition of sucralose to glucose elevated plasma insulin responses to the OGTT (F(1, 11) = 4.55, p = 0.056). Sucralose sweetness ratings were correlated with early increases in plasma glucose (R2 = 0.41, p<0.05), as well as increases in plasma insulin (R2 = 0.38, p<0.05) when sucralose was added to the OGTT (15 minute AUC). Sensitivity to lactisole sweetness inhibition was correlated with decreased plasma glucose (R2 = 0.84, p<0.01) when lactisole was added to the OGTT over the whole test (120 minute AUC). In summary, stimulation and inhibition of the TAS1R2-TAS1R3 receptor demonstrates that TAS1R2-TAS1R3 helps regulate glucose metabolism in humans and may have translational implications for metabolic disease risk.


Assuntos
Derivados de Benzeno , Glicemia , Teste de Tolerância a Glucose , Insulina , Receptores Acoplados a Proteínas G , Sacarose , Sacarose/análogos & derivados , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Masculino , Adulto , Feminino , Sacarose/metabolismo , Glicemia/metabolismo , Insulina/metabolismo , Insulina/sangue , Paladar/fisiologia , Adulto Jovem , Tiazóis/farmacologia , Glucose/metabolismo , Glucagon/metabolismo , Glucagon/sangue , Edulcorantes/farmacologia
8.
BMC Plant Biol ; 24(1): 256, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594627

RESUMO

BACKGROUND: Climate change has led to severe cold events, adversely impacting global crop production. Eggplant (Solanum melongena L.), a significant economic crop, is highly susceptible to cold damage, affecting both yield and quality. Unraveling the molecular mechanisms governing cold resistance, including the identification of key genes and comprehensive transcriptional regulatory pathways, is crucial for developing new varieties with enhanced tolerance. RESULTS: In this study, we conducted a comparative analysis of leaf physiological indices and transcriptome sequencing results. The orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted peroxidase (POD) activity and soluble protein as crucial physiological indicators for both varieties. RNA-seq data analysis revealed that a total of 7024 and 6209 differentially expressed genes (DEGs) were identified from variety "A" and variety "B", respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of DEGs demonstrated that the significant roles of starch and sucrose metabolism, glutathione metabolism, terpenoid synthesis, and energy metabolism (sucrose and starch metabolism) were the key pathways in eggplant. Weighted gene co-expression network analysis (WGCNA) shown that the enrichment of numerous cold-responsive genes, pathways, and soluble proteins in the MEgrep60 modules. Core hub genes identified in the co-expression network included POD, membrane transporter-related gene MDR1, abscisic acid-related genes, growth factor enrichment gene DELLA, core components of the biological clock PRR7, and five transcription factors. Among these, the core transcription factor MYB demonstrated co-expression with signal transduction, plant hormone, biosynthesis, and metabolism-related genes, suggesting a pivotal role in the cold response network. CONCLUSION: This study integrates physiological indicators and transcriptomics to unveil the molecular mechanisms responsible for the differences in cold tolerance between the eggplant cold-tolerant variety "A" and the cold-sensitive variety "B". These mechanisms include modulation of reactive oxygen species (ROS), elevation in osmotic carbohydrate and free proline content, and the expression of terpenoid synthesis genes. This comprehensive understanding contributes valuable insights into the molecular underpinnings of cold stress tolerance, ultimately aiding in the improvement of crop cold tolerance.


Assuntos
Solanum melongena , Transcriptoma , Solanum melongena/genética , Solanum melongena/metabolismo , Fisiologia Comparada , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio/genética , Amido/metabolismo , Sacarose/metabolismo , Terpenos/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Food Microbiol ; 121: 104487, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637064

RESUMO

Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.


Assuntos
Glucose , Lactose , Lactose/metabolismo , Glucose/metabolismo , Metabolismo dos Carboidratos , Glicólise , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Sacarose/metabolismo
10.
Plant Cell Rep ; 43(5): 131, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656568

RESUMO

KEY MESSAGE: The sugar supply in the medium affects the apical hook development of Arabidopsis etiolated seedlings. In addition, we provided the mechanism insights of this process. Dicotyledonous plants form an apical hook structure to shield their young cotyledons from mechanical damage as they emerge from the rough soil. Our findings indicate that sugar molecules, such as sucrose and glucose, are crucial for apical hook development. The presence of sucrose and glucose allows the apical hooks to be maintained for a longer period compared to those grown in sugar-free conditions, and this effect is dose-dependent. Key roles in apical hook development are played by several sugar metabolism pathways, including oxidative phosphorylation and glycolysis. RNA-seq data revealed an up-regulation of genes involved in starch and sucrose metabolism in plants grown in sugar-free conditions, while genes associated with phenylpropanoid metabolism were down-regulated. This study underscores the significant role of sugar metabolism in the apical hook development of etiolated Arabidopsis seedlings.


Assuntos
Arabidopsis , Regulação da Expressão Gênica de Plantas , Plântula , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Açúcares/metabolismo , Sacarose/metabolismo , Glucose/metabolismo , Estiolamento , Metabolismo dos Carboidratos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cotilédone/metabolismo , Cotilédone/crescimento & desenvolvimento , Cotilédone/genética
11.
Plant Physiol Biochem ; 210: 108591, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583314

RESUMO

Fresh lotus seeds are gaining favor with consumers for their crunchy texture and natural sweetness. However, the intricacies of sugar accumulation in lotus seeds remain elusive, which greatly hinders the quality improvement of fresh lotus seeds. This study endeavors to elucidate this mechanism by identifying and characterizing the sucrose synthase (SUS) gene family in lotus. Comprising five distinct members, namely NnSUS1 to NnSUS5, each gene within this family features a C-terminal glycosyl transferase1 (GT1) domain. Among them, NnSUS1 is the predominately expressed gene, showing high transcript abundance in the floral organs and cotyledons. NnSUS1 was continuously up-regulated from 6 to 18 days after pollination (DAP) in lotus cotyledons. Furthermore, NnSUS1 demonstrates co-expression relationships with numerous genes involved in starch and sucrose metabolism. To investigate the function of NnSUS1, a transient overexpression system was established in lotus cotyledons, which confirmed the gene's contribution to sugar accumulation. Specifically, transient overexpression of NnSUS1 in seed cotyledons leads to a significant increase in the levels of total soluble sugar, including sucrose and fructose. These findings provide valuable theoretical insights for improving sugar content in lotus seeds through molecular breeding methods.


Assuntos
Cotilédone , Regulação da Expressão Gênica de Plantas , Glucosiltransferases , Lotus , Proteínas de Plantas , Sementes , Glucosiltransferases/metabolismo , Glucosiltransferases/genética , Cotilédone/genética , Cotilédone/metabolismo , Cotilédone/enzimologia , Lotus/genética , Lotus/enzimologia , Lotus/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo
12.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655926

RESUMO

The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.


Deciding what and how much to eat is a complex biological process which involves balancing many types of information such as the levels of internal energy storage, the amount of food previously available in the environment, the perceived value of certain food items, and how these are remembered. At the molecular level, food contains carbohydrates that are broken down to produce glucose, which is then delivered to cells under the control of a hormone called insulin. There, glucose molecules are either immediately used or stored as glycogen until needed. Insulin signalling is also known to interact with the brain's decision-making systems that control eating behaviors; however, how our brains balance food intake with energy storage is poorly understood. Berger et al. set out to investigate this question using fruit flies as an experimental model. These insects also produce insulin-like molecules which help to relay information about glycogen levels to the brain's decision-making system. In particular, these signals reach a population of neurons that produce a messenger known as octopamine similar to the human noradrenaline, which helps regulate how much the flies find consuming certain types of foods rewarding. Berger et al. were able to investigate the role of octopamine in helping to integrate information about internal and external resource levels, memory formation and the evaluation of different food types. When the insects were fed normally, increased glycogen levels led to foods rich in carbohydrates being rated as less rewarding by the decision-making cells, and therefore being consumed less. Memories related to food intake were also short-lived ­ in other words, long-term 'food memory' was suppressed, re-setting the whole system after every meal. In contrast, long periods of starvation in insects with high carbohydrates resources produced a stable, long-term memory of food and hunger which persisted even after the flies had fed again. This experience also changed their food rating system, with highly nutritious foods no longer being perceived as sufficiently rewarding. As a result, the flies overate. This study sheds new light on the mechanisms our bodies may use to maintain energy reserves when food is limited. The persistence of 'food memory' after long periods of starvation may also explain why losing weight is difficult, especially during restrictive diets. In the future, Berger et al. hope that this knowledge will contribute to better strategies for weight management.


Assuntos
Drosophila melanogaster , Metabolismo Energético , Octopamina , Animais , Drosophila melanogaster/fisiologia , Octopamina/metabolismo , Memória/fisiologia , Glicogênio/metabolismo , Inanição , Sacarose/metabolismo , Memória de Longo Prazo/fisiologia , Ingestão de Alimentos/fisiologia
13.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656412

RESUMO

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Assuntos
Amilose , Edição de Genes , Hordeum , Proteínas de Plantas , Sintase do Amido , Amilose/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edição de Genes/métodos , Sintase do Amido/genética , Sintase do Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , beta-Glucanas/metabolismo , Plantas Geneticamente Modificadas , Solubilidade
14.
Biotechnol J ; 19(4): e2400006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581090

RESUMO

The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of ß-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.


Assuntos
Cucumis melo , Cucurbita , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Perfilação da Expressão Gênica , Cucurbita/genética , Cucurbita/metabolismo , Cucurbitaceae/genética , Sacarose/metabolismo
15.
Methods Mol Biol ; 2790: 439-466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649586

RESUMO

Stable isotope labeling with 13CO2 coupled with mass spectrometry allows monitoring the incorporation of 13C into photosynthetic intermediates and is a powerful technique for the investigation of the metabolic dynamics of photosynthesis. We describe here a protocol for 13CO2 labeling of large leaved plants and of Arabidopsis thaliana rosette, and a method for quantitative mass spectrometry analyses to uncover the labeling pattern of Calvin-Benson cycle sucrose, and starch synthesis as well as carbon-concentrating mechanism metabolites.


Assuntos
Arabidopsis , Isótopos de Carbono , Marcação por Isótopo , Fotossíntese , Marcação por Isótopo/métodos , Arabidopsis/metabolismo , Isótopos de Carbono/metabolismo , Espectrometria de Massas/métodos , Sacarose/metabolismo , Dióxido de Carbono/metabolismo , Amido/metabolismo , Metabolômica/métodos , Folhas de Planta/metabolismo
16.
Food Chem ; 449: 139180, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579650

RESUMO

Maple syrup, a popular natural sweetener has a high content of sucrose, whose consumption is linked to different health issues such as obesity and diabetes. Hence, within this paper, the conversion of sucrose to prebiotics (fructo-oligosaccharides, FOS) was proposed as a promising approach to obtaining a healthier, value-added product. Enzymatic conversion was optimized with respect to key experimental factors, and thereafter derived immobilized preparation of fructosyltransferase (FTase) from Pectinex® Ultra SP-L (FTase-epoxy Purolite, 255 IU/g support) was successfully utilized to produce novel functional product in ten consecutive reaction cycles. The product, obtained under optimal conditions (60 °C, 7.65 IU/mL, 12 h), resulted in 56.0% FOS, 16.7% sucrose, and 27.3% monosaccharides of total carbohydrates, leading to a 1.6-fold reduction in caloric content. The obtained products` prebiotic potential toward the probiotic strain Lactobacillus plantarum 299v was demonstrated. The changes in physico-chemical and sensorial characteristics were esteemed as negligible.


Assuntos
Acer , Proteínas de Bactérias , Hexosiltransferases , Oligossacarídeos , Prebióticos , Sacarose , Prebióticos/análise , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Hexosiltransferases/metabolismo , Hexosiltransferases/química , Sacarose/metabolismo , Sacarose/química , Acer/química , Acer/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimologia , Lactobacillus plantarum/química , Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
17.
Chemosphere ; 356: 141893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582168

RESUMO

Acesulfame (ACE), sucralose (SUC), cyclamate (CYC), and saccharin (SAC) are widely used artificial sweeteners that undergo negligible metabolism in the human body, and thus ubiquitously exist in wastewater treatment plants (WWTPs). Due to their persistence in WWTPs, ACE and SUC are found in natural waters globally. Wastewater samples were collected from the primary influent, primary effluent, secondary effluent, and final effluent of a WWTP in Alberta, Canada between August 2022 and February 2023, and the artificial sweeteners concentrations were measured by LC-MS/MS. Using wastewater-based epidemiology, the daily per capita consumption of ACE in the studied wastewater treatment plant catchment was estimated to be the highest in the world. Similar to other studies, the removal efficiency in WWTP was high for SAC and CYC, but low or even negative for SUC. However, ACE removal remained surprisingly high (>96%), even in the cold Canadian winter months. This result may indicate a further adaptation of microorganisms capable of biodegrading ACE in WWTP. The estimated per capita discharge into the environment of ACE, CYC, and SAC is low in Alberta due to the prevalent utilization of secondary treatment throughout the province, but is 17.4-18.8 times higher in Canada, since only 70.3% of total discharged wastewater in Canada undergoes secondary treatment.


Assuntos
Sacarose/análogos & derivados , Edulcorantes , Tiazinas , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Edulcorantes/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Alberta , Tiazinas/análise , Sacarina/análise , Monitoramento Ambiental , Biodegradação Ambiental , Espectrometria de Massas em Tandem , Sacarose/análise , Sacarose/metabolismo
18.
Mol Plant ; 17(5): 788-806, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38615195

RESUMO

During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis but also acts as a stimulus to promote this process. However, the molecular mechanisms underlying sucrose and endosperm filling are poorly understood. In this study, we found that sucrose promotes the expression of endosperm-filling hub gene Opaque2 (O2), coordinating with storage-reserve accumulation. We showed that the protein kinase SnRK1a1 can attenuate O2-mediated transactivation, but sucrose can release this suppression. Biochemical assays revealed that SnRK1a1 phosphorylates O2 at serine 41 (S41), negatively affecting its protein stability and transactivation ability. We observed that mutation of SnRK1a1 results in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 causes the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA), and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibit smaller kernel size, they have higher accumulation of starch and proteins, resulting in larger vitreous endosperm and increased test weight. O2-SD seeds display larger kernel size but unchanged levels of storage reserves and test weight. O2-OE seeds show elevated kernel dimensions and nutrient storage, like a mixture of O2-SA and O2-SD seeds. Collectively, our study discovers a novel regulatory mechanism of maize endosperm filling. Identification of S41 as a SnRK1-mediated phosphorylation site in O2 offers a potential engineering target for enhancing storage-reserve accumulation and yield in maize.


Assuntos
Endosperma , Proteínas de Plantas , Sacarose , Zea mays , Zea mays/metabolismo , Zea mays/genética , Endosperma/metabolismo , Fosforilação , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento
19.
Physiol Plant ; 176(2): e14290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634341

RESUMO

In the present study, we analyzed GA3 (gibberellin)-treated sugarcane samples at the transcriptomic level to elucidate the differential expression of genes that influence sucrose accumulation. Previous research has suggested that GA3 application can potentially delay sink saturation by enhancing sink strength and demand, enabling the accommodation of more sucrose. To investigate the potential role of GA-induced modification of sink capacity in promoting higher sucrose accumulation, we sought to unravel the differential expression of transcripts and analyze their functional annotation. Several genes homologous to the sugar-phosphate/phosphate translocator, UTP-glucose-1-phosphate uridylyltransferase, and V-ATPases (vacuolar-type H+ ATPase) were identified as potentially associated with the increased sucrose content observed. A differentially expressed transcript was found to be identical to the mRNA of an unknown protein. Homology-based bioinformatics analysis suggested it to be a hydrolase enzyme, which could potentially act as a stimulator of sucrose buildup. The database of differentially expressed transcripts obtained in this study under the influence of GA3 represents a valuable addition to the sugarcane transcriptomics and functional genomics knowledge base.


Assuntos
Giberelinas , Saccharum , Giberelinas/metabolismo , Transcriptoma , Saccharum/genética , Saccharum/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Fosfatos
20.
BMC Plant Biol ; 24(1): 245, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575879

RESUMO

Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.


Assuntos
Brassica napus , Brassica rapa , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Plântula/metabolismo , Brassica napus/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Perfilação da Expressão Gênica , Germinação/genética , Brassica rapa/metabolismo , Metaboloma , Amido/metabolismo , Sacarose/metabolismo , Sementes , Regulação da Expressão Gênica de Plantas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA