Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 521
Filtrar
1.
Methods Mol Biol ; 2844: 123-132, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068336

RESUMO

In situ promoter engineering is an effective way to alter target gene expression without introducing excess DNA sequences. Recently, the CRISPR/Cas9 technologies have been proved to be efficient tools for genome editing in actinomycetes, making it easier and more efficient to perform gene insertion and substitution in actinomycetes in a scarless manner. In this chapter, we describe a routine protocol for CRISPR/Cas9-mediated promoter engineering in Saccharopolyspora erythraea NRRL 23338, which is the wild-type producer of erythromycin. This protocol can be adapted to CRISPR/Cas9-mediated gene editing, not limited to promoter engineering, in other actinomycetes, with modifications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Regiões Promotoras Genéticas , Saccharopolyspora , Saccharopolyspora/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Eritromicina , RNA Guia de Sistemas CRISPR-Cas/genética
2.
J Agric Food Chem ; 72(31): 17499-17509, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39045837

RESUMO

The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in ß-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.


Assuntos
Proteínas de Bactérias , Engenharia Metabólica , Policetídeo Sintases , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Fermentação , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo
3.
Arch Microbiol ; 206(8): 342, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967823

RESUMO

A novel mangrove soil-derived actinomycete, strain S2-29T, was found to be most closely related to Saccharopolyspora karakumensis 5K548T based on 16 S rRNA sequence (99.24% similarity) and genomic phylogenetic analyses. However, significant divergence in digital DNA-DNA hybridization, average nucleotide identity, and unique biosynthetic gene cluster possession distinguished S2-29T as a distinct Saccharopolyspora species. Pan genome evaluation revealed exceptional genomic flexibility in genus Saccharopolyspora, with > 95% accessory genome content. Strain S2-29T harbored 718 unique genes, largely implicated in energetic metabolisms, indicating different metabolic capacities from its close relatives. Several uncharacterized biosynthetic gene clusters in strain S2-29T highlighted the strain's untapped capacity to produce novel functional compounds with potential biotechnological applications. Designation as novel species Saccharopolyspora mangrovi sp. nov. (type strain S2-29T = JCM 34,548T = CGMCC 4.7716T) was warranted, expanding the known Saccharopolyspora diversity and ecology. The discovery of this mangrove-adapted strain advances understanding of the genus while highlighting an untapped source of chemical diversity.


Assuntos
DNA Bacteriano , Genoma Bacteriano , Filogenia , RNA Ribossômico 16S , Saccharopolyspora , Microbiologia do Solo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Saccharopolyspora/classificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Família Multigênica , Genômica , Análise de Sequência de DNA , Áreas Alagadas , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana
4.
Nat Commun ; 15(1): 3825, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714645

RESUMO

c-di-AMP is an essential and widespread nucleotide second messenger in bacterial signaling. For most c-di-AMP synthesizing organisms, c-di-AMP homeostasis and the molecular mechanisms pertaining to its signal transduction are of great concern. Here we show that c-di-AMP binds the N-acetylglucosamine (GlcNAc)-sensing regulator DasR, indicating a direct link between c-di-AMP and GlcNAc signaling. Beyond its foundational role in cell-surface structure, GlcNAc is attractive as a major nutrient and messenger molecule regulating multiple cellular processes from bacteria to humans. We show that increased c-di-AMP levels allosterically activate DasR as a master repressor of GlcNAc utilization, causing the shutdown of the DasR-mediated GlcNAc signaling cascade and leading to a consistent enhancement in the developmental transition and antibiotic production in Saccharopolyspora erythraea. The expression of disA, encoding diadenylate cyclase, is directly repressed by the regulator DasR in response to GlcNAc signaling, thus forming a self-sustaining transcriptional feedback loop for c-di-AMP synthesis. These findings shed light on the allosteric regulation by c-di-AMP, which appears to play a prominent role in global signal integration and c-di-AMP homeostasis in bacteria and is likely widespread in streptomycetes that produce c-di-AMP.


Assuntos
Acetilglucosamina , Proteínas de Bactérias , Fosfatos de Dinucleosídeos , Regulação Bacteriana da Expressão Gênica , Saccharopolyspora , Transdução de Sinais , Acetilglucosamina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosfatos de Dinucleosídeos/metabolismo , Saccharopolyspora/metabolismo , Saccharopolyspora/genética
5.
Biotechnol J ; 19(5): e2400039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38797723

RESUMO

Industrial production of bioactive compounds from actinobacteria, such as erythromycin and its derivatives, faces challenges in achieving optimal yields. To this end, the Design-Build-Test-Learn (DBTL) framework, a systematic metabolic engineering approach, was employed to enhance erythromycin production in Saccharopolyspora erythraea (S. erythraea) E3 strain. A genetically modified strain, S. erythraea E3-CymRP21-dcas9-sucC (S. erythraea CS), was developed by suppressing the sucC gene using an inducible promoter and dcas9 protein. The strain exhibited improved erythromycin synthesis, attributed to enhanced precursor synthesis and increased NADPH availability. Transcriptomic and metabolomic analyses revealed altered central carbon metabolism, amino acid metabolism, energy metabolism, and co-factor/vitamin metabolism in CS. Augmented amino acid metabolism led to nitrogen depletion, potentially causing cellular autolysis during later fermentation stages. By refining the fermentation process through ammonium sulfate supplementation, erythromycin yield reached 1125.66 mg L-1, a 43.5% increase. The results demonstrate the power of the DBTL methodology in optimizing erythromycin production, shedding light on its potential for revolutionizing antibiotic manufacturing in response to the global challenge of antibiotic resistance.


Assuntos
Eritromicina , Fermentação , Engenharia Metabólica , Saccharopolyspora , Eritromicina/biossíntese , Engenharia Metabólica/métodos , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Antibacterianos/biossíntese , Antibacterianos/metabolismo
6.
Curr Microbiol ; 81(5): 130, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589729

RESUMO

During the course of the isolation of actinobacteria from sweet potato field soils collected from Phra Nakhon Si Ayutthaya province of Thailand, strain TS4A08T was isolated and subjected to a polyphasic taxonomic approach. The 16S rRNA gene sequence analysis of strain TS4A08T revealed that it is closely related to the type strains of Saccharopolyspora aridisoli, and Saccharopolyspora endophytica with 98.7%, and 98.6% similarity, respectively. However, phylogenetic analyses using 16S rRNA gene and genome sequences indicated that strain TS4A08T clustered with Saccharopolyspora flava AS4.1520T (98.2% similarity), well-supported by bootstrap values, and formed distinct line from the two closest strains. The average nucleotide identity (ANI) values and digital DNA-DNA hybridization (dDDH) values between the genome sequences of strain TS4A08T and the closest type strains of S. aridisoli, S. endophytica, and S. flava, were 86.1-93.2% and 33.1-49.6%, respectively, which were less than the threshold for the species delineation. The genome size and the DNA G + C content of strain TS4A08T were 6.6 Mbp and 70.5%, respectively. The strain grew well at 25-37 °C, pH range of 7-9, and NaCl concentration of 0-5% (w/v). Whole-cell hydrolysates contained meso-diaminopimelic acid. The major fatty acids were iso-C16:0, anteiso-C17:0, and iso-C15:0. Strain TS4A08T exhibited phosphatidylcholine in its polar lipid profile, with MK-9(H4) being the predominant isoprenologue. The strain exhibits typical chemotaxonomic properties of the genus Saccharopolyspora, including arabinose, galactose, and ribose as whole-cell sugars. Strain TS4A08T represents a novel species within the genus Saccharopolyspora, for which the name Saccharopolyspora ipomoeae sp. nov. is proposed. The type strain is TS4A08T (= TBRC 17271T = NBRC 115967T).


Assuntos
Actinobacteria , Ipomoea batatas , Saccharopolyspora , Saccharopolyspora/genética , Actinobacteria/genética , Ipomoea batatas/genética , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Análise de Sequência de DNA , Tailândia , Ácidos Graxos/química , Fosfolipídeos/química
7.
Biotechnol Lett ; 46(2): 161-172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279045

RESUMO

Actinomyces are gram-positive bacteria known for their valuable secondary metabolites. Redirecting metabolic flux towards desired products in actinomycetes requires precise and dynamic regulation of gene expression. In this study, we integrated the CRISPR interference (CRISPRi) system with a cumate-inducible promoter to develop an inducible gene downregulation method in Saccharopolyspora erythraea, a prominent erythromycin-producing actinobacterium. The functionality of the cumate-inducible promoter was validated using the gusA gene as a reporter, and the successful inducible expression of the dCas9 gene was confirmed. The developed inducible CRISPRi strategy was then employed to downregulate the expression of target genes rppA in the wild-type strain NRRL2338 and sucC in the high erythromycin-producing strain E3. Through dynamic control of sucC expression, a significant enhancement in erythromycin production was achieved in strain E3. This study demonstrated the effectiveness of an inducible gene downregulation approach using CRISPRi and a cumate-inducible promoter, providing valuable insights for optimizing natural product production in actinomyces.


Assuntos
Saccharopolyspora , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eritromicina/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica
8.
NPJ Biofilms Microbiomes ; 9(1): 65, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726290

RESUMO

Identification of the core functional microorganisms in food fermentations is necessary to understand the ecological and functional processes for making those foods. Wheat qu, which provides liquefaction and saccharifying power, and affects the flavor quality, is a key ingredient in ancient alcoholic huangjiu fermentation, while core microbiota of them still remains indistinct. In this study, metagenomics, metabolomics, microbial isolation and co-fermentation were used to investigate huangjiu. Although Aspergillus is usually regarded as core microorganism in wheat qu to initiate huangjiu fermentations, our metagenomic analysis showed that bacteria Saccharopolyspora are predominant in wheat qu and responsible for breakdown of starch and cellulose. Metabolic network and correlation analysis showed that Saccharopolyspora rectivirgula, Saccharopolyspora erythraea, and Saccharopolyspora hirsuta made the greatest contributions to huangjiu's metabolites, consisting of alcohols (phenylethanol, isoamylol and isobutanol), esters, amino acids (Pro, Arg, Glu and Ala) and organic acids (lactate, tartrate, acetate and citrate). S. hirsuta J2 isolated from wheat qu had the highest amylase, glucoamylase and protease activities. Co-fermentations of S. hirsuta J2 with S. cerevisiae HJ resulted in a higher fermentation rate and alcohol content, and huangjiu flavors were more similar to that of traditional huangjiu compared to co-fermentations of Aspergillus or Lactiplantibacillus with S. cerevisiae HJ. Genome of S. hirsuta J2 contained genes encoding biogenic amine degradation enzymes. By S. hirsuta J2 inoculation, biogenic amine content was reduced by 45%, 43% and 62% in huangjiu, sausage and soy sauce, respectively. These findings show the utility of Saccharopolyspora as a key functional organism in fermented food products.


Assuntos
Saccharopolyspora , Fermentação , Saccharopolyspora/genética , Saccharomyces cerevisiae , Aminoácidos , Celulose
9.
J Antibiot (Tokyo) ; 76(11): 658-664, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596418

RESUMO

A novel actinobacterium, designated as strain WRP15-2T, was isolated from rhizosphere soil of rice plant (Oryza rufipogon). The strain was Gram-stain-positive, aerobic, and non-motile. Phylogenetic analysis based on the 16S rRNA gene sequences showed that strain WRP15-2T fell into the genus Saccharopolyspora. The strain shared the highest 16S rRNA gene sequence similarity with the type strains Saccharopolyspora kobensis JCM 9109T (99.1%), Saccharopolyspora indica VRC122T (98.9%), and Saccharopolyspora antimicrobica DSM 45119T (98.7%). However, the digital DNA-DNA hybridization and average nucleotide identity values among these strains confirmed that the microorganism represented a novel member of the genus Saccharopolyspora. Chemotaxonomic data revealed that strain WRP15-2T possessed MK-9(H4) as the predominant menaquinone. It contained meso-diaminopimelic acid as the diagnostic diaminopimelic acid and arabinose, galactose, and ribose as predominant whole-cell sugars. The detected phospholipids were dominated by phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxy-phosphatidylmethylethanolamine, and phosphatidylcholine. The predominant cellular fatty acids were iso-C16:0, C16:0, and iso-C15:0. The G + C content of the genomic DNA was 69.5%. Based on these genotypic and phenotypic data, it is supported that strain WRP15-2T represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora oryzae sp. nov. is proposed. The type strain is WRP15-2T ( = TBRC 15728T = NBRC 115560T).


Assuntos
Oryza , Saccharopolyspora , Fosfatidiletanolaminas , Saccharopolyspora/genética , Rizosfera , Filogenia , RNA Ribossômico 16S/genética , Ácido Diaminopimélico , DNA Bacteriano/genética , Ácidos Graxos , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana
10.
Bioprocess Biosyst Eng ; 46(9): 1303-1318, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37392219

RESUMO

In this study, the cellular metabolic mechanisms regarding ammonium sulfate supplementation on erythromycin production were investigated by employing targeted metabolomics and metabolic flux analysis. The results suggested that the addition of ammonium sulfate stimulates erythromycin biosynthesis. Targeted metabolomics analysis uncovered that the addition of ammonium sulfate during the late stage of fermentation resulted in an augmented intracellular amino acid metabolism pool, guaranteeing an ample supply of precursors for organic acids and coenzyme A-related compounds. Therefore, adequate precursors facilitated cellular maintenance and erythromycin biosynthesis. Subsequently, an optimal supplementation rate of 0.02 g/L/h was determined. The results exhibited that erythromycin titer (1311.1 µg/mL) and specific production rate (0.008 mmol/gDCW/h) were 101.3% and 41.0% higher than those of the process without ammonium sulfate supplementation, respectively. Moreover, the erythromycin A component proportion increased from 83.2% to 99.5%. Metabolic flux analysis revealed increased metabolic fluxes with the supplementation of three ammonium sulfate rates.


Assuntos
Saccharopolyspora , Saccharopolyspora/metabolismo , Sulfato de Amônio , Fermentação , Eritromicina/farmacologia , Suplementos Nutricionais
11.
Appl Microbiol Biotechnol ; 107(17): 5439-5451, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37428187

RESUMO

Pirin family proteins perform a variety of biological functions and widely exist in all living organisms. A few studies have shown that Pirin family proteins may be involved in the biosynthesis of antibiotics in actinomycetes. However, the function of Pirin-like proteins in S. spinosa is still unclear. In this study, the inactivation of the sspirin gene led to serious growth defects and the accumulation of H2O2. Surprisingly, the overexpression and knockout of sspirin slightly accelerated the consumption and utilization of glucose, weakened the TCA cycle, delayed sporulation, and enhanced sporulation in the later stage. In addition, the overexpression of sspirin can enhance the ß-oxidation pathway and increase the yield of spinosad by 0.88 times, while the inactivation of sspirin hardly produced spinosad. After adding MnCl2, the spinosad yield of the sspirin overexpression strain was further increased to 2.5 times that of the wild-type strain. This study preliminarily revealed the effects of Pirin-like proteins on the growth development and metabolism of S. spinosa and further expanded knowledge of Pirin-like proteins in actinomycetes. KEY POINTS: • Overexpression of the sspirin gene possibly triggers carbon catabolite repression (CCR) • Overexpression of the sspirin gene can promote the synthesis of spinosad • Knockout of the sspirin gene leads to serious growth and spinosad production defects.


Assuntos
Actinobacteria , Saccharopolyspora , Peróxido de Hidrogênio/metabolismo , Saccharopolyspora/metabolismo , Actinobacteria/metabolismo , Macrolídeos/metabolismo , Combinação de Medicamentos
12.
Nucleic Acids Res ; 51(13): 6870-6882, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37283056

RESUMO

Actinobacteria are ubiquitous bacteria undergoing complex developmental transitions coinciding with antibiotic production in response to stress or nutrient starvation. This transition is mainly controlled by the interaction between the second messenger c-di-GMP and the master repressor BldD. To date, the upstream factors and the global signal networks that regulate these intriguing cell biological processes remain unknown. In Saccharopolyspora erythraea, we found that acetyl phosphate (AcP) accumulation resulting from environmental nitrogen stress participated in the regulation of BldD activity through cooperation with c-di-GMP. AcP-induced acetylation of BldD at K11 caused the BldD dimer to fall apart and dissociate from the target DNA and disrupted the signal transduction of c-di-GMP, thus governing both developmental transition and antibiotic production. Additionally, practical mutation of BldDK11R bypassing acetylation regulation could enhance the positive effect of BldD on antibiotic production. The study of AcP-dependent acetylation is usually confined to the control of enzyme activity. Our finding represents an entirely different role of the covalent modification caused by AcP, which integrated with c-di-GMP signal in modulating the activity of BldD for development and antibiotic production, coping with environmental stress. This coherent regulatory network might be widespread across actinobacteria, thus has broad implications.


Assuntos
Antibacterianos , Saccharopolyspora , Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Saccharopolyspora/metabolismo
13.
Gene ; 850: 146959, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220451

RESUMO

The rapid development of biotechnology has provided new perspectives to observe and helped to gradually understand the significance of genetic instability in Actinobacteria. High frequency deletions of extremities and abnormal methylation of chromosomes suggest there might be relevant between the two phenomena. With this suspicion, we used single molecule real-time (SMRT) sequencing to map the genome-level methylation of one branch of actinomycetes, Saccharopolyspora erythraea, which have ring-shaped chromosomes. S. erythraea used for analysis in this study shares the same highly unstable phenotypic traits, as evidenced by diverse spore morphology and fluctuating erythromycin production. Multiple amplification of genomic islands closes to the replication initiation site and 6-methyladenine (m6A) deletion in genomic islands suggest that the interaction between the restriction modification (R-M) system and transposable elements provides an explanation for the division of labor by genomic heterogeneity in actinomycetes.


Assuntos
Actinobacteria , Saccharopolyspora , Actinobacteria/genética , Elementos de DNA Transponíveis , Saccharopolyspora/genética , Eritromicina/metabolismo , Cromossomos
14.
Biotechnol Appl Biochem ; 70(3): 1035-1043, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36479705

RESUMO

Spinosad, a combination of spinosyn A and D produced by Saccharopolyspora spinosa, is a highly efficient pesticide. There has been a considerable interest in the improvement of spinosad production because of a low yield achieved by wild-type S. spinosa. In this study, we designed and constructed a pIBR-SPN vector. pIBR-SPN is an integrative vector that can be used to introduce foreign genes into the chromosome of S. spinosa. Different combinations of genes encoding forasamine and rhamnose were synthesized and used for the construction of different recombinant plasmids. The following recombinant strains were developed: S. spinosa pIBR-SPN (only the vector), S. spinosa pIBR-SPN F (forosamine genes), S. spinosa pIBR-SPN R (rhamnose genes), S. spinosa pIBR-SPN FR (forosamine and rhamnose genes), S. spinosa pIBR-SPN FRS (forosamine, rhamnose, and SAM [S-adenosyl-L-methionine synthetase] genes), and S. spinosa MUV pIBR-SPN FR. Among these recombinant strains, S. spinosa pIBR-SPN FR produced 1394 ± 163 mg/L spinosad, which was 13-fold higher than the wild-type. S. spinosa MUV pIBR-SPN FR produced 1897 (±129) mg/L spinosad, which was seven-fold higher than S. spinosa MUV and 17-fold higher than the wild-type strain.


Assuntos
Engenharia Metabólica , Saccharopolyspora , Ramnose/metabolismo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Combinação de Medicamentos
15.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555813

RESUMO

Steroids are abundant molecules in nature, and various microorganisms evolved to utilize steroids. Thermophilic actinobacteria play an important role in such processes. However, very few thermophiles have so far been reported capable of degrading or modifying natural sterols. Recently, genes putatively involved in the sterol catabolic pathway have been revealed in the moderately thermophilic actinobacterium Saccharopolyspora hirsuta VKM Ac-666T, but peculiarities of strain activity toward sterols are still poorly understood. S. hirsuta catalyzed cholesterol bioconversion at a rate significantly inferior to that observed for mesophilic actinobacteria (mycobacteria and rhodococci). Several genes related to different stages of steroid catabolism increased their expression in response to cholesterol as was shown by transcriptomic studies and verified by RT-qPCR. Sequential activation of genes related to the initial step of cholesterol side chain oxidation (cyp125) and later steps of steroid core degradation (kstD3, kshA, ipdF, and fadE30) was demonstrated for the first time. The activation correlates with a low cholesterol conversion rate and intermediate accumulation by the strain. The transcriptomic analyses revealed that the genes involved in sterol catabolism are linked functionally, but not transcriptionally. The results contribute to the knowledge on steroid catabolism in thermophilic actinobacteria and could be used at the engineering of microbial catalysts.


Assuntos
Actinobacteria , Fitosteróis , Saccharopolyspora , Esteróis/metabolismo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo , Esteroides/metabolismo , Colesterol/metabolismo , Fitosteróis/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo
16.
Appl Microbiol Biotechnol ; 106(19-20): 6551-6566, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36075984

RESUMO

TetR family transcriptional regulators (TFRs) are widespread in actinomycetes, which exhibit diverse regulatory modes in antibiotic biosynthesis. Nitrogen regulators play vital roles in modulation of primary and secondary metabolism. However, crosstalk between TFR and nitrogen regulator has rarely been reported in actinomycetes. Herein, we demonstrated that a novel TFR, SACE_4839, was negatively correlated with erythromycin yield in Saccharopolyspora erythraea A226. SACE_4839 indirectly suppressed erythromycin synthetic gene eryAI and resistance gene ermE and directly inhibited its adjacent gene SACE_4838 encoding a homologue of nitrogen metabolite repression (NMR) regulator NmrA (herein named NmrR). The SACE_4839-binding sites within SACE_4839-nmrR intergenic region were identified. NmrR positively controlled erythromycin biosynthesis by indirectly stimulating eryAI and ermE and directly repressing SACE_4839. NmrR was found to affect growth viability under the nitrogen source supply. Furthermore, NmrR directly repressed glutamine and glutamate utilization-related genes SACE_1623, SACE_5070 and SACE_5979 but activated nitrate utilization-associated genes SACE_1163, SACE_4070 and SACE_4912 as well as nitrite utilization-associated genes SACE_1476 and SACE_4514. This is the first reported NmrA homolog for modulating antibiotic biosynthesis and nitrogen metabolism in actinomycetes. Moreover, combinatorial engineering of SACE_4839 and nmrR in the high-yield S. erythraea WB resulted in a 68.8% increase in erythromycin A production. This investigation deepens the understanding of complicated regulatory network for erythromycin biosynthesis. KEY POINTS: • SACE_4839 and NmrR had opposite contributions to erythromycin biosynthesis. • NmrR was first identified as a homolog of another nitrogen regulator NmrA. • Cross regulation between SACE_4839 and NmrR was revealed.


Assuntos
Actinobacteria , Saccharopolyspora , Actinobacteria/genética , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Intergênico , Eritromicina , Glutamatos/metabolismo , Glutamina/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Saccharopolyspora/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L329-L337, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881171

RESUMO

Previously we have shown that a gain-of-function MUC5B promoter variant (rs35705950) is the strongest risk factor for the development of idiopathic pulmonary fibrosis. We have also found that Muc5b overexpression reduces mucociliary clearance in mice, potentially leading to recurrent injury to the bronchoalveolar epithelia. Hypersensitivity pneumonitis (HP) is induced by inhalation of numerous causative antigens that may be affected by mucociliary clearance. We conducted this study to determine the role of Muc5b in a mouse model of HP induced by Saccharopolyspora rectivirgula (SR) antigen. We used Muc5b-deficient and wild-type (WT) mice to determine whether Muc5b plays a role in inflammation and fibrosis at 3 and 6 wk in an SR model of HP. We measured cell concentrations and MUC5B expression in whole lung lavage (WLL) and quantified fibrosis using hydroxyproline assay and second harmonic generation. Muc5b expression in WLL fluid was significantly increased in SR-exposed WT mice compared with saline controls. WT mice challenged with SR developed more inflammation and lung fibrosis at 6 wk compared with 3 wk postexposure. Moreover, we found that 6 wk following challenge with SR, Muc5b-deficient mice had less lung inflammation and less lung fibrosis than Muc5b WT mice. Furthermore, Muc5b-deficient mice had significantly lower concentrations of TGF-ß1 in the WLL compared with Muc5b WT mice at 6 wk of exposure. Muc5b appears to play a role in fibrosis in the animal model of HP and this may have implications for HP in humans.


Assuntos
Alveolite Alérgica Extrínseca , Fibrose Pulmonar Idiopática , Saccharopolyspora , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/genética , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5B/genética
18.
Appl Microbiol Biotechnol ; 106(13-16): 5153-5165, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35821431

RESUMO

As a novel protein post-translational modification (PTM), lysine succinylation is widely involved in metabolism regulation by altering the activity of catalytic enzymes. Inactivating succinyl-CoA synthetase in Saccharopolyspora erythraea HL3168 E3 was proved significantly inducing the global protein hypersuccinylation. To investigate the effects, succinylome of the mutant strain E3ΔsucC was identified by using a high-resolution mass spectrometry-based proteomics approach. PTMomics analyses suggested the important roles of succinylation on protein biosynthesis, carbon metabolism, and antibiotics biosynthesis in S. erythraea. Enzymatic experiments in vivo and in vitro were further conducted to determine the succinylation regulation in the TCA cycle. We found out that the activity of aconitase (SACE_3811) was significantly inhibited by succinylation in E3ΔsucC, which probably led to the extracellular accumulation of pyruvate and citrate during the fermentation. Enzyme structural analyses indicated that the succinylation of K278 and K373, conservative lysine residues locating around the protein binding pocket, possibly affects the activity of aconitase. To alleviate the metabolism changes caused by succinyl-CoA synthetase inactivation and protein hypersuccinylation, CRISPR interference (CRISPRi) was applied to mildly downregulate the transcription level of gene sucC in E3. The erythromycin titer of the CRISPRi mutant E3-sucC-sg1 was increased by 54.7% compared with E3, which was 1200.5 mg/L. Taken together, this work not only expands our knowledge of succinylation regulation in the TCA cycle, but also validates that CRISPRi is an efficient strategy on the metabolic engineering of S. erythraea. KEY POINTS: • We reported the first systematic profiling of the S. erythraea succinylome. • We found that the succinylation regulation on the activity of aconitase. • We enhanced the production of erythromycin by using CRISPRi to regulate the transcription of gene sucC.


Assuntos
Eritromicina , Saccharopolyspora , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Acil Coenzima A , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligases/genética , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Saccharopolyspora/genética , Saccharopolyspora/metabolismo
19.
Microb Cell Fact ; 21(1): 120, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717184

RESUMO

BACKGROUND: Erythromycin A (Er A) has a broad antibacterial effect and is a source of erythromycin derivatives. Methylation of erythromycin C (Er C), catalyzed by S-adenosyl-methionine (SAM)-dependent O-methyltransferase EryG, is the key final step in Er A biosynthesis. Er A biosynthesis, including EryG production, is regulated by the phosphate response factor PhoP and the nitrogen response factor GlnR. However, the regulatory effect of these proteins upon S-adenosyl-methionine synthetase (MetK) production is unknown. RESULTS: In this study, we used bioinformatics approaches to identify metK (SACE_3900), which codes for S-adenosyl-methionine synthetase (MetK). Electrophoretic mobility shift assays (EMSAs) revealed that PhoP and GlnR directly interact with the promoter of metK, and quantitative PCR (RT-qPCR) confirmed that each protein positively regulated metK transcription. Moreover, intracellular SAM was increased upon overexpression of either phoP or glnR under phosphate or nitrogen limited conditions, respectively. Finally, both the production of Er A and the transformation ratio from Er C to Er A increased upon phoP overexpression, but surprisingly, not upon glnR overexpression. CONCLUSIONS: Manipulating the phosphate and nitrogen response factors, PhoP and GlnR provides a novel strategy for increasing the yield of SAM and the production of Er A in Saccharopolyspora erythraea .


Assuntos
Saccharopolyspora , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eritromicina , Regulação Bacteriana da Expressão Gênica , Metionina/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , S-Adenosilmetionina/metabolismo , Saccharopolyspora/genética , Saccharopolyspora/metabolismo
20.
Arch Microbiol ; 204(7): 371, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670849

RESUMO

A novel Gram-stain positive, aerobic, non-motile actinobacterium, designated strain K220T, was isolated from soil collected from Cape Andreas (Zafer Burnu), Northern Cyprus, and subjected to a polyphasic taxonomic approach. The organism was shown to have phylogenetic, chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Saccharopolyspora. 16S rRNA gene sequence analysis of strain K220T showed that it is closely related to the type strains of Saccharopolyspora maritima 3SS5-12 T, Saccharopolyspora kobensis JCM 9109 T and Saccharopolyspora hirsuta ATCC 27875 T with 97.6, 97.5 and 97.0% sequence similarity, respectively. In silico DNA-DNA hybridization and average nucleotide identity values between strain K220T and type strains of the genus Saccharopolyspora with publicly available genomes were 22.1-31.2% and 76.0-83.16%, respectively. The DNA G + C content of strain K220T was 68.3 mol%. The genome of strain K220T has genes associated with 24 biosynthetic gene clusters. The strain contained MK-9(H4) and iso-C16: 0 as the predominant respiratory quinone and fatty acid, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine. Based on evidence collected from the genotypic, phenotypic and phylogenetic analyses, strain K220T is considered to represent a novel species in the genus Saccharopolyspora, for which the name Saccharopolyspora soli sp. nov. is proposed. The type strain is K220T (= JCM 33912T = KCTC 49395T).


Assuntos
Saccharopolyspora , Técnicas de Tipagem Bacteriana , Chipre , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Saccharopolyspora/genética , Análise de Sequência de DNA , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA