Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 9913, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972641

RESUMO

The effects of cadmium stress on the growth and physiological characteristics of Sassafras tzumu Hemsl. were studied in pot experiments. Five Cd levels were tested [CT(Control Treatment) : 0 mg/kg, Cd5: 5 mg/kg, Cd20: 20 mg/kg, Cd50: 50 mg/kg, and Cd100: 100 mg/kg]. The growth and physiological characteristics of the sassafras seedlings in each level were measured. The results showed that soil Cd had negative influences on sassafras growth and reduced the net growth of plant height and the biomass of leaf, branch and root. Significant reductions were recorded in root biomass by 18.18%(Cd5), 27.35%(Cd20), 27.57%(Cd50) and 28.95%(Cd100). The contents of hydrogen peroxide decreased first then increased while malondialdehyde showed the opposite trend with increasing cadmium concentration. Decreases were found in hydrogen peroxide contents by 10.96%(Cd5), 11.82%(Cd20) and 7.02%(Cd50); increases were found in malondialdehyde contents by 15.47%(Cd5), 16.07%(Cd20) and 7.85%(Cd50), indicating that cadmium stress had a certain effect on the peroxidation of the inner cell membranes in the seedlings that resulted in damage to the cell membrane structure. Superoxide dismutase activity decreased among treatments by 17.05%(Cd5), 10,68%(Cd20), 20.85%(Cd50) and 8.91%(Cd100), while peroxidase activity increased steadily with increasing cadmium concentration; these results suggest that peroxidase is likely the main protective enzyme involved in the reactive oxygen removal system in sassafras seedlings. Upward trends were observed in proline content by 90.76%(Cd5), 74.36%(Cd20), 99.73%(Cd50) and 126.01%(Cd100). The increase in proline content with increasing cadmium concentration indicated that cadmium stress induced proline synthesis to resist osmotic stress in the seedlings. Compared to that in CT, the soluble sugar content declined under the different treatments by 32.84%(Cd5), 5.85%(Cd20), 25.55%(Cd50) and 38.69%(Cd100). Increases were observed in the soluble protein content by 2.34%(Cd5), 21.36%(Cd20), 53.15%(Cd50) and 24.22%(Cd100). At different levels of cadmium stress, the chlorophyll content in the seedlings first increased and then decreased, and it was higher in the Cd5 and Cd20 treatments than that in the CT treatment. These results reflected that cadmium had photosynthesis-promoting effects at low concentrations and photosynthesis-suppressing effects at high concentrations. The photosynthetic gas exchange parameters and photosynthetic light-response parameters showed downward trends with increasing cadmium concentration compared with those in CT; these results reflected the negative effects of cadmium stress on photosynthesis in sassafras seedlings.


Assuntos
Cádmio/toxicidade , Fotossíntese/efeitos dos fármacos , Sassafras/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Clorofila/análise , Clorofila/metabolismo , Pressão Osmótica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxidases/análise , Peroxidases/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Prolina/análise , Prolina/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Sassafras/química , Sassafras/enzimologia , Sassafras/crescimento & desenvolvimento , Plântula/química , Plântula/enzimologia , Plântula/crescimento & desenvolvimento , Solo/química , Superóxido Dismutase/metabolismo
2.
Environ Toxicol Chem ; 36(11): 2981-2990, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28519901

RESUMO

We investigated individual toxicities of the nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT); 2-amino-4,6-dinitrotoluene (2-ADNT); 4-amino-2,6-dinitrotoluene (4-ADNT); and nitroglycerin (NG) on microbial activity in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support very high qualitative relative bioavailability for organic chemicals. Batches of SSL soil for basal respiration (BR) and substrate-induced respiration (SIR) assays were separately amended with individual EMs or acetone carrier control. Total microbial biomass carbon (biomass C) was determined from CO2 production increases after addition of 2500 mg/kg of glucose-water slurry to the soil. Exposure concentrations of each EM in soil were determined using US Environmental Protection Agency method 8330A. Basal respiration was the most sensitive endpoint for assessing the effects of nitroaromatic EMs on microbial activity in SSL, whereas SIR and biomass C were more sensitive endpoints for assessing the effects of NG in soil. The orders of toxicity (from greatest to least) were 4-ADNT > 2,4-DNT = 2-ADNT > NG for BR; but for SIR and biomass C, the order of toxicity was NG > 2,4-DNT > 2-ADNT = 4-ADNT. No inhibition of SIR was found up to and including the greatest concentration of each ADNT tested in SSL. These ecotoxicological data will be helpful in identifying concentrations of contaminant EMs in soil that present acceptable ecological risks for biologically mediated processes in soil. Environ Toxicol Chem 2017;36:2981-2990. Published 2017 Wiley Periodicals Inc. on behalf of SETAC.This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Bactérias/efeitos dos fármacos , Compostos de Nitrogênio/toxicidade , Microbiologia do Solo , Biomassa , Respiração Celular/efeitos dos fármacos , Sassafras/efeitos dos fármacos , Solo/química , Poluentes do Solo/toxicidade , Testes de Toxicidade
3.
Tree Physiol ; 33(9): 940-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24128849

RESUMO

Resource exploitation of patches is influenced not simply by the rate of root production in the patches but also by the lifespan of the roots inhabiting the patches. We examined the effect of sustained localized nitrogen (N) fertilization on root lifespan in four tree species that varied widely in root morphology and presumed foraging strategy. The study was conducted in a 12-year-old common garden in central Pennsylvania using a combination of data from minirhizotron and root in-growth cores. The two fine-root tree species, Acer negundo L. and Populus tremuloides Michx., exhibited significant increases in root lifespan with local N fertilization; no significant responses were observed in the two coarse-root tree species, Sassafras albidum Nutt. and Liriodendron tulipifera L. Across species, coarse-root tree species had longer median root lifespan than fine-root tree species. Localized N fertilization did not significantly increase the N concentration or the respiration of the roots growing in the N-rich patch. Our results suggest that some plant species appear to regulate the lifespan of different portions of their root system to improve resource acquisition while other species do not. Our results are discussed in the context of different strategies of foraging of nutrient patches in species of different root morphology.


Assuntos
Raízes de Plantas/anatomia & histologia , Raízes de Plantas/fisiologia , Árvores/anatomia & histologia , Árvores/fisiologia , Acer/anatomia & histologia , Acer/efeitos dos fármacos , Acer/fisiologia , Respiração Celular/efeitos dos fármacos , Liriodendron/anatomia & histologia , Liriodendron/efeitos dos fármacos , Liriodendron/fisiologia , Nitrogênio/farmacologia , Pennsylvania , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Populus/anatomia & histologia , Populus/efeitos dos fármacos , Populus/fisiologia , Modelos de Riscos Proporcionais , Sassafras/anatomia & histologia , Sassafras/efeitos dos fármacos , Sassafras/fisiologia , Árvores/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA