Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 387, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724946

RESUMO

BACKGROUND: Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. RESULTS: The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. CONCLUSION: Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.


Assuntos
Nitrogênio , Folhas de Planta , Folhas de Planta/fisiologia , Folhas de Planta/genética , Nitrogênio/metabolismo , Sasa/genética , Sasa/fisiologia , Poaceae/genética , Poaceae/fisiologia , Fósforo/metabolismo , Filogenia , Teorema de Bayes
3.
Biomed Res ; 44(2): 73-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005285

RESUMO

A cleft lip, with or without a cleft palate, is a common birth defect caused by environmental factors or genetic mutations. Environmental factors, such as pharmaceutical exposure in pregnant women, are known to induce cleft lip, with or without cleft palate in the child. This study aimed to investigate the protective effect of Sasa veitchii extract (SE) on phenytoin-induced inhibition of cell proliferation in human lip mesenchymal cells (KD cells) and human embryonic palatal mesenchymal cells (HEPM cells). We demonstrated that cell proliferation was inhibited by phenytoin in a dose-dependent manner in both KD and HEPM cells. Co-treatment with SE restored phenytoin-induced toxicity in KD cells but did not protect HEPM cells against phenytoin-induced toxicity. Several microRNAs (miR-27b, miR-133b, miR-205, miR-497-5p, and miR-655-3p) is reported to associate with cell proliferation in KD cells. We measured the seven kinds of microRNAs (miR27b-3p, miR-27b-5p, miR-133b, miR-205-3p, miR-205-5p, miR-497-5p, and miR-655-3p) and found that SE suppressed miR-27b-5p induced by phenytoin in KD cells. Furthermore, co-treatment with SE enhanced the expression of miR-27b-5p downstream genes (PAX9, RARA, and SUMO1). These results suggest that SE protects phenytoin-induced cell proliferation inhibition by modulating miR-27b-5p.


Assuntos
Fenda Labial , Fissura Palatina , MicroRNAs , Sasa , Gravidez , Criança , Humanos , Feminino , Fenitoína/farmacologia , Sasa/genética , Sasa/metabolismo , Fissura Palatina/induzido quimicamente , Fissura Palatina/genética , Fenda Labial/genética , MicroRNAs/genética , Proliferação de Células/genética
4.
Sci Rep ; 11(1): 16492, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34389742

RESUMO

Heat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response-associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.


Assuntos
Fatores de Transcrição de Choque Térmico/genética , Proteínas de Plantas/genética , Sasa/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Fatores de Transcrição de Choque Térmico/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Sasa/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
5.
Plant Cell Rep ; 40(10): 1971-1987, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34392380

RESUMO

KEY MESSAGE: PeTCP10 can be induced by salt stresses and play important regulation roles in salt stresses response in transgenic Arabidopsis. Salt stress is one of the major adverse environmental factors that affect normal plant development and growth. PeTCP10, a Class I TCP member, was markedly expressed in moso bamboo mature leaf, root and stem under normal conditions and also induced by salt stress. Overexpressed PeTCP10 was found to enhance salt tolerance of transgenic Arabidopsis at the vegetative growth stage. It was also found capable to increase relative water content, while decreasing relative electrolyte leakage and Na+ accumulation of transgenic Arabidopsis versus wild-type (WT) plants at high-salt conditions. In addition, it improved antioxidant capacity of transgenic Arabidopsis plants by promoting catalase activity and enhanced their H2O2 tolerance. In contrast to WT plants, transcriptome analysis demonstrated that multiple genes related to abscisic acid, salt and H2O2 response were induced after NaCl treatment in transgenic plants. Meanwhile, overexpressed PeTCP10 improved the tolerance of abscisic acid. Moreover, luciferase reporter assay results showed that PeTCP10 is able to directly activate the expression of BT2 in transgenic plants. In contrary, the germination rates of transgenic plants were significantly lower than those of WT plants under high-NaCl conditions. Both primary root length and survival rate at the seedling stage are also found lower in transgenic plants than in WT plants. It is concluded that overexpressed PeTCP10 enhances salt stress tolerance of transgenic plants at the vegetative growth stage, and it also improves salt sensitiveness in both germination and seedling stages. These research results will contribute to further understand the functions of TCPs in abiotic stress response.


Assuntos
Arabidopsis/fisiologia , Tolerância ao Sal/genética , Sasa/genética , Fatores de Transcrição/genética , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Clorofila/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Malondialdeído/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Potássio/metabolismo , Plântula/genética , Sementes/genética , Sódio/metabolismo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
6.
Plant Cell Rep ; 40(7): 1101-1114, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34100122

RESUMO

KEY MESSAGE: PePIP2;7, a leaf-specific aquaporin gene in bamboo, is upregulated under abiotic stresses. Overexpressing PePIP2;7 confers abiotic stresses tolerance in transgenic Arabidopsis plant and yeast. Aquaporins (AQPs) participate in the regulation of water balance in plants. However, the function of AQPs in bamboo remains unclear. Here, PePIP2;7 was identified as a leaf-specific aquaporin gene in moso bamboo based on the expression analysis of transcriptome data and PCR. In situ hybridization further indicated that PePIP2;7 was mainly expressed in mesophyll cells of mature leaves, while in immature leaves it was dominant in blade edge cells followed by mesophyll cells. Interestingly, PePIP2;7 was strongly expressed in the mesophyll cells near bulliform cells of immature leaves, suggesting that PePIP2;7 might function in water transport and contribute to leaf unfolding. The transient expression assay showed that PePIP2;7 was a plasma membrane intrinsic protein. Furthermore, PePIP2;7 was upregulated under abiotic stresses such as high light, drought, and NaCl. Compared with Col-0, transgenic Arabidopsis plants overexpressing PePIP2;7 had better seed germination rate, longer taproot length, higher SOD activity, and lower MDA content under abiotic stresses. Besides, yeasts expressing PePIP2;7 also had higher tolerance to stress compared to the control. Taken together, our results show that PePIP2;7 is leaf-specific and involved in stress response, which provides new insights into aquaporin function in bamboo.


Assuntos
Aquaporinas/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Sasa/genética , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Aquaporinas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/genética , Clorofila/metabolismo , Enzimas/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Manitol/farmacologia , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase em Tempo Real , Salinidade , Cloreto de Sódio/farmacologia , Estresse Fisiológico/fisiologia
7.
J Genet ; 1002021.
Artigo em Inglês | MEDLINE | ID: mdl-34187975

RESUMO

Drepanostachyum falcatum (Nees) Keng f. is one of the most widely distributed shrubby bamboo species in the temperate region of northwest (NW) Himalayas. Along with the other three temperate bamboo species, namely Yushania anceps, Thamnocalamus spathiflorus and Himalayacalamus falconeri, commonly called as 'ringal', and utilized for making various articles of household and commercial purpose by local artisans. Despite huge ecological and socio-economic importance, they are least studied and lacks baseline genetic information. In this study, ~10 Gb genome sequence data with 70.68 million reads were generated for D. falcatum, through genome skimming approach based on high throughput next-generation sequencing technology with Illumina protocol. The high-quality reads were de novo assembled into 31,997 contigs, which comprised 1943 microsatellite repeats. The dinucleotide and trinucleotide repeats were most abundantly distributed in the genome with 52.95 and 41.17%, respectively. Depending on the sufficient flanking sequence, only 1123 repeats were successfully tagged with primer pairs and these sites were designated as sequence-tagged microsatellite (STMS) markers. Further, a subset of 106 STMS markers were validated through PCR amplification; 77 marker loci were successfully amplified, and 48 of these showed polymorphism. Same set of marker loci were also tested for their cross-amplification in other three temperate bamboo species of the NW Himalayas, which revealed good level of transferability (27-48%) but lesser polymorphism (4-12%). In addition, the genomewide in silico cross-amplification revealed poor cross-transferability in other bamboo taxa representing four different phylogenetic lineages, namely Phyllostachys edulis (10.2%), Bonia amplexicaulis (3.03%), Guadua angustifolia (1.60%), Olyra latifolia (0.89%) and Raddia guianensis (0.36%). Ten polymorphic markers were further used to estimate the measures of genetic diversity in two natural populations, which revealed high genetic diversity (polymorphic information content, PIC = 0.889; expected heterozygosity, He = 0.756) and low genetic differentiation (FST=0.061; Nm = 5.445). To the best of our knowledge, this is one of the pioneer studies carried out for the development of genomic STMS markers through genome skimming approach in Indian bamboo species. The marker information generated here is novel and of paramount importance for future genetic studies in D. falcatum as well as other temperate bamboo species through cross-transferability.


Assuntos
Genoma de Planta/genética , Genômica , Filogenia , Sasa/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites/genética , Sasa/classificação , Especificidade da Espécie
8.
Sci Rep ; 11(1): 7849, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846519

RESUMO

Bamboos, member of the family Poaceae, represent many interesting features with respect to their fast and extended vegetative growth, unusual, yet divergent flowering time across species, and impact of sudden, large scale flowering on forest ecology. However, not many studies have been conducted at the molecular level to characterize important genes that regulate vegetative and flowering habit in bamboo. In this study, two bamboo FD genes, BtFD1 and BtFD2, which are members of the florigen activation complex (FAC) have been identified by sequence and phylogenetic analyses. Sequence comparisons identified one important amino acid, which was located in the DNA-binding basic region and was altered between BtFD1 and BtFD2 (Ala146 of BtFD1 vs. Leu100 of BtFD2). Electrophoretic mobility shift assay revealed that this alteration had resulted into ten times higher binding efficiency of BtFD1 than BtFD2 to its target ACGT motif present at the promoter of the APETALA1 gene. Expression analyses in different tissues and seasons indicated the involvement of BtFD1 in flower and vegetative development, while BtFD2 was very lowly expressed throughout all the tissues and conditions studied. Finally, a tenfold increase of the AtAP1 transcript level by p35S::BtFD1 Arabidopsis plants compared to wild type confirms a positively regulatory role of BtFD1 towards flowering. However, constitutive expression of BtFD1 had led to dwarfisms and apparent reduction in the length of flowering stalk and numbers of flowers/plant, whereas no visible phenotype was observed for BtFD2 overexpression. This signifies that timely expression of BtFD1 may be critical to perform its programmed developmental role in planta.


Assuntos
Bambusa , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Plantas/genética , Sasa , Bambusa/genética , Bambusa/crescimento & desenvolvimento , Sasa/genética , Sasa/crescimento & desenvolvimento
9.
Methods Mol Biol ; 2250: 257-270, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33900611

RESUMO

Bamboo, a fast-growing non-timber forest plant with many uses, is a valuable species for green development. However, bamboo flowering is very infrequent, extending, in general, for up to 120 years. Ecologically, bamboo species are generally better adapted to various environments than other grasses. Therefore, the species deserves a special status in what could be called Ecological Bioeconomy. An understanding of the genetic processes of bamboo can help us sustainably develop and manage bamboo forests. Transposable elements (TEs), jumping genes or transposons, are major genetic elements in plant genomes. The rapid development of the bamboo reference genome, at the chromosome level, reveals that TEs occupy over 63.24% of the genome. This is higher than found in rice, Brachypodium, and sorghum. The bamboo genome contains diverse families of TEs, which play a significant role in bamboo's biological processes including growth and development. TEs provide important clues for understanding the evolution of the bamboo genome. In this chapter, we briefly describe the current status of research on TEs in the bamboo genome, their regulation, and transposition mechanisms. Perspectives for future research are also provided.


Assuntos
Elementos de DNA Transponíveis/genética , Genoma de Planta/genética , Genômica/métodos , Sasa/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Variação Genética , Tamanho do Genoma/genética , Internet , Melhoramento Vegetal/economia , Melhoramento Vegetal/métodos , Ploidias , Sasa/classificação , Especificidade da Espécie
10.
Genomics ; 113(4): 2085-2095, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33895283

RESUMO

The present study used soils contaminated with Fusarium oxysporum f. sp. capsici (CCS) and CCS amended with bamboo biochar (CCS + BC) to grow the pepper variety Qujiao No.1. The physiological performance, and transcriptome and metabolome profiling in leaf (L) and fruit (F) of Qujiao No.1 were conducted. Application of biochar improved soil properties, pepper plant nutrition and increased activities of enzymes related to pest/disease resistance, leading to superior physiological performance and lesser F. wilt disease incidence than plants from CCS. Most of the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were involved in protein processing in endoplasmic reticulum (fruit), plant pathogen interaction (fruit), photosynthesis (leaf), phenylpropanoid biosynthesis (both tissues) and metabolic pathways (both tissues). Biochar improved plant photosynthesis, enhanced the immune system, energy production and increased stress signaling pathways. Overall, our results provide evidence of a number of pathways induced by biochar in pepper regulating its response to F. wilt disease.


Assuntos
Fusarium , Sasa , Carvão Vegetal , Fusarium/genética , Metaboloma , Doenças das Plantas/genética , Sasa/genética , Transcriptoma
11.
Sci Rep ; 11(1): 1574, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452327

RESUMO

The plant microbiota play a key role in plant productivity, nutrient uptake, resistance to stress and flowering. The flowering of moso bamboo has been a focus of study. The mechanism of flowering is related to nutrient uptake, temperature, hormone balance and regulation of key genes. However, the connection between microbiota of moso bamboo and its flowering is unknown. In this study, samples of rhizosphere soil, rhizomes, roots and leaves of flowering and nonflowering plants were collected, and 16S rRNA amplicon Illumina sequencing was utilized to separate the bacterial communities associated with different flowering stages of moso bamboo. We identified 5442 OTUs, and the number of rhizosphere soil OTUs was much higher than those of other samples. Principal component analysis (PCA) and hierarchical clustering (Bray Curtis dis) analysis revealed that the bacterial microorganisms related to rhizosphere soil and endophytic tissues of moso bamboo differed significantly from those in bulk soil and rhizobacterial and endosphere microbiomes. In addition, the PCA analyses of root and rhizosphere soil revealed different structures of microbial communities between bamboo that is flowering and not flowering. Through the analysis of core microorganisms, it was found that Flavobacterium, Bacillus and Stenotrophomonas played an important role in the absorption of N elements, which may affect the flowering time of moso bamboo. Our results delineate the complex host-microbe interactions of this plant. We also discuss the potential influence of bacterial microbiome in flowering, which can provide a basis for the development and utilization of moso bamboo.


Assuntos
Rizoma/microbiologia , Sasa/microbiologia , Bacillus/genética , Bacillus/metabolismo , Bactérias/genética , Bactérias/metabolismo , Flavobacterium/genética , Flavobacterium/metabolismo , Flores/genética , Flores/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , Nutrientes/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Poaceae/genética , Poaceae/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Sasa/genética , Solo/química , Microbiologia do Solo , Stenotrophomonas/genética , Stenotrophomonas/metabolismo
12.
Sci Rep ; 10(1): 10124, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576917

RESUMO

Uridine diphosphate glucose dehydrogenases (UGDHs) are critical for synthesizing many nucleotide sugars and help promote the carbohydrate metabolism related to cell wall synthesis. In plants, UGDHs are encoded by a small gene family. Genome-wide analyses of these genes have been conducted in Glycine max and Arabidopsis thaliana, however, the UGDH gene family has not been comprehensively and systematically investigated in moso bamboo (Phyllostachys edulis), which is a special woody grass monocotyledonous species. In this study, we identified nine putative PeUGDH genes. Furthermore, analysis of gene duplication events and divergences revealed that the expansion of the PeUGDH family was mainly due to segmental and tandem duplications approximately 4.76-83.16 million years ago. An examination of tissue-specific PeUGDH expression indicated that more than 77% of the genes were predominantly expressed in the stem. Based on relative expression levels among PeUGDH members in different tissues in moso bamboo, PeUGDH4 was selected for detailed analysis. The results of subcellular localization indicated that PeUGDH4-GFP fusion proteins was observed to be localized in the cytoplasm. The ectopic overexpression of PeUGDH4 in Arabidopsis significantly increased the contents of hemicellulose and soluble sugar, suggesting that PeUGDH4 acts as a key enzyme involved in bamboo cell wall synthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica/métodos , Polissacarídeos/biossíntese , Sasa/genética , Sasa/metabolismo , Uridina Difosfato Glucose Desidrogenase/genética , Uridina Difosfato Glucose Desidrogenase/fisiologia , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Parede Celular/genética , Parede Celular/metabolismo , Expressão Gênica , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sasa/citologia
13.
Sci Rep ; 10(1): 6522, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300174

RESUMO

Moso bamboo (Phyllostachysheterocycla (Carr.) Mitford cv. Pubescens) is an economically valuable plant in bamboo production areas of southern China, for which the management mode is crucial for improving the comprehensive benefits of bamboo forest stands. In this respect, mixed forested areas of bamboo and broad-leaved tree species can provide sound ecological management of bamboo in forestry operations. To further this goal, an outstanding question is to better understand the spatial distribution of soil bacterial communities in relation to the proportion of mixed in bamboo and broad-leaved forest. We analyzed soil bacterial community diversity and composition along a proportional gradient of 0-40% mixed-ratio (as represented by the width and size of the broad-leaved tree crown over the plot area) of bamboo and broad-leaved forest in Tianbao Yan Nature Reserve using the highthroughputsequencing of the 16S rRNA gene.Specifically, the sampling plots for the mixed proportions were divided according to the percentage of summed projected area of live broadleaf tree crowns. The main broad-leaved species in the five mixed ratio plots are the same. Each plot was 20 m × 20 m in size, and a total of 15 plots were established, three per forest ratio class. From each plot, soil samples were taken at the surface (0-10 cm depth) in December 2017. Our analysis revealed that soil bacterial diversity community structure and dominant flora changed under different mixing ratios of bamboo and broad-leaved trees. In the stand with a mixed ratio of 10-20%, the bacterial diversity index is higher; however, the diversity was lowest in the 20-30% stands. Among the 20-30% forest soil, Acidobacteria (Solibacteria, Solibacteriales, Acidobacteriales) was more abundant than in soils from other mixed-ratio stands.Redundancy analysis showed that mixed forest stand structure, soil pH, organic carbon, total nitrogen, and soil moisture all contributed to shaping the bacterial community structure. Changes in microbial communities were associated with species diversity in tree layers, availability of soil nutrients (SOC and TN), and changes in soil physical properties (MS, pH). Together, these empirical results suggest that different mixing ratios in the bamboo-broad-leaved mixed forest could influence the soil bacterial community structure indirectly, specifically by affecting the soil physical and chemical properties of the forest.


Assuntos
Microbiota/genética , RNA Ribossômico 16S/genética , Sasa/microbiologia , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , China/epidemiologia , Florestas , Humanos , Nitrogênio/metabolismo , Pinus/genética , Pinus/microbiologia , Sasa/genética , Sasa/crescimento & desenvolvimento
14.
Commun Biol ; 3(1): 110, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144397

RESUMO

C-glycosylated flavones (CGFs) are promising candidates as anti-nociceptive compounds. The leaves of bamboo and related crops in the grass family are a largely unexploited bioresource with a wide array of CGFs. We report here pathway-specific enzymes including C-glycosyltransferases (CGTs) and P450 hydroxylases from cereal crops and bamboo species accumulating abundant CGFs. Mining of CGTs and engineering of P450s that decorate the flavonoid skeleton allowed the production of desired CGFs (with yield of 20-40 mg/L) in an Escherichia coli cell factory. We further explored the antinociceptive activity of major CGFs in mice models and identified isoorientin as the most potent, with both neuroanalgesic and anti-inflammatory effects superior to clinical drugs such as rotundine and aspirin. Our discovery of the pain-alleviating flavonoids elicited from bamboo and crop leaves establishes this previously underutilized source, and sheds light on the pathway and pharmacological mechanisms of the compounds.


Assuntos
Analgésicos/metabolismo , Anti-Inflamatórios/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Grão Comestível/enzimologia , Flavonas/biossíntese , Glicosiltransferases/metabolismo , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Sasa/enzimologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Modelos Animais de Doenças , Grão Comestível/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Flavonas/farmacologia , Glicosilação , Glicosiltransferases/genética , Luteolina/biossíntese , Luteolina/farmacologia , Masculino , Camundongos Endogâmicos ICR , Dor Nociceptiva/prevenção & controle , Folhas de Planta/genética , Proteínas de Plantas/genética , Sasa/genética
15.
Gene ; 725: 144160, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31639431

RESUMO

Bambusapervariabilis × Dendrocalamopsisgrandis, a fast-growing and easily propagated bamboo species, has been extensively planted in the southern China, resulting in huge ecological benefits. In recent years, it was found that the pathogenic fungus Arthrinium phaeospermum caused the death of a large amount of bamboo. In this study, the transcriptome of B. pervariabilis × D. grandis, induced by inactivated protein AP-toxin from A. phaeospermum was sequenced and analyzed, to reveal the resistance mechanism induced by biotic agents of B. pervariabilis × D. grandis against A. phaeospermum at the gene level. Transcriptome sequencing was performed by Illumina HiSeq 2000 in order to analyze the differentially expressed genes (DEGs) of B. pervariabilis × D. grandis in response to different treatment conditions. In total, 201,875,606 clean reads were obtained, and the percentage of Q30 bases in each sample was more than 94.21%. There were 6398 DEGs in the D-J group (inoculation with a pathogenic spore suspension after three days of AP-toxin induction) compared to the S-J group (inoculation with a pathogenic spore suspension after inoculation of sterile water for three days) with 3297 up-regulated and 3101 down-regulated genes. For the D-S group (inoculation with sterile water after inoculation of AP-toxin for three days), there were 2032 DEGs in comparison to the S-S group (inoculation with sterile water only), with 1035 up-regulated genes and 997 down-regulated genes. These identified genes were mainly involved in lignin and phytoprotein synthesis, tetrapyrrole synthesis, redox reactions, photosynthesis, and other processes. The fluorescence quantitative results showed that 22 pairs of primer amplification products were up-regulated and 7 were down-regulated. The rate of similarity between these results and the sequencing results of the transcription group was 100%, which confirmed the authenticity of the transcriptome sequencing results. Redox proteins, phenylalanine ammonia lyase, and S-adenosine-L-methionine synthetase, among others, were highly expressed; these results may indicate the level of disease resistance of the bamboo. These results provide a foundation for the further exploration of resistance genes and their functions.


Assuntos
Bambusa/genética , Sasa/genética , Xylariales/genética , China , Resistência à Doença , Fungos/patogenicidade , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Micoses/genética , Proteínas de Plantas/genética , Toxinas Biológicas , Transcriptoma , Xylariales/metabolismo
16.
Biomolecules ; 9(12)2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835882

RESUMO

: Homeobox (HB) genes play critical roles in regulating various aspects of plant growth and development. However, little is known about HB genes in bamboo. In this study, a total of 115 HB genes (PeHB001‒PeHB115) were identified from moso bamboo (Phyllostachys edulis) and grouped into 13 distinct classes (BEL, DDT, HD-ZIP I‒IV, KNOX, NDX, PHD, PINTOX, PLINC, SAWADEE, and WOX) based on the conserved domains and phylogenetic analysis. The number of members in the different classes ranged from 2 to 24, and they usually varied in terms of exon‒intron distribution pattern and length. There were 20 conserved motifs found in 115 PeHBs, with motif 1 being the most common. Gene ontology (GO) analysis showed that PeHBs had diverse molecular functions, with 19 PeHBs being annotated as having xylem development, xylem, and phloem pattern formation functions. Co-expression network analysis showed that 10 of the 19 PeHBs had co-expression correlations, and three members of the KNOX class were hub proteins that interacted with other transcription factors (TFs) such as MYB, bHLH, and OVATE, which were associated with lignin synthesis. Yeast two-hybridization results further proved that PeHB037 (BEL class) interacted with PeHB057 (KNOX class). Transcriptome expression profiling indicated that all PeHBs except PeHB017 were expressed in at least one of the seven tissues of moso bamboo, and 90 PeHBs were expressed in all the tissues. The qRT-PCR results of the 19 PeHBs showed that most of them were upregulated in shoots as the height increased. Moreover, a KNOX binding site was found in the promoters of the key genes involved in lignin synthesis such as Pe4CL, PeC3H, PeCCR, and PeCOMT, which had positive expression correlations with five KNOX genes. Similar results were found in winter bamboo shoots with prolonged storage time, which was consistent with the degree of lignification. These results provide basic data on PeHBs in moso bamboo, which will be helpful for future functional research on PeHBs with positive regulatory roles in the process of lignification.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes Homeobox/genética , Lignina/genética , Lignina/metabolismo , Brotos de Planta/genética , Sasa/genética
17.
Int J Mol Sci ; 21(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861396

RESUMO

Moso bamboo is well-known for its rapid-growth shoots and widespread rhizomes. However, the regulatory genes of these two processes are largely unexplored. GATA transcription factors regulate many developmental processes, but their roles in moso bamboo height control and rhizome development remains unexplored. Here, thirty-one bamboo GATA factors (PeGATAs) were identified, which are evolutionarily closer to rice than Arabidopsis, and their gene expression patterns were analyzed in bamboo development and phytohormone response with bioinformatics and molecular methods. Interestingly, PeGATAs could only be classified into three groups. Phytohormone responsive cis-elements were found in PeGATA promoters and the expression profiles showed that PeGATA genes might respond to gibberellin acid and abscisic acid but not to auxin at the transcriptional level. Furthermore, PeGATA genes have a tissue-specific expression pattern in bamboo rhizomes. Interestingly, most PeGATA genes were down-regulated during the rapid-growth of bamboo shoots. In addition, over-expressing one of the PeGATA genes, PeGATA26, significantly repressed the primary root length and plant height of transgenic Arabidopsis plants, which may be achieved by promoting the gibberellin acid turnover. Overall, our results provide insight into the function of GATA transcription factors in bamboo, and into genetic resources for engineering plant height.


Assuntos
Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Sasa/genética , Sasa/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação , Biologia Computacional/métodos , Genoma de Planta , Genômica/métodos , Filogenia , Ligação Proteica , Transporte Proteico , Sasa/classificação
18.
Biomolecules ; 9(10)2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615151

RESUMO

NAC (NAM, ATAF, and CUC) transcription factors (TFs) are implicated in the transcriptional regulation of diverse processes and have been characterized in a number of plant species. However, NAC TFs are still not well understood in bamboo, especially their potential association with the secondary cell wall (SCW). Here, 94 PeNACs were identified and characterized in moso bamboo (Phyllostachys edulis). Based on their gene structures and conserved motifs, the PeNACs were divided into 11 groups according to their homologs in Arabidopsis. PeNACs were expressed variously in different tissues of moso bamboo, suggesting their functional diversity. Fifteen PeNACs associated with the SCW were selected for co-expression analysis and validation. It was predicted that 396 genes were co-expressed with the 15 PeNACs, in which 16 and 55 genes were involved in the lignin catabolic process and cellulose biosynthetic process respectively. As the degree of lignification in the growing bamboo shoots increased, all 15 PeNACs were upregulated with a trend of rising first and then decreasing except PeNAC37, which increased continuously. These results indicated that these PeNACs might play important roles in SCW biosynthesis and lignification in bamboo shoots. Seven of 15 PeNACs had been found positively co-expressed with seven PeMYBs, and they had similar expression patterns with those of the PeMYBs in bamboo shoots. The targeted sites of miR164 were found in 16 PeNACs, of which three PeNACs associated with SCW were validated to have an opposite expression trend to that of miR164 in growing bamboo shoots. In addition, three PeNACs were selected and verified to have self-activation activities. These results provide comprehensive information of the NAC gene family in moso bamboo, which will be helpful for further functional studies of PeNACs to reveal the molecular regulatory mechanisms of bamboo wood property.


Assuntos
Parede Celular/genética , Sasa/genética , Fatores de Transcrição/genética , Parede Celular/metabolismo , Celulose/biossíntese , Lignina/metabolismo , Sasa/metabolismo , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 20(9)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060272

RESUMO

The basic leucine zipper (bZIP) transcription factor (TF) family is one of the largest gene families, and play crucial roles in many processes, including stress responses, hormone effects. The TF family also participates in plant growth and development. However, limited information is available for these genes in moso bamboo (Phyllostachys edulis), one of the most important non-timber forest products in the world. In the present study, 154 putative PhebZIP genes were identified in the moso bamboo genome. The phylogenetic analyses indicate that the PhebZIP gene proteins classify into 9 subfamilies and the gene structures and conserved motifs that analyses identified among all PhebZIP proteins suggested a high group-specificity. Microsynteny and evolutionary patterns analyses of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that paralogous pairs of PhebZIP genes in moso bamboo underwent a large-scale genome duplication event that occurred 7-15 million years ago (MYA). According to promoter sequence analysis, we further selected 18 genes which contain the higher number of cis-regulatory elements for expression analysis. The result showed that these genes are extensively involved in GA-, ABA- and MeJA-responses, with possibly different mechanisms. The tissue-specific expression profiles of PhebZIP genes in five plant tissues/organs/developmental stages suggested that these genes are involved in moso bamboo organ development, especially seed development. Subcellular localization and transactivation activity analysis showed that PhebZIP47 and PhebZIP126 were localized in the nucleus and PhebZIP47 with no transcriptional activation in yeast. Our research provides a comprehensive understanding of PhebZIP genes and may aid in the selection of appropriate candidate genes for further cloning and functional analysis in moso bamboo growth and development, and improve their resistance to stress during their life.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Sasa/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Mapeamento Cromossômico , Biologia Computacional , Sequência Conservada , Evolução Molecular , Perfilação da Expressão Gênica , Filogenia , Sequências Reguladoras de Ácido Nucleico , Sasa/classificação , Sasa/metabolismo , Transcriptoma
20.
Plant Sci ; 283: 290-300, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128699

RESUMO

Moso bamboo (Phyllostachys edulis) is one of the fastest growing species with a maximum growth rate of 1 m/day. However, the regulator genes for this explosive growth phenomenon have not been functionally studied. Here, we found that Moso bamboo GSK3/shaggy-like kinase 1 (PeGSK1) acts as a negative regulator of cell growth. Over-expression of PeGSK1 in Arabidopsis showed significant growth arrest phenotypes, including dwarfism, small leaves, reduced cell length, and disturbed cell elongation of petiole. Furthermore, Overexpression of PeGSK1 fully inhibited the longer hypocotyl phenotype of Arabidopsis atgsk1 mutants. In addition, PeGSK1-overexpressing lines were resistant to exogenous BR treatment and PeGSK1 interacted with the brassinosteroid signal transduction key regulator BZR1. The BZR1-dependent cell growth genes were down-regulated in PeGSK1-overexpressing lines. These results indicated that PeGSK1 is functionally similar to AtGSK1 and inhibited cell growth via the brassinosteroid signaling pathway. Importantly, PeGSK1 also interacted with PeBZR1, and the expression pattern of PeGSK1 was negatively correlated with the internode elongation of bamboo, indicating that PeGSK1 is involved in the cell growth of bamboo. In summary, our results provide insight into the role of brassinosteroids in the rapid-growth of bamboo culms and identifying target genes for the genetic manipulation of plant height.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Proteínas de Plantas/fisiologia , Sasa/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Plantas/genética , Sasa/genética , Sasa/crescimento & desenvolvimento , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA