RESUMO
In native mass spectrometry (MS) salts are indispensable for preserving the native structures of biomolecules, but detrimental to mass sensitivity, resolution, and accuracy. Such a conflict makes desalting in native MS more challenging, distinctive, and sample-dependent than in peptide-centric MS. This review first briefly introduces the charged residue mechanism whereby native-like gaseous protein ions are released from electrospray droplets, revealing a higher degree of salt adduction than denatured proteins. Subsequently, this review summarizes and explores the existing strategies, underlying mechanisms and future perspectives of desalting in native MS. These strategies mainly focus on buffer exchange into volatile salts (offline and online approaches), addition of solution additives (e.g., anion, supercharging reagent, solution phase chelator and amino acid), use of submicron electrospray emitters (down to 60 nm), and other potential approaches (e.g., induced and electrophoretic nanoelectrospray ionization). The strategies of online buffer exchange and using nanoscale electrospray emitters are highlighted. This review would not only be a valuable addition to the field of sample preparation in MS, but would also serve as a beginner's guide to desalting in native MS.
Assuntos
Espectrometria de Massas , Espectrometria de Massas/métodos , Proteínas/química , Proteínas/análise , Humanos , Sais/química , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Since the proposition of the Hofmeister series, guanidinium (Gdm) salts hold a special mention in protein science owing to their contrasting effect on protein(s) depending on the counteranion(s). For example, while GdmCl is known to act as a potential protein denaturant, Gdm2SO4 offers minimal effect on protein structure. Despite the fact that theoretical studies reckon the formation of ion-pairing to be responsible for such behavior, experimental validation of this hypothesis is still in sparse. In this study, we combine electrochemical impedance spectroscopy (EIS) and THz spectroscopy to underline the effect of GdmCl and Gdm2SO4 on a model amide molecule N-methylacetamide (NMA). Molecular dynamics (MD) simulation studies predict that Gdm2SO4 forms heteroion pairing in water, which inhibits Gdm+ ions to approach NMA molecules, while in case of GdmCl, Gdm+ ions directly interact with NMA. The experimental findings on ion hydration, specifically the detailed analysis of the ion-water rattling mode, which appears in the THz frequency domain, unambiguously endorse this hypothesis. Our study establishes the fact that the propensity of ion-pairing in Gdm salts dictates their (de)stabilization effect on proteins.
Assuntos
Guanidina , Simulação de Dinâmica Molecular , Guanidina/química , Sais/química , Estabilidade Proteica , Acetamidas/química , Água/química , Íons/química , Proteínas/química , Espectroscopia DielétricaRESUMO
Magnetic nanoparticles (MNPs) can be functionalized with antibodies to give them an affinity for a biomarker of interest. Functionalized MNPs (fMNPs) cluster in the presence of a multivalent target, causing a change in their magnetization. Target concentration can be proportional to the 3rd harmonic phase of the fMNP magnetization signal. fMNP clustering can also be induced with salt. Generally, salt can alter the stability of charge stabilized fMNPs causing a change in magnetization that is not proportional to the target concentration. We have developed a model system consisting of biotinylated MNPs (biotin-MNPs) that target streptavidin to study the effects of salt concentration on fMNP-based biosensing in simulated in vivo conditions. We have found that biotin-MNP streptavidin targeting was independent of salt concentration for 0.005x to 1.00x phosphate buffered saline (PBS) solutions. Additionally, we show that our biosensor's measurable concentration range (dynamic range) can be tuned with biotin density. Our results can be leveraged to design an in vivo nanoparticle (NP)-based biosensor with enhanced efficacy in the event of varying salt concentrations.
Assuntos
Técnicas Biossensoriais , Biotina , Nanopartículas de Magnetita , Estreptavidina , Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química , Biotina/química , Estreptavidina/química , Sais/química , Cloreto de Sódio/químicaRESUMO
Two ethanol-solvated adipate and succinate salts of carvedilol (CVD), a Biopharmaceutics Classification System class 2 drug, were synthesized by crystallizing ethanol with adipic acid (ADP) and succinic acid (SUA). Proton transfer from ADP and SUA to CVD and the presence of ethanol in the two novel compounds were confirmed using powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and single-crystal X-ray diffraction measurements. The two novel ethanol-solvated salts exhibited enhanced solubility and dissolution rates compared with pure carvedilol in phosphate buffer (pH 6.8). Additionally, the morphologies and attachment energies of the two novel compounds and pure CVD were calculated based on their single-crystal structures, revealing a correlation between attachment energy and dissolution rate.
Assuntos
Adipatos , Carvedilol , Etanol , Solubilidade , Carvedilol/química , Adipatos/química , Etanol/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cristalografia por Raios X , Difração de Raios X , Varredura Diferencial de Calorimetria , Ácido Succínico/química , Sais/química , Termogravimetria , Estrutura Molecular , Cristalização , Propanolaminas/químicaRESUMO
Extreme environments, such as highly saline ecosystems, are characterised by a limited presence of microbial communities capable of tolerating and thriving under these conditions. To better understand the limits of life and its chemical and microbiological drivers, highly saline and brine groundwaters of Na-Cl and Na-Ca-Cl types with notably diverse SO4 contents were sampled in water intakes and springs from sedimentary aquifers located in the Outer Carpathians and the Carpathian Foredeep basin and its basement in Poland. Chemical and microbiological methods were used to identify the composition of groundwaters, determine microbial diversity, and indicate processes controlling their distribution using multivariate statistical analyses. DNA sequencing targeting V3-V4 and V4-V5 gene regions revealed a predominance of Proteobacteriota, Methanobacteria, Methanomicrobia, and Nanoarchaea in most of the water samples, irrespective of their geological context. Despite the sample-size constraint, redundancy analysis employing a compositional approach to hydrochemical predictors identified Cl/SO4 and Cl/HCO3 ratios, and specific electrical conductivity, as key gradients shaping microbial communities, depending on the analysed gene regions. Analysis of functional groups revealed that methanogenesis, sulphate oxidation and reduction, and the nitrogen cycle define and distinguish the halotolerant communities in the samples. These communities are characterised by an inverse relationship between methanogens and sulphur-cycling microorganisms.
Assuntos
Archaea , Bactérias , Água Subterrânea , Polônia , Água Subterrânea/microbiologia , Água Subterrânea/química , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Extremófilos/genética , Extremófilos/classificação , Sais/química , Microbiota/genética , Salinidade , Águas Salinas , Biodiversidade , FilogeniaRESUMO
The triboelectric properties of active pharmaceutical ingredients (APIs) contribute to problems during the manufacturing of pharmaceuticals. However, the triboelectric properties of APIs have not been comprehensively characterized. In this study, the effect of salt formulation on the triboelectric properties of APIs was investigated. The triboelectric properties of three groups of amines, namely tertiary amines, purine bases, and amino acids, and their hydrochlorides were evaluated using a suction-type Faraday cage meter. Most of the hydrochloride salts exhibited more negative charges than the corresponding free bases, and the degree by which the triboelectric property changed upon hydrochlorination depended on the structural groups of the compounds. In the case of tertiary amines, the change in the zero-charge margin upon hydrochlorination was negatively correlated with the zero-charge margin of the free base. In contrast, hydrochlorination of the amino acids led to a significant change in the zero-charge margin. In most cases, salt formation also affected the triboelectric properties of API powders. Controlling the triboelectric properties of APIs solves various problems caused by the electrification of raw material powders and granules during the production of pharmaceuticals, thereby increasing the quality of produced pharmaceuticals.
Assuntos
Aminas , Sais , Aminas/química , Sais/química , Preparações Farmacêuticas/química , Aminoácidos/química , Princípios AtivosRESUMO
Torsemide is a long acting pyridine sulfonylurea diuretic. Torsemide hydrochloride is widely used now, there are only a few organic acid salts reported. Cocrystallization with organic acids is an effective way to improve its solubility. Here, we reported maleate and phthalate of torsemide, in which the organic acid lost a proton transferring to the pyridine of torsemide, and torsemide interacted with organic acid through N+ - Hâ¯O- hydrogen bond to form salts crystal. Surprisingly, maleate showed a clear "spring" pattern in apparent solubility, whereas phthalate had a "spring-parachute" effect. Both crystalline salts kept a higher solubility than torsemide without falling. The "spring-parachute" effect of crystalline salts promoted rapid dissolution of torsemide and kept a high concentration, thereby increasing its bioavailability.
Assuntos
Cristalização , Sais , Solubilidade , Torasemida , Torasemida/química , Cristalização/métodos , Sais/química , Ligação de Hidrogênio , Diuréticos/química , Maleatos/química , Disponibilidade BiológicaRESUMO
Coordination polymers (CPs) and metal-organic frameworks (MOFs) constitute a new class of antibacterial materials. Interest in them stems from their wide range of topology, dimensionality, and secondary building units that can be tuned by an appropriate choice of metal ions and ligands. In particular, silver-based species feature good antibacterial properties. In this study, we explored the coordination of three acetylenic dithioether RSCH2C≡CCH2SR [R = phenyl (LPh), cyclohexyl (LCy), or tert-butyl (LtBu)] ligands on several silver salts (silver tosylate, silver triflate, and silver trifluoroacetate). The crystallographic characterization evidenced the formation of a molecular macrocycle and six CPs with different dimensionalities, ranging from one to two dimensions. In most cases, they are composed of four-coordinated silver atoms in a tetrahedral environment. Their antibacterial activity was investigated against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. All CPs present good antibacterial properties against the tested bacteria with minimal inhibitory concentrations ranging from 5 to 40 µg of Ag/mL. Interestingly, we found that these values could not be correlated to their architecture or morphology or to the amount of silver released. The cytotoxicity of these compounds was also evaluated on normal human dermal fibroblasts, and three of these CPs were found to be biocompatible.
Assuntos
Antibacterianos , Escherichia coli , Testes de Sensibilidade Microbiana , Prata , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Humanos , Staphylococcus aureus/efeitos dos fármacos , Prata/química , Prata/farmacologia , Ligantes , Cristalografia por Raios X , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Sais/farmacologia , Sais/química , Sais/síntese química , Modelos Moleculares , Sobrevivência Celular/efeitos dos fármacos , Éteres/química , Éteres/farmacologiaRESUMO
Five halophilic archaeal strains, XH8T, CK5-1T, GDY1T, HW8-1T, and XH21T, were isolated from commercial coarse salt produced in different regions of China. Their 16S rRNA and rpoB' gene sequences indicated that four of the strains (CK5-1T, GDY1T, HW8-1T, and XH21T) represent distinct species within the genus Haloplanus (family Haloferacaceae), while strain XH8T represents a novel genus within the same family. These assignments were supported by phylogenetic and phylogenomic analyses, which showed that strains CK5-1T, GDY1T, HW8-1T, and XH21T cluster with the current species of the genus Haloplanus, while strain XH8T forms a separate branch from the genus Haloplanus. The digital DNA-DNA hybridization and average amino acid identity (AAI) values among these four strains and the current members of the genus Haloplanus were 23.1%-35.2% and 75.9%-83.8%, respectively; and those values between strain XH8T and other genera in the family Haloferacaceae were 18.8%-33.6% and 59.8%-66.6%, respectively, much lower than the threshold values for species demarcation. Strain XH8T may represent a novel genus of the family Haloferacaceae according to the cut-off value of AAI (≤72.1%) proposed to differentiate genera within the family Haloferacaceae. These five strains could be distinguished from the related species according to differential phenotypic characteristics. Based on these results, it is proposed that strain XH8T represents a novel genus within the family Haloferacaceae, and strains CK5-1T, GDY1T, HW8-1T, and XH21T represent four novel species of the genus Haloplanus, respectively. Additionally, these five strains possess genes encoding enzymes critical for the fermentation process in salt-fermented foods, indicating their potential as starter cultures for these applications.
Assuntos
DNA Arqueal , Filogenia , RNA Ribossômico 16S , RNA Ribossômico 16S/genética , DNA Arqueal/genética , DNA Arqueal/química , China , Alimentos Fermentados/microbiologia , Cloreto de Sódio/metabolismo , Análise de Sequência de DNA , RNA Polimerases Dirigidas por DNA/genética , Composição de Bases , SaisRESUMO
The success of DNA analytical methods, including long-read sequencing, depends on the availability of high-quality, purified DNA. Previously, we developed a method and device for isolating high-molecular-weight (HMW) DNA for long-read sequencing using a high-salt gel electroelution trap. Here, we present an improved version of this method for purifying nucleic acids with high yield and purity from even the most challenging biological samples. The proposed method is a significant improvement over the previously published procedure, offering a simple, fast, and efficient solution for isolating HMW DNA and smaller DNA and RNA molecules. The method utilizes vertical gel electrophoresis in two nested, partially overlapping electrophoretic columns. The upper, smaller-diameter column has a thin layer of agarose gel at the bottom, which separates nucleic acids from impurities, and an electrophoresis buffer on top. After the target nucleic acid has been gel-purified on the upper column, a larger-diameter column with a layer of high-salt gel overlaid with electrophoresis buffer is inserted from below. The purified nucleic acid is then electroeluted into the buffer-filled gap between the separating gel and the high-salt gel, where excess counterions from the high-salt gel slow its migration and cause it to accumulate. The proposed vertical purification system outperforms the previously described horizontal system in terms of ease of use, speed, scalability, and compatibility with high-throughput workflows. Furthermore, the vertical system allows for the sequential purification of several nucleic acid species from the same sample using interchangeable salt-gel columns.
Assuntos
DNA , DNA/isolamento & purificação , DNA/química , RNA/isolamento & purificação , RNA/análise , RNA/química , Eletroforese em Gel de Ágar , Sais/química , Peso Molecular , HumanosRESUMO
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Assuntos
Cristalização , Permeabilidade , Sais , Solubilidade , Sais/química , Administração Oral , Preparações Farmacêuticas/química , Humanos , Química Farmacêutica/métodosRESUMO
The development of liquid biopsy as a minimally invasive technique for tumor profiling has created a need for efficient biomarker extraction systems from body fluids. The analysis of circulating cell-free DNA (cfDNA) is especially promising, but the low amounts and high fragmentation of cfDNA found in plasma pose challenges to its isolation. While the potential of aqueous two-phase systems (ATPS) for the extraction and purification of various biomolecules has already been successfully established, there is limited literature on the applicability of these findings to short cfDNA-like fragments. This study presents the partitioning behavior of a 160 bp DNA fragment in polyethylene glycol (PEG)/salt ATPS at pH 7.4. The effect of PEG molecular weight, tie-line length, neutral salt additives, and phase volume ratio is evaluated to maximize DNA recovery. Selected ATPS containing a synthetic plasma solution spiked with human serum albumin and immunoglobulin G are tested to determine the separation of DNA fragments from the main plasma protein fraction. By adding 1.5% (w/w) NaCl to a 17.7% (w/w) PEG 400/17.3% (w/w) phosphate ATPS, 88% DNA recovery was achieved in the salt-rich bottom phase while over 99% of the protein was removed.
Assuntos
Polietilenoglicóis , Polietilenoglicóis/química , Humanos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/isolamento & purificação , Cloreto de Sódio/química , DNA/química , DNA/isolamento & purificação , Polímeros/química , Biópsia Líquida/métodos , Sais/químicaRESUMO
The utility of knotted proteins in biological activities has been ambiguous since their discovery. From their evolutionary significance to their functionality in stabilizing the native protein structure, a unilateral conclusion hasn't been achieved yet. While most studies have been performed to understand the stabilizing effect of the knotted fold on the protein chain, more ideas are yet to emerge regarding the interactions in stabilizing the knot. Using classical molecular dynamics (MD) simulations, we have explored the dynamics of the figure-of-eight knotted domain present in ketol acid reductoisomerase (KARI). Our main focus was on the presence of a salt bridge network evident within the knotted region and its role in shaping the conformational dynamics of the knotted chain. Through the potential of mean forces (PMFs) calculation, we have also marked the specific salt bridges that are pivotal in stabilizing the knotted structure. The correlated motions have been further monitored with the help of principal component analysis (PCA) and dynamic cross-correlation maps (DCCM). Furthermore, mutation of the specific salt bridges led to a change in their conformational stability, vindicating their importance.
Assuntos
Cetol-Ácido Redutoisomerase , Simulação de Dinâmica Molecular , Cetol-Ácido Redutoisomerase/química , Cetol-Ácido Redutoisomerase/metabolismo , Conformação Proteica , Sais/química , Análise de Componente PrincipalRESUMO
Seawater desalination is one of the most feasible technologies for producing fresh water to address the water scarcity scenario worldwide. However, environmental concerns about the potential impact of brine discharge on marine ecosystems hinder or delay the development of desalination projects. In addition, scientific knowledge is lacking about the impact of brine discharges on the South America Pacific coast where desalination, is being developed. This paper presents the first monitoring results of brine discharge influence areas from seawater reverse osmosis desalination plants (SWRO) on the South America Pacific coast, using Chile as case study. Our results indicate that the combination of favorable oceanographic conditions and diffusers, results in the rapid dilution of brine discharge on coastal ecosystems; showing a faster dilution than other SWRO plants in other regions, such as Mediterranean or Arabian Gulf, with similar production characteristics. Also, the increase in salinity over the natural salinity in the brine-discharge-affected area was <5 % in a radius of <100 m from the discharge points. Further, according to the published literature and on our monitoring results, we propose a number of considerations (environmental regulation, best scientifically tested measures, environmental requirements) to achieve a long-term sustainable desalination operation.
Assuntos
Salinidade , Água do Mar , Chile , Monitoramento Ambiental/métodos , Sais/análise , Osmose , Purificação da Água/métodos , Oceano Pacífico , EcossistemaRESUMO
Anionic cellulose nanofibers (CNFs) were used to stabilize emulsions that combined water-soluble (and oil-soluble), strongly antioxidant extracts with a water-immiscible, notably antimicrobial essential oil. Specifically, the radical scavenging activity was primarily provided by aqueous extracts from olive fruit (Olea europaea L.), while the antimicrobial effects owed eminently to thyme oil (Thymus vulgaris L.). The resulting emulsions were highly viscous at low shear rate (4.4 Pa·s) and displayed yield stress. The addition of edible salts decreased the yield stress, the apparent viscosity and the droplet size, to the detriment of stability at ionic strengths above 50 mM. Once characterized, the antioxidant and antimicrobial emulsions were applied on packaging-grade paper. Coated paper sheets inhibited the growth of Listeria monocytogenes, a common foodborne pathogen, and acted as antioxidant emitters. In this sense, the release to food simulants A (ethanol 10 vol%), B (acetic acid 3 wt%), and C (ethanol 20 vol%) was assessed. A 24-hour exposure of 0.01 m2 of coated paper to 0.1 L of these hydrophilic simulants achieved inhibition levels of the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) in the 15-29 % range. All considered, the bioactive properties of thyme essential oil towards lipophilic food products can be complemented with the antioxidant activity of aqueous olive extracts towards hydrophilic systems, resulting in a versatile combination for active food packaging.
Assuntos
Antioxidantes , Celulose , Emulsões , Embalagem de Alimentos , Listeria monocytogenes , Extratos Vegetais , Thymus (Planta) , Antioxidantes/química , Antioxidantes/farmacologia , Emulsões/química , Thymus (Planta)/química , Celulose/química , Embalagem de Alimentos/métodos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Olea/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Papel , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Sais/química , Nanofibras/químicaRESUMO
In the study, the modification of naproxen (NAP) with esters of four amino acids (AAs): glycine (GlyOiPr), L-proline (ProOiPr), L-leucine (LeuOiPr), and L-serine (SerOiPr) isopropyl ester was performed to improve water solubility and enhance the permeation of the drug through the skin in comparison to the parent NAP. The NAP derivatives were prepared using the equimolar ratio of the components. In-depth NMR and FTIR analysis revealed that the salts formed with the proton transfer from the carboxylic group of NAP to the amine group of the appropriate AA ester. The NAP salts exhibited improved solubility in water and PBS solution (pH 7.4) when compared to parent NAP. The values of the partition coefficient (log PO/W) for prepared salts were lower than for NAP, however, the salts maintained hydrophobic character determined by the positive values of log P. The In vitro permeation through the pig skin performed in Franz diffusion cells showed that all NAP salts exhibited a higher cumulative mass of permeated NAP (Q24h) than the parent acid. The highest permeation value was noted for [ProOiPr][NAP], with a pseudo-steady state flux (Jss) 32.5 µg NAP cm-2h-1, and Q24h = 246.4 µg NAP cm-2, it was 2.5 % of the applied dose. Moreover, topical preparations with [ProOiPr][NAP] and NAP were prepared based on two vehicles - Celugel® and Pentravan®- approved in pharmacy recipes. The permeation experiments through the Strat-M® showed, that both the Jss and Q24h of permeated drug from preparations containing [ProOiPr][NAP], were statistically several times greater than from the respective preparations with the unmodified acid. Additionally, preparations with [ProOiPr][NAP] provided significantly improved permeation of NAP than two commercial preparations, one of which contained naproxen as the acid and the other - as the sodium salt.
Assuntos
Aminoácidos , Ésteres , Naproxeno , Sais , Absorção Cutânea , Pele , Solubilidade , Naproxeno/química , Naproxeno/administração & dosagem , Naproxeno/farmacocinética , Aminoácidos/química , Animais , Ésteres/química , Absorção Cutânea/efeitos dos fármacos , Suínos , Pele/metabolismo , Sais/química , Permeabilidade , Administração Cutânea , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Interações Hidrofóbicas e HidrofílicasRESUMO
Introducing kosmotropic salts enhances protein stability and reduces solubility by withdrawing water from the protein surface, leading to 'salting out', a phenomenon we have mimicked in supramolecular polymers (SPs). Under the guidance of Ag+, folic acid (FA) self-assembled in water through slipped-stacking and hydrophobic interactions into elongated, robust one-dimensional SPs, resulting in thermo-stable supergels. The SPs exhibited temperature and dilution tolerance, attributed to the stability of the FA-Ag+ complex and its hydrophobic stacking. Importantly, FA-Ag+ SP's stability has been augmented by the kosmotropic anions, such as SO42-, strengthening hydrophobic interactions in the SP, evident from the enhanced J-band, causing improvement of gel's mechanical property. Interestingly, higher kosmotrope concentrations caused a significant decrease in SP's solubility, leading to precipitation of the reinforced SPsâa 'salting out' effect. Conversely, chaotropes like ClO4- slightly destabilized hydrophobic stacking and promoted an extended conformation of individual SP chain with enhanced solubility, resembling a 'salting in' effect.
Assuntos
Ânions , Ácido Fólico , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Prata , Solubilidade , Ácido Fólico/química , Ânions/química , Polímeros/química , Prata/química , Sais/químicaRESUMO
This study is focused on the utilization of naturally occurring salicylic acid and nicotinamide (vitamin B3) in the development of novel sustainable Active Pharmaceutical Ingredients (APIs) with significant potential for treating acne vulgaris. The study highlights how the chemical structure of the cation significantly influences surface activity, lipophilicity, and solubility in aqueous media. Furthermore, the new ionic forms of APIs, the synthesis of which was assessed with Green Chemistry metrics, exhibited very good antibacterial properties against common pathogens that contribute to the development of acne, resulting in remarkable enhancement of biological activity ranging from 200 to as much as 2000 times when compared to salicylic acid alone. The molecular docking studies also revealed the excellent anti-inflammatory activity of N-alkylnicotinamide salicylates comparable to commonly used drugs (indomethacin, ibuprofen, and acetylsalicylic acid) and were even characterized by better IC50 values than common anti-inflammatory drugs in some cases. The derivative, featuring a decyl substituent in the pyridinium ring of nicotinamide, exhibited efficacy against Cutibacterium acnes while displaying favorable water solubility and improved wettability on hydrophobic surfaces, marking it as particularly promising. To investigate the impact of the APIs on the biosphere, the EC50 parameter was determined against a model representative of crustaceansâArtemia franciscana. The majority of compounds (with the exception of the salt containing the dodecyl substituent) could be classified as "Relatively Harmless" or "Practically Nontoxic", indicating their potential low environmental impact, which is essential in the context of modern drug development.
Assuntos
Acne Vulgar , Antibacterianos , Simulação de Acoplamento Molecular , Niacinamida , Acne Vulgar/tratamento farmacológico , Niacinamida/química , Niacinamida/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Solubilidade , Salicilatos/química , Salicilatos/farmacologia , Testes de Sensibilidade Microbiana , Sais/química , Propionibacteriaceae/efeitos dos fármacos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ânions/química , Ácido Salicílico/química , Ácido Salicílico/farmacologiaRESUMO
This study reports a new series of 1,10-phenanthroline-substituted imidazolium salts (1a-f), examining their design, synthesis, structure and anticancer activities. The structures of these salts (1a-f) were characterized using 1H, 13C NMR, elemental analysis, mass spectrometry and Fourier transform infrared (FT-IR) spectroscopies. The salts' cytotoxic activities were tested against cancer cell lines, specifically MCF-7, MDA-MB-231 and non-tumorigenic MCF-10A mammary cells. The study compared the impact of aliphatic and benzylic groups in the salts' structure on their anticancer activity. Screening results revealed that compound 1c, in particular, showed promising inhibitory activity against the growth of MDA-MB-231 breast cancer cells, with an IC50 value of 12.8 ± 1.2 µM, indicating its potential as a chemotherapeutic agent. Cell apoptosis analysis demonstrated a tendency for compound 1c to induce early apoptosis in breast cancer cells. The stability/aquation of compound 1c was investigated using 1H NMR spectroscopy and its binding modes with DNA were explored via UV-Vis spectroscopy. Additionally, the study investigated the interaction residues and docking scores of compound 1c and the reference drug doxorubicin against Bax and Bcl-2 proteins using molecular docking.
Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis , Fenantrolinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenantrolinas/química , Fenantrolinas/farmacologia , Fenantrolinas/síntese química , Sais/química , Sais/farmacologia , Sais/síntese química , Relação Estrutura-Atividade , Compostos Heterocíclicos com 3 Anéis/síntese química , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologiaRESUMO
Solvent extraction of lithium from brine with a high Mg/Li ratio was investigated. Tributyl phosphate (TBP), ferric chloride (FeCl3), and kerosene were used as the extractant, co-extractant, and diluent, respectively. The mechanism of the extraction process was studied by LC-MS, UV-VIS, and FT-IR analyses. Effects of organic to aqueous phase volume ratio (O/A) on the extraction efficiency and separation factor were optimized. The effects of major parameters including Fe/Li molar ratio, hydrochloric acid concentration, and TBP volume percent as well as their interactions on the lithium extraction efficiency were evaluated using central composite design. These major parameters represent interactions within their selected ranges. While the lithium extraction efficiency as the response value in the experimental design showed the most sensitivity to the acid concentration, the separation factors were more affected by alteration in the TBP volume percent with the fixed optimum values of the other major parameters. The highest one-stage extraction efficiency of 76.3% and Li/Mg separation factor of 304 were obtained at the optimum conditions of Fe/Li = 2.99, HCl = 0.01 M, and TBP = 55%. The Mg/Li mass ratio could be significantly reduced from 192 in the feed to 1.5 in the stripping solution. Based on the findings, a schematic diagram of the process including extraction, stripping, and saponification steps was proposed.