Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Antibiot (Tokyo) ; 70(4): 443-447, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27756911

RESUMO

Caliciviruses are contagious pathogens of humans and various animals. They are the most common cause of viral gastroenteritis in humans, and can cause lethal diseases in domestic animals such as cats, rabbits and immunocompromised mice. In this study, we conducted cytopathic effect-based screening of 2080 selected compounds from our in-house library to find antiviral compounds against three culturable caliciviruses: feline calicivirus, murine norovirus (MNV) and porcine sapovirus (PoSaV). We identified active six compounds, of which two compounds, both related to theaflavins, showed broad antiviral activities against all three caliciviruses; three compounds (abamectin, a mixture of avermectin B1a and B1b; avermectin B1a; and (-)-epigallocatechin gallate hydrate) were effective against PoSaV only; and a heterocyclic carboxamide derivative (BFTC) specifically inhibited MNV infectivity in cell cultures. Further studies of the antiviral mechanism and structure-activity relationship of theaflavins suggested the following: (1) theaflavins worked before the viral entry step; (2) the effect of theaflavins was time- and concentration-dependent; and (3) the hydroxyl groups of the benzocycloheptenone ring were probably important for the anti-calicivirus activity of theaflavins. Theaflavins could be used for the calicivirus research, and as potential disinfectants and antiviral reagents to prevent and control calicivirus infections in animals and humans.


Assuntos
Antivirais/farmacologia , Biflavonoides/farmacologia , Caliciviridae/efeitos dos fármacos , Catequina/farmacologia , Flavinas/farmacologia , Animais , Infecções por Caliciviridae , Calicivirus Felino/efeitos dos fármacos , Catequina/análogos & derivados , Gatos , Efeito Citopatogênico Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Camundongos , Norovirus/efeitos dos fármacos , Estrutura Quaternária de Proteína , Sapovirus/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Virology ; 456-457: 268-78, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24889246

RESUMO

Replication of porcine enteric calicivirus (PEC) in LLC-PK cells is dependent on the presence of bile acids in the medium. However, the mechanism of bile acid-dependent PEC replication is unknown. Understanding of bile acid-mediated PEC replication may provide insight into cultivating related human noroviruses, currently uncultivable, which are the major cause of viral gastroenteritis outbreaks in humans. Our results demonstrated that while uptake of PEC into the endosomes does not require bile acids, the presence of bile acids is critical for viral escape from the endosomes into cell cytoplasm to initiate viral replication. We also demonstrated that bile acid transporters including the sodium-taurocholate co-transporting polypeptide and the apical sodium-dependent bile acid transporter are important in exerting the effects of bile acids in PEC replication in cells. In summary, our results suggest that bile acids play a critical role in virus entry for successful replication.


Assuntos
Ácidos e Sais Biliares/metabolismo , Células Epiteliais/virologia , Sapovirus/efeitos dos fármacos , Sapovirus/fisiologia , Internalização do Vírus/efeitos dos fármacos , Animais , Células Cultivadas , Citoplasma/virologia , Endossomos/efeitos dos fármacos , Endossomos/virologia , Suínos
3.
PLoS Pathog ; 10(6): e1004172, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901849

RESUMO

Sapovirus, a member of the Caliciviridae family, is an important cause of acute gastroenteritis in humans and pigs. Currently, the porcine sapovirus (PSaV) Cowden strain remains the only cultivable member of the Sapovirus genus. While some caliciviruses are known to utilize carbohydrate receptors for entry and infection, a functional receptor for sapovirus is unknown. To characterize the functional receptor of the Cowden strain of PSaV, we undertook a comprehensive series of protein-ligand biochemical assays in mock and PSaV-infected cell culture and/or piglet intestinal tissue sections. PSaV revealed neither hemagglutination activity with red blood cells from any species nor binding activity to synthetic histo-blood group antigens, indicating that PSaV does not use histo-blood group antigens as receptors. Attachment and infection of PSaV were markedly blocked by sialic acid and Vibrio cholerae neuraminidase (NA), suggesting a role for α2,3-linked, α2,6-linked or α2,8-linked sialic acid in virus attachment. However, viral attachment and infection were only partially inhibited by treatment of cells with sialidase S (SS) or Maackia amurensis lectin (MAL), both specific for α2,3-linked sialic acid, or Sambucus nigra lectin (SNL), specific for α2,6-linked sialic acid. These results indicated that PSaV recognizes both α2,3- and α2,6-linked sialic acids for viral attachment and infection. Treatment of cells with proteases or with benzyl 4-O-ß-D-galactopyranosyl-ß-D-glucopyranoside (benzylGalNAc), which inhibits O-linked glycosylation, also reduced virus binding and infection, whereas inhibition of glycolipd synthesis or N-linked glycosylation had no such effect on virus binding or infection. These data suggest PSaV binds to cellular receptors that consist of α2,3- and α2,6-linked sialic acids on glycoproteins attached via O-linked glycosylation.


Assuntos
Interações Hospedeiro-Patógeno , Mucosa Intestinal/virologia , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Receptores Virais/metabolismo , Sapovirus/fisiologia , Ácidos Siálicos/metabolismo , Animais , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/veterinária , Infecções por Caliciviridae/virologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Gastroenterite/patologia , Gastroenterite/veterinária , Gastroenterite/virologia , Glicosilação/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Ligantes , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/química , Estabilidade Proteica , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , Sapovirus/efeitos dos fármacos , Sapovirus/patogenicidade , Ácidos Siálicos/antagonistas & inibidores , Ácidos Siálicos/química , Estereoisomerismo , Sus scrofa , Suínos , Doenças dos Suínos/patologia , Doenças dos Suínos/virologia
4.
Appl Environ Microbiol ; 78(17): 6271-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22752176

RESUMO

Noroviruses are the leading cause of food-borne outbreaks, including those that involve lettuce. The culturable porcine sapovirus (SaV) was used as a norovirus surrogate to study the persistence and the potential transfer of the virus from roots to leaves and from outer to inner leaves of lettuce plants. Treatment of lettuce with SaV was done through the roots of young plants, the soil, or the outer leaves of mature plants. Sampling of roots, xylem sap, and inner and outer leaves followed by RNA extraction and SaV-specific real-time reverse transcription (RT)-PCR was performed at 2 h and on postinoculation days (PID) 2, 5, 7, 14, and/or 28. When SaV was inoculated through the roots, viral RNA persisted on the roots and in the leaves until PID 28. When the virus was inoculated through the soil, viral RNA was detected on the roots and in the xylem sap until PID 14; viral RNA was detected in the leaves only until PID 2. No infectious virus was detected inside the leaves for either treatment. When SaV was inoculated through the outer leaves, viral RNA persisted on the leaves until PID 14; however, the virus did not transfer to inner leaves. Infectious viral particles on leaves were detected only at 2 h postinoculation. The milky sap (latex) of leaves, but not the roots' xylem sap, significantly decreased virus infectivity when tested in vitro. Collectively, our results showed the transfer of SaV from roots to leaves through the xylem system and the capacity of the sap of lettuce leaves to decrease virus infectivity in leaves.


Assuntos
Lactuca/virologia , Látex/imunologia , Sapovirus/fisiologia , Internalização do Vírus , Antivirais/imunologia , Antivirais/metabolismo , Látex/metabolismo , Lactuca/imunologia , Norovirus/fisiologia , Folhas de Planta/virologia , Raízes de Plantas/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sapovirus/efeitos dos fármacos , Sapovirus/isolamento & purificação , Microbiologia do Solo , Fatores de Tempo , Virulência/efeitos dos fármacos
5.
Appl Environ Microbiol ; 78(11): 3932-40, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22447610

RESUMO

Human noroviruses (HuNoVs) are the leading cause of food-borne illness, accounting for 58% of U.S. cases. Because HuNoVs are unculturable, surrogates are needed to investigate transmission routes and evaluate disinfection methods. However, the current surrogates, feline calicivirus (FCV) and murine NoV (MNV), are less tolerant than HuNoVs to acid and chlorine, respectively. Porcine sapovirus (SaV) is the only culturable enteropathogenic calicivirus. In this study, the resistance of SaV to physicochemical treatments was compared to that of HuNoVs (by reverse transcription-PCR), FCV, and MNV (by infectivity assays). Sapovirus and HuNoV (viral RNA) showed similar resistances to heat (56°C) and to different concentrations of chlorine. However, SaV was more resistant than HuNoVs to ethanol treatment (60% and 70%). Like HuNoVs, SaV was stable at pH 3.0 to 8.0, with a <1.0 log(10) 50% tissue culture infective dose (TCID(50)) reduction at pH 3.0 compared to the value for pH 4.0 to 8.0. SaV and MNV showed similar resistances, and both were more resistant than FCV to heat inactivation (56°C). FCV was more resistant than MNV and SaV to ethanol, and all three viruses showed similar resistances to treatment with low concentrations of chlorine for 1 min. Those results indicate that SaV is a promising surrogate for HuNoVs. Next, we used SaV as a surrogate to examine virus attachment to lettuce at different pHs. Sapovirus attached to lettuce leaves significantly at its capsid isoelectric point (pH 5.0), and the attached viral particles remained infectious on lettuce after 1 week of storage at 4°C. The culturable SaV is a good surrogate for studying HuNoV contamination and transmission in leafy greens and potential disinfectants.


Assuntos
Cloro/farmacologia , Desinfetantes/farmacologia , Lactuca/virologia , Norovirus/fisiologia , Sapovirus/fisiologia , Suínos/virologia , Animais , Linhagem Celular , Desinfecção , Etanol/farmacologia , Contaminação de Alimentos , Temperatura Alta , Humanos , Concentração de Íons de Hidrogênio , Norovirus/efeitos dos fármacos , Norovirus/genética , Norovirus/patogenicidade , Sapovirus/efeitos dos fármacos , Sapovirus/genética , Sapovirus/patogenicidade , Inativação de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA