Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 765
Filtrar
1.
PLoS One ; 19(4): e0299926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625887

RESUMO

Preservation of fish as diet ingredient is challenging in many tropical regions due to poor socioeconomic conditions and lack of freezing facilities. So, alternative preservation techniques could be viable to address the issue. The present study evaluated the effect of brine salting (15% w/v) prior to drying at different temperatures on the nutrient profiles of tambaqui fish (Colossoma macropomum). Whole fish samples (n = 48; 792 ± 16 g; 8 months old) were grouped into two as brine-salted and non-salted, and treated at seven different drying temperatures of 30, 35, 40, 45, 50, 55 and 60°C for a period of 23 h each. To evaluate the impact of Maillard reaction, reactive lysine was also quantified. Drying temperature had no effect on the evaluated macro- and micro-nutrients of tambaqui fish (P > 0.05) while brining reduced the overall protein concentration by 6% (58.8 to 55.4 g/100 g DM; P = 0.004). Brining significantly reduced many amino acids: taurine by 56% (7.1 to 3.1 g/kg; P < 0.001), methionine 17% (14.7 to 12.1 g/kg; P < 0.001), cysteine 11% (5.1 to 4.4 g/kg, P = 0.016), and reactive lysine 11% (52.0 to 46.4 g/kg; P = 0.004). However, alanine, arginine, and serine were not affected by brining (P > 0.05). Brining also reduced the concentrations of Se by 14% (149 to 128 µg/kg DM; P = 0.020), iodine 38% (604 to 373 µg/kg DM; P = 0.020), K 42% (9.71 to 5.61 g/kg DM; P < 0.001) and Mg 18% (1.32 to 1.10 g/kg DM; P = < 0.001) versus an anticipated vast increase in Na by 744% (2.70 to 22.90 g/kg DM; P < 0.001) and ash 28% (12.4 to 16.0 g/100g DM; P < 0.001) concentration. Neither brining nor drying temperature induced changes in % lysine reactivity and fat content of tambaqui fish (P > 0.05). Agreeably, results of multivariate analysis showed a negative association between brining, Na, and ash on one side of the component and most other nutrients on the other component. In conclusion, drying without brining may better preserve the nutritive value of tambaqui fish. However, as a practical remark to the industry sector, it is recommended that the final product may further evaluated for any pathogen of economic or public health importance.


Assuntos
Caraciformes , Lisina , Animais , Lisina/metabolismo , Caraciformes/metabolismo , Sais/metabolismo , Valor Nutritivo
2.
Trials ; 25(1): 270, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641845

RESUMO

BACKGROUND: The World Health Organization recommends universal iron supplementation for children aged 6-23 months in countries where anaemia is seen in over 40% of the population. Conventional ferrous salts have low efficacy due to low oral absorption in children with inflammation. Haem iron is more bioavailable, and its absorption may not be decreased by inflammation. This study aims to compare daily supplementation with haem iron versus ferrous sulphate on haemoglobin concentration and serum ferritin concentration after 12 weeks of supplementation. METHODS: This will be a two-arm, randomised controlled trial. Gambian children aged 6-12 months with anaemia will be recruited within a predefined geographical area and recruited by trained field workers. Eligible participants will be individually randomised using a 1:1 ratio within permuted blocks to daily supplementation for 12 weeks with either 10.0 mg of elemental iron as haem or ferrous sulphate. Safety outcomes such as diarrhoea and infection-related adverse events will be assessed daily by the clinical team (see Bah et al. Additional file 4_Adverse event eCRF). Linear regression will be used to analyse continuous outcomes, with log transformation to normalise residuals as needed. Binary outcomes will be analysed by binomial regression or logistic regression, Primary analysis will be by modified intention-to-treat (i.e., those randomised and who ingested at least one supplement dose of iron), with multiple imputations to replace missing data. Effect estimates will be adjusted for baseline covariates (C-reactive protein, alpha-1-acid glycoprotein, haemoglobin, ferritin, soluble transferrin receptor). DISCUSSION: This study will determine if therapeutic supplementation with haem iron is more efficacious than with conventional ferrous sulphate in enhancing haemoglobin and ferritin concentrations in anaemic children aged 6-12 months. TRIAL REGISTRATION: Pan African Clinical Trial Registry PACTR202210523178727.


Assuntos
Anemia Ferropriva , Anemia , Criança , Humanos , Ferro , Anemia Ferropriva/diagnóstico , Anemia Ferropriva/tratamento farmacológico , Sais/metabolismo , Sais/uso terapêutico , Gâmbia , Compostos Ferrosos/efeitos adversos , Ferritinas , Anemia/tratamento farmacológico , Hemoglobinas/metabolismo , Suplementos Nutricionais , Inflamação/tratamento farmacológico , Heme/metabolismo , Heme/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Toxicol Lett ; 394: 23-31, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387764

RESUMO

Intoxications with organophosphorus compounds (OPCs) effect a severe impairment of cholinergic neurotransmission that, as a result of overstimulation may lead to desensitization of nicotinic acetylcholine receptors (nAChRs) and finally to death due to respiratory paralysis. So far, therapeutics, that are capable to address and revert desensitized neuromuscular nAChRs into their resting, i.e. functional state are still missing. Still, among a class of compounds termed bispyridinium salts, which are characterized by the presence of two pyridinium subunits, constituents have been identified, that can counteract organophosphate poisoning by resensitizing desensitized nAChRs. According to comprehensive modeling studies this effect is mediated by an allosteric binding site at the nAChR termed MB327-PAM-1 site. For MB327, the most prominent representative of the bispyridinium salts and all other analogues studied so far, the affinity for the aforementioned binding site and the intrinsic activity measured in ex vivo and in in vivo experiments are distinctly too low, to meet the criteria to be fulfilled for therapeutic use. Hence, in order to identify new compounds with higher affinities for the MB327-PAM-1 binding site, as a basic requirement for an enhanced potency, two compound libraries, the ChemDiv library with 60 constituents and the Tocriscreen Plus library with 1280 members have been screened for hit compounds addressing the MB327-PAM-1 binding site, utilizing the [2H6]MB327 MS Binding Assay recently developed by us. This led to the identification of a set of 10 chemically diverse compounds, all of which exhibit an IC50 value of ≤ 10 µM (in the [2H6]MB327 MS Binding Assay), which had been defined as selection criteria. The three most affine ligands, which besides a quinazoline scaffold share similarities with regard to the substitution pattern and the nature of the substituents, are UNC0638, UNC0642 and UNC0646. With binding affinities expressed as pKi values of 6.01 ± 0.10, 5.97 ± 0.05 and 6.23 ± 0.02, respectively, these compounds exceed the binding affinity of MB327 by more than one log unit. This renders them promising starting points for the development of drugs for the treatment of organophosphorus poisoning by addressing the MB327-PAM-1 binding site of the nAChR.


Assuntos
Intoxicação por Organofosfatos , Compostos de Piridínio , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/metabolismo , Sais/metabolismo , Sais/uso terapêutico , Relação Estrutura-Atividade , Sítios de Ligação , Intoxicação por Organofosfatos/tratamento farmacológico , Ligantes
4.
Anim Sci J ; 95(1): e13920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38323695

RESUMO

This study aimed to evaluate the effects of calcium salts of fatty acids (CSFA) from soybean oil in diets with different levels of rumen degradable protein (RDP) on bio-hydrogenation extent, and fatty acid (FA) profile intake, omasal digesta, rumen bacteria, and milk fat. Eight Holstein lactating cows were used in a replicated 4 × 4 Latin square design. Treatments were arranged in a 2 × 2 factorial design with two CSFA levels (0 or 33.2 g/kg DM of CSFA) and two RDP levels (98.0 or 110 g/kg DM). There was RDP and CSFA interaction effect on the omasal flow of total FA and some specific FA. Only in -CSFA diets, the higher RDP level increased omasal flow of total FA. Dietary RDP levels did not affect the FA profile of bacteria and milk fat. Feeding CSFA reduced or tended to reduce the bacterial proportion of C15:0, C16:0, C16:1, C17:0, and C18:0 FA and decreased the concentrations of short- and medium-chain FA (<18C) and increased the concentrations of unsaturated and long-chain FA (≥18C) in milk fat. Feeding CSFA of soybean oil increases the intake and omasal flow of FA and augments unsaturated FA content in bacteria pellets and milk fat.


Assuntos
Ácidos Graxos , Lactação , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Leite/metabolismo , Cálcio/metabolismo , Sais/metabolismo , Óleo de Soja , Rúmen/metabolismo , Ração Animal/análise , Dieta/veterinária , Bactérias , Digestão
5.
J Biochem Mol Toxicol ; 38(1): e23535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37711070

RESUMO

Redox imbalance leads to oxidative stress that causes irreversible cellular damage. The incorporation of the antioxidant element selenium (Se) in the structure of pyridinium salts has been used as a strategy in chemical synthesis and can be useful in drug development. We investigated the antioxidant activity of Se-containing pyridinium salts (named Compounds 3A, 3B, and 3C) through in vitro tests. We focused our study on liver protein carbonylation, liver lipoperoxidation, free radical scavenging activity (1,1-diphenyl-2-picryl-hydrazil [DPPH]; 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid [ABTS]), and enzyme-mimetic activity assays (glutathione S-transferase [GST]-like; superoxide dismutase [SOD]-like). In addition, 2-(4-chlorophenyl)-2-oxoethyl)-2-((phenylselanyl)methyl)pyridin-1-ium bromide (3C) was selected to evaluate the acute oral toxicity in mice due to the best antioxidant profile. The three compounds were effective in reducing the levels of protein carbonylation and lipoperoxidation in the liver in a µM concentration range. All compounds demonstrated scavenger activity of DPPH and ABTS radicals, and GST-like action. No significant effects were detected in the SOD-like assay. Experimental data also showed that the acute oral treatment of mice with Compound 3C (50 and 300 mg/kg) did not cause mortality or change markers of liver and kidney functions. In summary, our findings reveal the antioxidant potential of Se-containing pyridinium salts in liver tissue, which could be related to their radical scavenging ability and mimetic action on the GST enzyme. They also demonstrate a low toxicity potential for Compound 3C. Together, the promising results open space for future studies on the therapeutic application of these molecules.


Assuntos
Benzotiazóis , Compostos de Bifenilo , Hepatopatias , Selênio , Ácidos Sulfônicos , Camundongos , Animais , Antioxidantes/metabolismo , Selênio/farmacologia , Sais/farmacologia , Sais/metabolismo , Estresse Oxidativo , Hepatopatias/metabolismo , Superóxido Dismutase/metabolismo , Fígado/metabolismo , Preparações Farmacêuticas/metabolismo
6.
PLoS One ; 18(8): e0288096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535641

RESUMO

This study presented the expression of the outer membrane protein N in E. coli BL21 (DE3) Omp8 Rosetta under its growth condition and by osmoregulation. The effects of osmotic stress caused by salts, sugars, or pH values on the survival of the target Gram-negative bacterial strain of E. coli BL21 (DE3) Omp8 Rosetta and OmpN expression remain unknown. Here, tryptone yeast extract with varied salts and concentrations was initially used to generate an LB broth medium. To show how salts and concentration affect bacterial growth, the optical density at 600 nm was measured. The findings supported the hypothesis that salts and concentrations control bacterial growth. Moreover, a Western blotting study revealed that OmpN overexpression was present in all tested salts after stimulation with both glucose and fructose after being treated individually with anti-OmpN and anti-histidine tag polyclonal antibodies on transferred nitrocellulose membrane containing crude OmpN. Following the presence of the plasmid pET21b(+)/ompN-BOR into E. coli BL21 (DE3) Omp8 Rosetta, which was expressed in the recombinant OmpN protein (BOR), OmpN expression was demonstrated for all monovalent cations as well as MgCl2. All of the tested salts, except for BaCl2, NaH2PO4, and KH2PO4, showed overexpression of recombinant BOR after Isopropyl ß-D-1-thiogalactopyranoside (IPTG) induction. Using CH3COONa, both with and without IPTG induction, there was very little bacterial growth and no OmpN expression. With NaCl, a pH value of 7 was suitable for bacterial development, whereas KCl required a pH value of 8. According to this research, bacterial growth in addition to salts, sugars, and pH values influences how the OmpN protein is produced.


Assuntos
Escherichia coli , Sais , Escherichia coli/genética , Escherichia coli/metabolismo , Sais/metabolismo , Osmorregulação , Açúcares/metabolismo , Isopropiltiogalactosídeo/farmacologia , Proteínas Recombinantes/metabolismo , Proteínas de Membrana/metabolismo
7.
J Dairy Sci ; 106(12): 8404-8414, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641243

RESUMO

The possible contribution of brine-derived microflora to the sensory attributes of cheese is still a rather unexplored field. In this study, 365 bacteria and 105 yeast strains isolated from 11 cheese brines were qualitatively tested for proteolytic and lipolytic activities, and positive strains were identified by sequencing. Among bacteria, Staphylococcus equorum was the most frequent, followed by Macrococcus caseolyticus and Corynebacterium flavescens. As for yeasts, Debaryomyces hansenii, Clavispora lusitaniae, and Torulaspora delbrueckii were most frequently identified. A total of 38% of bacteria and 59% of yeasts showed at least 1 of the metabolic activities tested, with lipolytic activity being the most widespread (81% of bacteria and 95% of yeasts). Subsequently 15 strains of bacteria and 10 yeasts were inoculated in a curd-based medium and assessed via headspace-solid phase microextraction coupled with gas chromatography-mass spectrometry to determine their volatilome. After a 30-d incubation at 12°C, most strains showed a viability increase of about 2 log cfu/mL, suggesting good adaptability to the cheese environment. A total of 26 compounds were detected in the headspace, carbonyl compounds and alcohols being the major contributors to the volatile profile of the curd-based medium. Multivariate analysis was carried out to elucidate the overall differences in volatiles produced by selected strains. Principal component analysis and hierarchical clustering analysis demonstrated that the brine-related microorganisms were separated into 3 different groups, suggesting their different abilities to produce volatile compounds. Some of the selected strains have been shown to have interesting aromatic potential and to possibly contribute to the sensory properties of cheese.


Assuntos
Queijo , Sais , Animais , Sais/metabolismo , Leveduras , Bactérias/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/veterinária , Queijo/análise
8.
PLoS One ; 18(6): e0287267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37319232

RESUMO

The interaction of pharmacologically active drugs with SC biochemical components is underestimated in pharmaceutical research. The aim of this research was to illustrate that some drugs intended for transdermal delivery could interact with the protein component of SC. Such interactions could be in favor of or opposition to their percutaneous absorption. IR microspectroscopy was used to delineate possible interaction of SC keratin with three losartan salts LOS-K, LOS-DEA and LOS-AML salts in addition to AML-BES salt. The results of PCA, combined with comparisons of average second derivative spectra of SC samples treated with these salts and the control SC, showed that LOS-DEA did not interact with SC, thus providing base line permeation of losartan. AML-BES, LOS-AML and LOS-K salts modified the conformational structure of keratin. The disorganization effect on the α-helical structure and induced formation of parallel ß-sheets and random coils were in the order of AML-BES˃LOS-AML˃LOS-K. The order of the impact of treatments which resulted in increased formation of ß-turns was AML-BES˃LOS-AML. The formation of antiparallel ß-sheets was manifested by LOS-AML. Thus, the overall effect of these salts on the SC protein was AML-BES˃LOS-AML˃LOS-K. The impact of LOS-K was associated with improved permeation whereas the impact of LOS-AML was associated with hindered permeation of both losartan and amlodipine. There is a possibility that losartan and amlodipine when present in combination inside SC, their binding to the protein is enhanced leading to being retained within SC.


Assuntos
Leucemia Mieloide Aguda , Losartan , Humanos , Losartan/farmacologia , Sais/metabolismo , Anlodipino , Preparações Farmacêuticas/química , Queratinas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Pele/metabolismo
9.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982582

RESUMO

We previously showed that two iron compounds that are orally ingested by humans, namely ferric EDTA and ferric citrate, can induce an oncogenic growth factor (amphiregulin) in human intestinal epithelial adenocarcinoma cell lines. Here, we further screened these iron compounds, plus four other iron chelates and six iron salts (i.e., 12 oral iron compounds in total), for their effects on biomarkers of cancer and inflammation. Ferric pyrophosphate and ferric EDTA were the main inducers of amphiregulin and its receptor monomer, IGFr1. Moreover, at the maximum iron concentrations investigated (500 µM), the highest levels of amphiregulin were induced by the six iron chelates, while four of these also increased IGfr1. In addition, we observed that ferric pyrophosphate promoted signaling via the JAK/STAT pathway by up-regulating the cytokine receptor subunit IFN-γr1 and IL-6. For pro-inflammatory cyclooxygenase-2 (COX-2), ferric pyrophosphate but not ferric EDTA elevated intracellular levels. This, however, did not drive the other biomarkers based on COX-2 inhibition studies and was probably downstream of IL-6. We conclude that of all oral iron compounds, iron chelates may particularly elevate intracellular amphiregulin. Ferric pyrophosphate additionally induced COX-2, probably because of the high IL-6 induction that was observed with this compound.


Assuntos
Adenocarcinoma , Compostos de Ferro , Humanos , Ciclo-Oxigenase 2/metabolismo , Sais/metabolismo , Ácido Edético , Anfirregulina/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Compostos Férricos/farmacologia , Linhagem Celular , Biomarcadores
10.
Nutr Rev ; 81(8): 904-920, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36728680

RESUMO

CONTEXT: Iron deficiency and anemia have serious consequences, especially for children and pregnant women. Iron salts are commonly provided as oral supplements to prevent and treat iron deficiency, despite poor bioavailability and frequently reported adverse side effects. Ferrous bisglycinate is a novel amino acid iron chelate that is thought to be more bioavailable and associated with fewer gastrointestinal (GI) adverse events as compared with iron salts. OBJECTIVE: A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to evaluate the effects of ferrous bisglycinate supplementation compared with other iron supplements on hemoglobin and ferritin concentrations and GI adverse events. DATA SOURCES: A systematic search of electronic databases and grey literature was performed up to July 17, 2020, yielding 17 RCTs that reported hemoglobin or ferritin concentrations following at least 4 weeks' supplementation of ferrous bisglycinate compared with other iron supplements in any dose or frequency. DATA EXTRACTION: Random-effects meta-analyses were conducted among trials of pregnant women (n = 9) and children (n = 4); pooled estimates were expressed as standardized mean differences (SMDs). Incidence rate ratios (IRRs) were estimated for GI adverse events, using Poisson generalized linear mixed-effects models. The remaining trials in other populations (n = 4; men and nonpregnant women) were qualitatively evaluated. DATA ANALYSIS: Compared with other iron supplements, supplementation with ferrous bisglycinate for 4-20 weeks resulted in higher hemoglobin concentrations in pregnant women (SMD, 0.54 g/dL; 95% confidence interval [CI], 0.15-0.94; P < 0.01) and fewer reported GI adverse events (IRR, 0.36; 95%CI, 0.17-0.76; P < 0.01). We observed a non-significant trend for higher ferritin concentrations in pregnant women supplemented with ferrous bisglycinate. No significant differences in hemoglobin or ferritin concentrations were detected among children. CONCLUSION: Ferrous bisglycinate shows some benefit over other iron supplements in increasing hemoglobin concentration and reducing GI adverse events among pregnant women. More trials are needed to assess the efficacy of ferrous bisglycinate against other iron supplements in other populations. PROSPERO REGISTRATION NO: CRD42020196984.


Assuntos
Anemia Ferropriva , Suplementos Nutricionais , Deficiências de Ferro , Ferro , Adulto , Criança , Feminino , Humanos , Masculino , Gravidez , Anemia Ferropriva/tratamento farmacológico , Suplementos Nutricionais/efeitos adversos , Ferritinas/sangue , Ferritinas/efeitos dos fármacos , Hemoglobinas/análise , Hemoglobinas/metabolismo , Hemoglobinas/uso terapêutico , Ferro/metabolismo , Ensaios Clínicos Controlados Aleatórios como Assunto , Sais/metabolismo , Sais/uso terapêutico , Compostos Ferrosos
11.
Am J Physiol Renal Physiol ; 324(3): F256-F266, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656986

RESUMO

The Cl-/[Formula: see text] exchanger pendrin in the kidney maintains acid-base balance and intravascular volume. Pendrin is upregulated in models associated with high circulating aldosterone concentration, such as dietary NaCl restriction or an aldosterone infusion. However, it has not been established if pendrin is similarly regulated by aldosterone with a high-K+ diet because the effects of accompanying anions have not been considered. Here, we explored how pendrin is modulated by different dietary potassium salts. Wild-type (WT) and aldosterone synthase (AS) knockout (KO) mice were randomized to control, high-KHCO3, or high-KCl diets. Dietary KCl and KHCO3 loading increased aldosterone in WT mice to the same extent but had opposite effects on pendrin abundance. KHCO3 loading increased pendrin protein and transcript abundance. Conversely, high-KCl diet feeding caused pendrin to decrease within 8 h of switching from the high-KHCO3 diet, coincident with an increase in plasma Cl- and a decrease in [Formula: see text]. In contrast, switching the high-KCl diet to the high-KHCO3 diet caused pendrin to increase in WT mice. Experiments in AS KO mice revealed that aldosterone is necessary to optimally upregulate pendrin protein in response to the high-KHCO3 diet but not to increase pendrin mRNA. We conclude that pendrin is differentially regulated by different dietary potassium salts and that its regulation is prioritized by the dietary anion, providing a mechanism to prevent metabolic alkalosis with high-K+ base diets and safeguard against hyperchloremic acidosis with consumption of high-KCl diets.NEW & NOTEWORTHY Regulation of the Cl-/[Formula: see text] exchanger pendrin has been suggested to explain the aldosterone paradox. A high-K+ diet has been proposed to downregulate a pendrin-mediated K+-sparing NaCl reabsorption pathway to maximize urinary K+ excretion. Here, we challenged the hypothesis, revealing that the accompanying anion, not K+, drives pendrin expression. Pendrin is downregulated with a high-KCl diet, preventing acidosis, and upregulated with an alkaline-rich high-K+ diet, preventing metabolic alkalosis. Pendrin regulation is prioritized for acid-base balance.


Assuntos
Acidose , Alcalose , Animais , Camundongos , Aldosterona , Proteínas de Transporte de Ânions/metabolismo , Bicarbonatos/metabolismo , Dieta , Potássio/metabolismo , Potássio na Dieta/metabolismo , Sais/metabolismo , Cloreto de Sódio/metabolismo , Transportadores de Sulfato/genética
12.
Metab Eng ; 75: 170-180, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566973

RESUMO

Currently, the biological production of L-malic acid (L-MA) is mainly based on the fermentation of filamentous fungi at near-neutral pH, but this process requires large amounts of neutralizing agents, resulting in the generation of waste salts when free acid is obtained in the downstream process, and the environmental hazards associated with the waste salts limit the practical application of this process. To produce L-MA in a more environmentally friendly way, we metabolically engineered the acid-tolerant yeast Pichia kudriavzevii and achieved efficient production of L-MA through low pH fermentation. First, an initial L-MA-producing strain that relies on the reductive tricarboxylic acid (rTCA) pathway was constructed. Subsequently, the L-MA titer and yield were further increased by fine-tuning the flux between the pyruvate and oxaloacetate nodes. In addition, we found that the insufficient supply of NADH for cytoplasmic malate dehydrogenase (MDH) hindered the L-MA production at low pH, which was resolved by overexpressing the soluble pyridine nucleotide transhydrogenase SthA from E. coli. Transcriptomic and metabolomic data showed that overexpression of EcSthA contributed to the activation of the pentose phosphate pathway and provided additional reducing power for MDH by converting NADPH to NADH. Furthermore, overexpression of EcSthA was found to help reduce the accumulation of the by-product pyruvate but had no effect on the accumulation of succinate. In microaerobic batch fermentation in a 5-L fermenter, the best strain, MA009-10-URA3 produced 199.4 g/L L-MA with a yield of 0.94 g/g glucose (1.27 mol/mol), with a productivity of 1.86 g/L/h. The final pH of the fermentation broth was approximately 3.10, meaning that the amount of neutralizer used was reduced by more than 50% compared to the common fermentation processes using filamentous fungi. To our knowledge, this is the first report of the efficient bioproduction of L-MA at low pH and represents the highest yield of L-MA in yeasts reported to date.


Assuntos
Escherichia coli , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Escherichia coli/genética , Engenharia Metabólica/métodos , NAD/metabolismo , Sais/metabolismo , Fermentação , Piruvatos/metabolismo , Concentração de Íons de Hidrogênio
13.
Chemosphere ; 311(Pt 1): 136861, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36243096

RESUMO

Eliminating "sulfur starvation" caused by competition for sulfate transporters between chromate and sulfate is crucial to enhance the content of sulfur-containing compounds and improve the tolerance and reduction capability of Cr(VI) in bacteria. In this study, the effects of sulfur salts on the Cr(VI) bioremediation and the possible mechanism were investigated in Rhodobacter sphaeroides SC01 by cell imaging, spectroscopy, and biochemical measurements. The results showed that, when the concentration of metabisulfite was 2.0 g L-1, and the initial OD600 was 0.33, the reduction rate of R. sphaeroides SC01 reached up to 91.3% for 500 mg L-1 Cr(VI) exposure at 96 h. Moreover, thiosulfate and sulfite also markedly increased the concentration of reduced Cr(VI) in R. sphaeroides SC01. Furthermore, the characterization results revealed that -OH, -CONH, -COOH, -SO3, -PO3, and -S-S- played a major role in the adsorption of Cr, and Cr(III) reduced by bacteria was bioprecipitated in the production of Cr2P3S9 and CrPS4. In addition, R. sphaeroids SC01 combined with metabisulfite significantly increased the activity of glutathione peroxidase and the content of glutathione (GSH) and total sulfhydryl while decreasing reactive oxygen species (ROS) accumulation and cell death induced by Cr(VI) toxic. Overall, the results of this research revealed a highly efficient and reliable strategy for Cr(VI) removal by photosynthetic bacteria combined with sulfur salts in high-concentration Cr(VI)-contaminated wastewater.


Assuntos
Cromo , Sais , Sais/metabolismo , Cromo/química , Enxofre/farmacologia , Enxofre/metabolismo , Bactérias/metabolismo , Glutationa/metabolismo
14.
J Plant Res ; 135(6): 785-798, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36266589

RESUMO

Variable climatic conditions frequently have harmful effects on plants. Reaumuria trigyna, a salt-secreting xerophytic shrub, occurs in Inner Mongolia, which has a poor environment for plant growth. To explore the physiological and molecular mechanisms of R. trigyna in response to environmental stress, this study investigated the abiotic resistance of R. trigyna in terms of growth regulation, antioxidant defense, osmotic regulation, ion transport, and ion homeostasis-related genes. R. trigyna seedlings were treated with 400 mM NaCl, 400 mM neutral salts (NaCl:Na2SO4 = 9:1), 50 mM alkaline salts (NaHCO3:Na2CO3 = 9:1), 10% polyethylene glycol (PEG), and UV-B. Seedlings under 400 mM NaCl and 400 mM neutral salt stress showed less damage. While alkaline salt, PEG, and UV stress caused more damage, specifically in oxidative damage, proline levels, electrolyte leakage, and activation of antioxidant defenses. Furthermore, under the abiotic stress treatments, the accumulation of Na+ increased while the accumulation of K+ decreased. Further analysis showed that the flow rate of Na+ and K+ under alkaline salt stress was higher than under neutral salt stress. Neutral salt induced high expression of RtNHX1 and RtSOS1, while alkaline salt induced high expression of RtHKT1, and alkaline salt stress significantly reduced the activity of root cells. These results indicated that R. trigyna seedlings were more tolerant to neutral than alkaline salts; this might be because root activity decreased at high pH levels, which impaired membrane permeability and the ion transfer system, leading to an imbalance between Na+ and K+, and in turn to excessive accumulation of reactive oxygen species (ROS) and decreased plant stress resistance.


Assuntos
Tolerância ao Sal , Tamaricaceae , Antioxidantes/metabolismo , Sais/metabolismo , Sais/farmacologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Tamaricaceae/genética , Tamaricaceae/metabolismo , Plântula , Estresse Fisiológico/genética , Permeabilidade , Concentração de Íons de Hidrogênio
15.
J Dairy Sci ; 105(12): 9652-9665, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270875

RESUMO

Our objective was to determine the dose-response effects of calcium salts of palm fatty acids (CSPF) on nutrient digestibility and production responses of early-lactation dairy cows grazing on tropical pastures and to evaluate carryover effects throughout mid and late lactation. Forty multiparous dairy cows (Jersey × Holstein) with (mean ± standard error of the mean) 20 ± 1.69 kg of milk/d and 20 ± 5.0 d in milk were used in a randomized complete block design. During the treatment period, all cows were kept in a grazing system. The treatments were offered for 90 d (treatment period) and consisted of 4 increasing levels of CSPF: 0 (0 kg/d), 0.2 (0.2 kg/d), 0.4 (0.4 kg/d), and 0.6 (0.6 kg/d). Each treatment had 10 animals. Increasing CSPF from 0 to 0.6 kg/d replaced an equivalent amount of a corn-based concentrate supplement offered at 10 kg/d on an as-fed basis (8.96 kg/d as a dry matter basis). All cows were housed and received a diet without fat inclusion fed as total mixed ration once a day from 91 to 258 d of the experiment (carryover period). During the treatment period, increasing CSPF linearly decreased dry matter intake (1.20 kg/d), linearly increased neutral detergent fiber digestibility (3.90 percentage units), and quadratically increased total fat digestibility (6.30 percentage units at 0.4 kg/d CSPF). Increasing CSPF linearly increased the yields of milk (4.10 kg/d), milk fat (0.11 kg/d), milk lactose (0.19 kg/d), energy-corrected milk (ECM; 3.30 kg/d), and feed efficiency (ECM/dry matter intake, 0.34 kg/kg), and linearly decreased milk protein content (0.38 g/100 g), body weight change (0.05 kg/d), and body condition score (0.37). We observed interactions between CSPF and time during the carryover period. Overall, CSPF supplementation linearly increased or tended to increase milk yield until 202 d of the experiment with a similar pattern observed for all the other yield variables. In conclusion, supplementing CSPF from 0 to 0.6 kg/d during 90 d increased neutral detergent fiber and total fat digestibility and the yields of milk, milk fat, and ECM in early-lactation dairy cows grazing on tropical pastures. Most production measurements linearly increased during the treatment period, indicating that 0.6 kg/d CSPF was the best dose. Also, supplementing CSPF from 0 to 0.6 kg/d for 90 d during early lactation had positive carryover effects across mid and late lactation.


Assuntos
Ácidos Graxos , Sais , Feminino , Bovinos , Animais , Ácidos Graxos/metabolismo , Sais/metabolismo , Cálcio/metabolismo , Detergentes , Lactação/fisiologia , Dieta/veterinária , Suplementos Nutricionais , Período Pós-Parto , Fibras na Dieta/metabolismo , Digestão , Ração Animal/análise
16.
J Environ Manage ; 323: 116197, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126591

RESUMO

Baker's yeast industries generate highly polluted effluents, especially the cell free broth (i.e., vinasse) characterized by high chemical oxygen demand, nitrogen, and salts. In this work, it was found that the residual by-products (i.e., ethanol and acetic acid) and salts in the vinasse severely inhibited the cell growth, which hindered the reuse of the vinasse for the production of Saccharomyces cerevisiae. Through optimizing a suitable control strategy, the productions of ethanol and acetic acid were eliminated. Then, a nanofiltration membrane (i.e., NF5) was preferred for preliminarily and simultaneously separating and concentrating valuable molecules (i.e., invertase, food grade proteins and pigments) in the vinasse, and the main fouling mechanism was cake layer formation. Subsequently, a reverse osmosis membrane (RO) was suitable to separate and concentrate salts in the NF5 permeate, where the membrane fouling was negligible. Finally, the RO permeate was successfully reused for the production of S. cerevisiae. In addition, without calculating the benefit from the recovery of the valuable molecules, the cost of the integrated process can be decreased by 59.8% compared with the sole triple effect evaporation. Meanwhile, the volume of the fresh water used in the fermentation process can be decreased by 68.8%. Thus, it is a sustainable process for the cleaner production of baker's yeast using the integrated fermentation and membrane separation process.


Assuntos
Saccharomyces cerevisiae , Gerenciamento de Resíduos , Ácido Acético/metabolismo , Etanol/metabolismo , Fermentação , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Sais/metabolismo , beta-Frutofuranosidase/metabolismo
17.
Physiol Plant ; 174(5): e13786, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36169530

RESUMO

Plants in nature commonly encounter combined stress scenarios. The response to combined stressors is often unpredictable from the response to single stresses. To address stress interference in roots, we applied salinity, heat, and high light to hydroponically grown sugar beet. Two main patterns of metabolomic acclimation were apparent. High salt of 300 mM NaCl considerably lowered metabolite amounts, for example, those of most amino acids, γ-amino butyric acid (GABA), and glucose. Very few metabolites revealed the opposite trend with increased contents at high salts, mostly organic acids such as citric acid and isocitric acid, but also tryptophan, tyrosine, and the compatible solute proline. High temperature (31°C vs. 21°C) also frequently lowered root metabolite pools. The individual effects of salinity and heat were superimposed under combined stress. Under high light and high salt conditions, there was a significant decline in root chloride, mannitol, ribulose 5-P, cysteine, and l-aspartate contents. The results reveal the complex interaction pattern of environmental parameters and urge researchers to elaborate in much more detail and width on combinatorial stress effects to bridge work under controlled growth conditions to growth in nature, and also to better understand acclimation to the consequences of climate change.


Assuntos
Beta vulgaris , Beta vulgaris/metabolismo , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Cloretos/metabolismo , Cisteína/metabolismo , Triptofano , Ácido Aspártico , Sais/metabolismo , Sais/farmacologia , Salinidade , Prolina/metabolismo , Redes e Vias Metabólicas , Ácido gama-Aminobutírico/farmacologia , Manitol/farmacologia , Ácido Cítrico/metabolismo , Glucose/metabolismo , Tirosina/metabolismo , Tirosina/farmacologia , Açúcares/metabolismo , Raízes de Plantas/metabolismo , Estresse Fisiológico
18.
Protein Pept Lett ; 29(12): 1099-1107, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36165521

RESUMO

BACKGROUND: The ionic interactions play an important role in the stabilization of the native conformation of proteins. Toxoplasma gondii Ferredoxin NADP+ Reductase (TgFNR) remains stable at pH 4.0. However, such modulation of ionic interactions leads to compaction and non-cooperativity in its folding. OBJECTIVE: To gain insights into the role of ionic interactions in the modulation of structure and thermodynamic stability of TgFNR. METHODS: Protein preparations, circular dichroism and fluorescence spectroscopy were used to determine salt-induced changes in the structure and stability of TgFNR. RESULTS: The kosmotropic salts (sodium fluoride and sodium sulphate) appear to induce the biphasic response on the structure and stability of TgFNR. At pH about 4.0, the addition of low concentrations of kosmotropic salts significantly perturbs the existing native-like secondary structure of TgFNR, whereas higher quantities of salt reversed the denaturing impact. This is a one-of-a-kind situation we are unaware of in any other protein. The urea-induced unfolding of TgFNR in the presence of a low dose of salt (100 mM) drastically affected the protein's thermodynamic stability at neutral pH. The increased salt concentrations, on the other hand, reversed the destabilizing effect. CONCLUSION: Our findings imply that electrostatic interactions are exceptionally significant for the TgFNR stability, however, render highly unusual behavior of Hofmeister series salts, indicating a possible crucial role of salt bridges in the stabilization of different conformations of the protein.


Assuntos
Ferredoxina-NADP Redutase , Toxoplasma , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/metabolismo , Ferredoxinas/metabolismo , NADP/metabolismo , Toxoplasma/metabolismo , Sais/farmacologia , Sais/química , Sais/metabolismo , Dobramento de Proteína , Íons
19.
Biomed Pharmacother ; 154: 113582, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055111

RESUMO

Mitochondria generate energy and building blocks required for cellular growth and function. The notion that mitochondria are not involved in the cancer growth has been challenged in recent years together with the emerging idea of mitochondria as a promising therapeutic target for oncologic diseases. Pentamethinium salts, cyan dyes with positively charged nitrogen on the benzothiazole or indole part of the molecule, were originally designed as mitochondrial probes. In this study, we show that pentamethinium salts have a strong effect on mitochondria, suppressing cancer cell proliferation and migration. This is likely linked to the strong inhibitory effect of the salts on dihydroorotate dehydrogenase (DHODH)-dependent respiration that has a key role in the de novo pyrimidine synthesis pathway. We also show that pentamethinium salts cause oxidative stress, redistribution of mitochondria, and a decrease in mitochondria mass. In conclusion, pentamethinium salts present novel anti-cancer agents worthy of further studies.


Assuntos
Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Respiração , Sais/metabolismo
20.
J Dairy Sci ; 105(11): 9226-9239, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36175236

RESUMO

We aimed to evaluate the incidence of unstable non-acid milk (UNAM) in cows fed either sugarcane or corn silage. Second, we aimed to evaluate the effect of daily variation (d 1 to 4) and alcohol grades (72, 78, and 80%) on UNAM incidence. The experiment was conducted as a split-plot crossover design, with 2 periods and 2 roughage types (sugarcane or corn silage). Thirteen multiparous Holstein cows with an average of 281 ± 29 d in milk were randomly distributed into 2 diets. Individual blood (analysis of total proteins, albumin, urea, calcium, phosphorus, magnesium, iron, chloride, glucose, and lactate) and milk samples (analysis of protein, fat, lactose and total solids, somatic cell count, and characterization of the protein profile) were collected during the last 4 d of each period. For UNAM identification, the alcohol test was conducted in milk samples at 4°C; specifically, if the sample presented the formation of clots, this would be noted as positive for UNAM. In addition, the Dornic acidity analysis was performed in the same samples to evaluate the true milk acidity. The use of sugarcane and higher degrees of alcohol were associated with increased UNAM. We observed no daily variation in UNAM. Nevertheless, we found no roughage type effect on the variables most commonly associated with UNAM, such as changes in salts in the casein micelle and, consequently, the zeta potential and the κ-casein (CN) fraction. The Pearson correlation analysis showed that the zeta potential and the concentrations of αS2-CN, blood ionic calcium, lactate, and glucose increased as the incidence of UNAM increased, showing a positive correlation among these variables. In contrast, the concentrations of lactose, phosphorus, and potassium decreased as UNAM increased, presenting a negative correlation. This study brought important discoveries to unveil why cows manifest UNAM. For instance, higher alcohol grades and cows fed with sugarcane had increased the incidence of UNAM. Additionally, animals with a higher incidence of UNAM (sugarcane-fed cows) were related to increased ionic calcium and glucose and changes in milk protein profile, with lower levels of BSA, ß-CN, and α-lactalbumin and greater αS1-CN content, all of which were correlated with UNAM. Nonetheless, this trial also provides evidence for the need for further studies to better understand the physiological mechanisms that directly affect the stability of milk protein.


Assuntos
Saccharum , Silagem , Feminino , Bovinos , Animais , Silagem/análise , Zea mays/metabolismo , Saccharum/metabolismo , Caseínas/metabolismo , Lactose/metabolismo , Lactação/fisiologia , Lactalbumina/metabolismo , Micelas , Incidência , Magnésio/metabolismo , Cálcio/metabolismo , Sais/metabolismo , Cloretos/metabolismo , Grão Comestível/química , Proteínas do Leite/análise , Fósforo/metabolismo , Glucose/metabolismo , Ureia/metabolismo , Lactatos/análise , Potássio/metabolismo , Ferro , Rúmen/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA