Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
ACS Appl Bio Mater ; 7(9): 5784-5794, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39226406

RESUMO

Hydrated dispersions containing equimolar mixtures of cationic and anionic amphiphiles, referred to as catanionic systems, exhibit synergistic physicochemical properties, and mixing single-chain cationic and anionic lipids can lead to the spontaneous formation of vesicles as well as other phase structures. In the present work, we have characterized two catanionic systems prepared by mixing N-acyltaurines (NATs) and sarcosine alkyl esters (SAEs) bearing 11 and 12 C atoms in the acyl/alkyl chains. Turbidimetric and isothermal titration calorimetric studies revealed that both NATs form equimolar complexes with SAEs having matching acyl/alkyl chains. The three-dimensional structure of the sarcosine lauryl ester (lauryl sarcosinate, LS)-N-lauroyltaurine (NLT) equimolar complex has been determined by single-crystal X-ray diffraction. The LS-NLT equimolar complex is stabilized by electrostatic attraction and multiple hydrogen bonds, including classical, strong N-H···O hydrogen bonds as well as several C-H···O hydrogen bonds between the two amphiphiles. DSC studies showed that both equimolar complexes show single sharp phase transitions. Transmission electron microscopy and dynamic light scattering studies have demonstrated that the LS-NLT catanionic complex assemblies yield stable medium-sized vesicles (diameter 280-350 nm). These liposomes were disrupted at high pH, suggesting that the designed catanionic complexes can be used to develop base-labile drug delivery systems. In vitro studies with these catanionic liposomes showed efficient entrapment (73% loading) and release of the anticancer drug 5-fluorouracil in the physiologically relevant pH range of 6.0-8.0. The release rate was highest at pH 8.0, reaching about 78%, 90%, and 100% drug release at 2, 6, and 12 h, respectively. These observations indicate that LS-NLT catanionic vesicles will be useful for designing drug delivery systems, particularly for targeting organs such as the colon, which are inherently at basic pH.


Assuntos
Materiais Biocompatíveis , Fluoruracila , Tamanho da Partícula , Fluoruracila/química , Estrutura Molecular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Teste de Materiais , Cátions/química , Sarcosina/química , Sarcosina/análogos & derivados , Ésteres/química , Humanos , Lipossomos/química
2.
Biophys Chem ; 314: 107316, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39168056

RESUMO

We have studied binding properties of three detergents, i.e., sodium dodecyl sulfate (SDS), Sarkosyl and sodium lauroyl glutamate (SLG), to model proteins based on their effects on electrophoretic mobilities of the proteins using agarose native gel electrophoresis and circular dichroism (CD). This simple technology can evaluate the dissociative properties of bound detergents from the proteins and their effects on protein structure. SDS influenced the electrophoretic mobilities of all model proteins more strongly than the other two detergents, implying a stronger inclination for protein binding and subsequent alterations in protein structure or reductions in activity, which are supported by CD analysis. On the contrary, Sarkosyl and SLG showed weaker binding and interfered less with the structure and biological activities, indicating that these detergents may be useful for protein purification and analysis. It appeared that SLG was weaker in protein binding than Sarkosyl, although the effects of these two detergents appeared to depend on the proteins.


Assuntos
Dicroísmo Circular , Dodecilsulfato de Sódio , Dodecilsulfato de Sódio/química , Eletroforese em Gel de Ágar , Sarcosina/química , Sarcosina/análogos & derivados , Detergentes/química , Animais , Proteínas/química , Ácido Glutâmico/química , Glutamatos/química
3.
J Am Chem Soc ; 146(31): 21791-21805, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39069661

RESUMO

The diagnosis of disease biomarkers is crucial for the identification, monitoring, and prognostic assessment of malignant disease. However, biological samples with autofluorescence, complex components, and heterogeneity pose major challenges to reliable biosensing. Here, we report the self-assembly of natural proteins and the triplet-triplet annihilation upconversion (TTA-UC) pair to form upconverted protein clusters (∼8.2 ± 1.1 nm), which were further assembled into photon upconversion supramolecular assemblies (PUSA). This PUSA exhibited unique features, including a small size (∼44.1 ± 4.1 nm), oxygen tolerance, superior biocompatibility, and easy storage via lyophilization, all of which are long sought after for photon upconversion materials. Further, we have revealed that the steric hindrance of the annihilator suppresses the stacking of the annihilator in PUSA, which is vital for maintaining the water dispersibility and enhancing the upconversion performance of PUSA. In conjunction with sarcosine oxidase, this near infrared (NIR)-excitable PUSA nanoprobe could perform background-free biosensing of urinary sarcosine, which is a common biomarker for prostatic carcinoma (PCa). More importantly, this nanoprobe not only allows for qualitative identification of urinary samples from PCa patients by the unaided eye under NIR-light-emitting diode (LED) illumination but also quantifies the concentration of urinary sarcosine. These remarkable findings have propelled photon upconversion materials to a new evolutionary stage and expedited the progress of upconversion biosensing in clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Fótons , Humanos , Sarcosina/urina , Sarcosina/química , Sarcosina Oxidase/química , Proteínas/análise , Proteínas/química
4.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928235

RESUMO

The reaction mechanism of tthe formation of azomethine ylides from isatins and sarcosine is addressed in the literature in a general manner. This computational study aims to explore the mechanistic steps for this reaction in detail and to assess the reactivity of formed ylide in a 1,3-dipolar cycloaddition reaction with 7-oxabenzonorbornadiene. For this purpose, density functional theory (DFT) calculations at the M06-2X(SMD,EtOH)/6-31G(d,p) level were employed. The results indicate that CO2 elimination is the rate-determining step, the activation barrier for 1,3-dipolar cycloaddition is lower, and the formed ylide will readily react with dipolarophiles. The substitution of isatine with electron-withdrawal groups slightly decreases the activation barrier for ylide formation.


Assuntos
Compostos Azo , Reação de Cicloadição , Sarcosina , Tiossemicarbazonas , Tiossemicarbazonas/química , Compostos Azo/química , Sarcosina/química , Sarcosina/análogos & derivados , Isatina/química , Modelos Moleculares , Teoria da Densidade Funcional , Norbornanos/química , Estrutura Molecular
5.
Anal Chim Acta ; 1306: 342586, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692787

RESUMO

BACKGROUND: Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS: To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 µM to 60 µM, with a detection limit of 0.226 µM, and 'turn-on' colorimetric signals ranging from 0.18 µM to 60 µM, with a detection limit of 0.120 µM. SIGNIFICANCE: Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.


Assuntos
Colorimetria , Oxirredução , Sarcosina , Smartphone , Sarcosina/urina , Sarcosina/análise , Sarcosina/química , Humanos , Nanoestruturas/química , Limite de Detecção , Espectrometria de Fluorescência , Neoplasias da Próstata/diagnóstico , Fluorescência , Técnicas Biossensoriais , Sarcosina Oxidase/química
6.
Macromol Rapid Commun ; 45(15): e2400103, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597209

RESUMO

N-carboxyanhydride ring-opening polymerization-induced self-assembly (NCA ROPISA) offers a convenient route for generating poly(amino acid)-based nanoparticles in a single step, crucially avoiding the need for post-polymerization self-assembly. Most examples of NCA ROPISA make use of a poly(ethylene glycol) (PEG) hydrophilic stabilizing block, however this non-biodegradable, oil-derived polymer may cause an immunological response in some individuals. Alternative water-soluble polymers are therefore highly sought. This work reports the synthesis of wholly poly(amino acid)-based nanoparticles, through the chain-extension of a polysarcosine macroinitiator with L-Phenylalanine-NCA (L-Phe-NCA) and Alanine-NCA (Ala-NCA), via aqueous NCA ROPISA. The resulting polymeric structures comprise of predominantly anisotropic, rod-like nanoparticles, with morphologies primarily influenced by the secondary structure of the hydrophobic poly(amino acid) that enables their formation.


Assuntos
Nanopartículas , Polimerização , Sarcosina , Nanopartículas/química , Sarcosina/química , Sarcosina/análogos & derivados , Estrutura Molecular , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Polímeros/síntese química , Tamanho da Partícula , Polietilenoglicóis/química , Peptídeos
7.
Chemistry ; 30(31): e202304375, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38563634

RESUMO

The clinical translation of polysarcosine (pSar) as polyethylene glycol (PEG) replacement in the development of novel nanomedicines creates a broad demand of polymeric material in high-quality making high-purity sarcosine N-carboxyanhydride (Sar-NCA) as monomer for its production inevitable. Within this report, we present the use of triethyloxonium tetrafluoroborate in Sar-NCA synthesis with focus on amino acid and chloride impurities to avoid the sublimation of Sar-NCAs. With a view towards upscaling into kilogram or ton scale, a new methodology of monomer purification is introduced by utilizing the Meerwein's Salt triethyloxonium tetrafluoroborate to remove chloride impurities by covalent binding and converting chloride ions into volatile products within a single step. The novel straightforward technique enables access to monomers with significantly reduced chloride content (<100 ppm) compared to Sar-NCA derived by synthesis or sublimation. The derived monomers enable the controlled-living polymerization in DMF and provide access to pSar polymers with Poisson-like molecular weight distribution within a high range of chain lengths (Xn 25-200). In conclusion, the reported method can be easily applied to Sar-NCA synthesis or purification of commercially available pSar-NCAs and eases access to well-defined hetero-telechelic pSar polymers.


Assuntos
Cloretos , Polimerização , Sarcosina , Sarcosina/química , Sarcosina/análogos & derivados , Cloretos/química , Polietilenoglicóis/química , Polímeros/química , Boratos/química , Anidridos/química , Peptídeos
8.
Int J Pharm ; 653: 123871, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38301810

RESUMO

Biotherapeutic PEGylation to prolong action of medications has gained popularity over the last decades. Various hydrophilic natural polymers have been developed to tackle the drawbacks of PEGylation, such as its accelerated blood clearance and non-biodegradability. Polypeptoides, such as polysarcosine (pSar), have been explored as hydrophilic substitutes for PEG. pSar has PEG-like physicochemical characteristics such as water solubility and no reported cytotoxicity and immunogenicity. This review discusses pSar derivatives, synthesis, characterization approaches, biomedical applications, in addition to the challenges and future perspectives of pSar based biomaterials as an alternative to PEG.


Assuntos
Peptídeos , Sarcosina , Sarcosina/análogos & derivados , Peptídeos/química , Sarcosina/química , Polímeros , Materiais Biocompatíveis , Polietilenoglicóis/química
9.
Biomater Sci ; 11(18): 6280-6286, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37548917

RESUMO

Stimuli-responsive transformable biomaterials development can be manipulated practically by fine-tuning the built-in molecular design of their structural segments. Here, we demonstrate a peptide assembly by the bola-type amphiphilic polypeptide, glycolic acid-polysarcosine (PSar)13-b-(L-Leu-Aib)6-b-PSar13-glycolic acid (S13L12S13), which shows morphological transformations between hydrophilic chain-driven and hydrophobic unit-driven morphologies. The hydrophobic α-helical unit (L-Leu-Aib)6 precisely controls packing in the hydrophobic layer of the assembly and induces tubule formation. The densified, hydrophilic PSar chain on the assembly surface becomes slightly more hydrophobic as the temperature increases above 70 °C, starting to disturb the helix-helix interaction-driven formation of tubules. As a result, the S13L12S13 peptide assembly undergoes a reversible vesicle-nanotube transformation following a time course at room temperature and a heat treatment above 80 °C. Using membrane fluidity analysis with DPH and TMA-DPH and evaluating the environment surrounding the PSar side chain with NMR, we clarify that the vesicle was in a kinetically stable state driven by the dehydrated PSar chain, while the nanotube was in a thermodynamically stable state.


Assuntos
Glicolatos , Peptídeos , Peptídeos/química , Sarcosina/química
10.
Psychiatr Pol ; 56(2): 217-228, 2022 Apr 30.
Artigo em Inglês, Polonês | MEDLINE | ID: mdl-35988070

RESUMO

Currently, we observe a huge number of publications describing the role of glycine transporter (GlyT1) inhibitors in schizophrenia treatment. The concept of application for these drugs derives from the glutamatergic theory of schizophrenia. This theory explains psychotic disturbances as the consequence of NMDA receptor functioning defect. The role of the mentioned receptor depends mostly on the presence of cofactors. One such cofactor is the simplest aminoacid, glycine. This amino acid affects the glycine-binding site, located on the NR1 subunit of NMDAR and enables activation of the receptor. Substances enhancing the access of glycine to the receptor could hypothetically improve neuroplasticity. Higher efficacy of these neuroplastic processes may protect from cognitive deterioration and negative symptoms in the course of schizophrenia. In this article we present a systematic review of current literature on the topic of GlyT1 inhibitors in schizophrenia treatment (the state of literature as of November 2019). Firstly, we described the preclinical reasons for glycine enhancement use. Next, we used CINAHL, EMBASE, EMCARE, Medline, PsycINFO, PubMed and Google Scholar databases to extract and analyze evidence from clinical trials. GlyT1 inhibitors seem to have a potential in searching for novel substances in the treatment of negative symptoms, but their capacity to reduce cognitive deficits is not evidenced. So far, the clinical efficacy of several substances was proven, including N-methylglycine (sarcosine), bitopertin and derivatives obtained with chemical synthesis. Some of these substances demonstrate a beneficial clinical effect, but the number of published reports in this area is disproportionate to the value of evidence.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Esquizofrenia , Glicina/metabolismo , Glicina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/uso terapêutico , Sarcosina/química , Sarcosina/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
11.
Biomacromolecules ; 23(4): 1757-1764, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35293717

RESUMO

Polysarcosine (PSar), a water-soluble polypeptoid, is gifted with biodegradability via the random ring-opening copolymerization of sarcosine- and alanine-N-thiocarboxyanhydrides catalyzed by acetic acid in controlled manners. Kinetic investigation reveals the copolymerization behavior of the two monomers. The random copolymers, named PaS, with high molecular weights between 5.3 and 43.6 kg/mol and tunable Ala molar fractions varying from 6 to 43% can be degraded by porcine pancreatic elastase within 50 days under mild conditions (pH = 8.0 at 37 °C). Both the biodegradation rate and water solubility of PaS depend on the content of Ala residues. PaS with Ala fractions below 43% are soluble in water, while the one with 43% Ala self-assembles in water into nanoparticles. Moreover, PaS are noncytotoxic at the concentration of 5 mg/mL. The biodegradability and biocompatibility endow the Ala-containing PSar with the potential to replace poly(ethylene glycol) as a protective shield in drug-delivery.


Assuntos
Alanina , Sarcosina , Animais , Peptídeos/química , Polietilenoglicóis , Sarcosina/análogos & derivados , Sarcosina/química , Suínos , Água
12.
Phys Chem Chem Phys ; 24(2): 941-954, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34913940

RESUMO

We present a combined experimental and theoretical study of the fragmentation of singly and doubly N-methylated glycine (sarcosine and N,N-dimethyl glycine, respectively) induced by low-energy (keV) O6+ ions. Multicoincidence mass spectrometry techniques and quantum chemistry simulations (ab initio molecular dynamics and density functional theory) allow us to characterise different fragmentation pathways as well as the associated mechanisms. We focus on the fragmentation of doubly ionised species, for which coincidence measurements provide unambiguous information on the origin of the various charged fragments. We have found that single N-methylation leads to a larger variety of fragmentation channels than in no methylation of glycine, while double N-methylation effectively closes many of these fragmentation channels, including some of those appearing in pristine glycine. Importantly, the closure of fragmentation channels in the latter case does not imply a protective effect by the methyl group.


Assuntos
Glicina/química , Sarcosina/química , Teoria da Densidade Funcional , Glicina/análogos & derivados , Íons , Metilação , Simulação de Dinâmica Molecular
13.
Drug Test Anal ; 14(1): 181-187, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33269539

RESUMO

Recombinant erythropoietins (rEPOs) are still among the substances endurance athletes use for doping. Detection methods are based on an electrophoretic separation of the proteins followed by a western blot and immunodetection with specific anti-EPO antibodies. In addition to IEF-PAGE, the SDS-PAGE method has been used to differentiate endogenous EPO from rEPOs by their molecular weight (MW). However, to adapt to new generations of rEPOs exhibiting higher MW, which were not well detected after SDS-PAGE, sodium lauroyl sarcosinate (SAR) is now used instead of sodium dodecyl sulfate (SDS) for the initial EPO testing procedure on doping control samples. The SAR-PAGE method is nevertheless expensive as it requires frequent buffer preparations using highly purified sarkosyl powder. In addition, this reagent needs to be handled with care due to acute toxicity by inhalation. The aim of this work was to improve the SDS-PAGE method by increasing its sensitivity and transfer of high-MW rEPOs. First, using a biotinylated primary anti-EPO antibody and avoiding the use of a secondary antibody increased the general sensitivity of both SDS-PAGE and SAR-PAGE to all rEPOs about four-fold. Then, by changing the buffer system during the protein transfer, with a CAPS buffer and a discontinuous buffer transfer system, high-MW rEPOs, EPO-Fc and CERA were transferred with higher efficiency and detected with high sensitivity. This optimized SDS-PAGE protocol could be adopted by anti-doping laboratories as an alternative to SAR-PAGE.


Assuntos
Dopagem Esportivo/prevenção & controle , Eletroforese em Gel de Poliacrilamida/métodos , Eritropoetina/análise , Detecção do Abuso de Substâncias/métodos , Eritropoetina/química , Humanos , Peso Molecular , Proteínas Recombinantes , Sarcosina/análogos & derivados , Sarcosina/química
14.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769498

RESUMO

The introduction of α-helical structure with a specific helix-helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) hydrophilic chain and hydrophobic α-helix (l-Leu-Aib)6 involving the LxxxLxxxL sequence, which induces homo-dimerization due to the concave-convex interaction, formed a nanotube with a uniform 80 nm diameter. In this study, we investigated the importance of the LxxxLxxxL sequence for tube formation by comparing amphiphilic polypeptide SL4A4L4 with hydrophobic α-helix (l-Leu-Aib)2-(l-Ala-Aib)2-(l-Leu-Aib)2 and SL12. SL4A4L4 formed spherical vesicles and micelles. The effect of the LxxxLxxxL sequence elongation on tube formation was demonstrated by studying assemblies of PSar-b-(l-Ala-Aib)-(l-Leu-Aib)6-(l-Ala-Aib) (SA2L12A2) and PSar-b-(l-Leu-Aib)8 (SL16). SA2L12A2 formed nanotubes with a uniform 123 nm diameter, while SL16 assembled into vesicles. These results showed that LxxxLxxxL is a necessary and sufficient sequence for the self-assembly of nanotubes. Furthermore, we fabricated a double-layer nanotube by combining two kinds of nanotubes with 80 and 120 nm diameters-SL12 and SA2L12A2. When SA2L12A2 self-assembled in SL12 nanotube dispersion, SA2L12A2 initially formed a rolled sheet, the sheet then wrapped the SL12 nanotube, and a double-layer nanotube was obtained.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Leucina/química , Nanotubos/química , Peptídeos/química , Sarcosina/análogos & derivados , Modelos Moleculares , Conformação Proteica , Sarcosina/química
15.
Nat Commun ; 12(1): 5981, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645812

RESUMO

The acidic tumor microenvironment in melanoma drives immune evasion by up-regulating cyclic adenosine monophosphate (cAMP) in tumor-infiltrating monocytes. Here we show that the release of non-toxic concentrations of an adenylate cyclase (AC) inhibitor from poly(sarcosine)-block-poly(L-glutamic acid γ-benzyl ester) (polypept(o)id) copolymer micelles restores antitumor immunity. In combination with selective, non-therapeutic regulatory T cell depletion, AC inhibitor micelles achieve a complete remission of established B16-F10-OVA tumors. Single-cell sequencing of melanoma-infiltrating immune cells shows that AC inhibitor micelles reduce the number of anti-inflammatory myeloid cells and checkpoint receptor expression on T cells. AC inhibitor micelles thus represent an immunotherapeutic measure to counteract melanoma immune escape.


Assuntos
Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/genética , Antineoplásicos/farmacologia , AMP Cíclico/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Inibidores de Adenilil Ciclases/síntese química , Adenilil Ciclases/imunologia , Animais , Antineoplásicos/síntese química , Compostos de Benzil/química , AMP Cíclico/imunologia , AMP Cíclico/metabolismo , Ésteres , Feminino , Expressão Gênica , Humanos , Imunidade Inata/efeitos dos fármacos , Injeções Intralesionais , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Micelas , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/patologia , Peptídeos/química , Ácido Poliglutâmico/química , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Sarcosina/análogos & derivados , Sarcosina/química , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Carga Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
16.
Int J Toxicol ; 40(2_suppl): 117S-133S, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225481

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 5 acyl sarcosines and 9 sarcosinate salts as used in cosmetics; all of these ingredients are reported to function in cosmetics as hair conditioning agents and most also can function as surfactants-cleansing agents. The ingredients reviewed in this assessment are composed of an amide comprising a fatty acyl residue and sarcosine and are either free acids or simple salts thereof. The Panel relied on relevant new data, including concentration of use, and considered data from the previous Panel report, such as the reaction of sarcosine with oxidizing materials possibly resulting in nitrosation and the formation of N-nitrososarcosine. The Panel concluded that these ingredients are safe as used in cosmetics when formulated to be non-irritating, but these ingredients should not be used in cosmetic products in which N-nitroso compounds may be formed.


Assuntos
Cosméticos/toxicidade , Irritantes/toxicidade , Sarcosina/toxicidade , Tensoativos/toxicidade , Animais , Qualidade de Produtos para o Consumidor , Cosméticos/química , Cosméticos/farmacocinética , Humanos , Irritantes/química , Irritantes/farmacocinética , Compostos Nitrosos/química , Medição de Risco , Sais , Sarcosina/química , Sarcosina/farmacocinética , Tensoativos/química , Tensoativos/farmacocinética
17.
Int J Biol Macromol ; 182: 921-930, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872615

RESUMO

Intrinsically disordered proteins (IDPs), involved in the regulation and function of various cellular processes like transcription, translation, cell cycle etc., exist as ensembles of rapidly interconverting structures with functional plasticity. Among numerous cellular regulatory mechanisms involved in structural and functional regulation of IDPs, osmolytes are emerging as promising regulatory agents due to their ability to affect the structure-function integrity of IDPs. The present study investigated the effect of methylamine osmolytes on ß-casein, an IDP essential for maintaining the overall stability of casein complex in milk. It was observed that trimethylamine N-oxide induces a compact structural state in ß-casein with slightly decreased chaperone activity and insignificant aggregation propensity. However, the other two osmolytes from this group, i.e., sarcosine and betaine, had no significant effect on the overall structure and chaperone activity of the IDP. The present study hints towards the possible evolutionary selection of higher structural disorder in ß-casein, compared to α-casein, for stability of the casein complex and prevention of amyloidosis in the mammary gland.


Assuntos
Caseínas/química , Proteínas Intrinsicamente Desordenadas/química , Metilaminas/química , Betaína/química , Caseínas/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Multimerização Proteica , Estabilidade Proteica , Sarcosina/química
18.
Bioconjug Chem ; 31(12): 2691-2696, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33237762

RESUMO

Riboflavin carrier protein (RCP) and riboflavin transporters (RFVTs) have been reported to be highly overexpressed in various cancer cells. Hence, targeting RCP and RFVTs using riboflavin may enhance tumor accumulation and internalization of drug delivery systems. To test this hypothesis, butyl-based 3-arm peptostar polymers were synthesized consisting of a lysine core (10 units per arm) and a sarcosine shell (100 units per arm). The end groups of the arms and the core were successfully modified with riboflavin and the Cy5.5 fluorescent dye, respectively. While in phosphate buffered saline the functionalized peptostars showed a bimodal behavior and formed supramolecular structures over time, they were stable in the serum maintaining their hydrodynamic diameter of 12 nm. Moreover, the polymers were biocompatible and the uptake of riboflavin targeted peptostars in A431 and PC3 cells was higher than in nontargeted controls and could be blocked competitively. In vivo, the polymers showed a moderate passive tumor accumulation, which was not significantly different between targeted and nontargeted peptostars. Nonetheless, at the histological level, internalization into tumor cells was strongly enhanced for the riboflavin-targeted peptostars. Based on these results, we conclude that passive accumulation is dominating the accumulation of peptostars, while tumor cell internalization is strongly promoted by riboflavin targeting.


Assuntos
Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Polímeros/química , Polímeros/metabolismo , Riboflavina/metabolismo , Transporte Biológico , Carbocianinas/química , Humanos , Lisina/química , Teste de Materiais , Proteínas de Membrana Transportadoras/metabolismo , Células PC-3 , Sarcosina/química
19.
Cold Spring Harb Protoc ; 2020(9): 100032, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873728

RESUMO

In many cases, solubility and proper folding of fusion proteins expressed in bacteria pose a major challenge in protein purification and crystallization. This is especially true when the fusion proteins are of eukaryotic origin. They form aggregates or become packaged into inclusion bodies, which makes protein purification extremely difficult. Sarkosyl is widely used to extract misfolded proteins from inclusion bodies in soluble form.


Assuntos
Antígenos de Bactérias/metabolismo , Bioquímica/métodos , Corpos de Inclusão/metabolismo , Sarcosina/análogos & derivados , Proteínas Recombinantes de Fusão/metabolismo , Sarcosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA