Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 213: 112032, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582409

RESUMO

Swine wastewater (SW) treatment by Myriophyllum aquaticum is an important biotechnology for its resource utilization. However, some knowledge gaps remain in compound-pollutant removal in SW, especially in practical applications. To clarify the responses of M. aquaticum to the compound pollutants as well as the related operational parameters in SW treatment, three initial doses (0.5, 1.0, and 1.5 kg per pond in 150 L simulated SW) of M. aquaticum and a control (no plant; CK) were allocated to 12 ponds under a plastic roof in Nanjing city of Eastern China during 75 days in the summer of 2019. Results showed that M. aquaticum could be used as a pioneer plant to efficiently remove compounded pollutants of nitrogen (N), phosphorus (P), and especially for heavy metals in simulated SW. Compared with CK, M. aquaticum assisted in improving the total N, NH4+-N, NO3--N, NO2--N, and dissolved organic N by 30.1%, 100%, 100%, 97.6%, 20.2%, 39.8% whereas Cu, Zn, and Cd by 50.4%, 36.4% and 47.9% on average during the 75-day experiment in summer, respectively. Moreover, concentrations of Cu and Cd at day 75 were in the ranges of 1.92-2.82 and 0.64-1.47 g kg-1 DW, respectively, exceeding the corresponding limits of the heavy-metal hyperaccumulator. For the operational parameters, the optimized initial dose was 1.0 kg per pond with M. aquaticum harvested after 45 summer days, respectively. Given that M. aquaticum has been widely used as animal feed in recent years and limit values for Cu and Zn in animal feed are not set in China, the toxicities of Cu and Zn should be assessed and the guideline of their limit values needs to be established for safe feed production. Interestingly, NH4+-N could dominate the removal of heavy metals especially Cd in the simulated SW, however, related mechanisms are needed for further study.


Assuntos
Metais Pesados/análise , Saxifragales/fisiologia , Águas Residuárias/química , Poluentes Químicos da Água/análise , Animais , China , Poluentes Ambientais , Nitrogênio/análise , Nutrientes , Fósforo , Suínos , Purificação da Água/métodos
2.
Toxins (Basel) ; 12(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143228

RESUMO

The aquaculture industry in Brazil has grown immensely resulting in the production of inefficiently discarded wastewater, which causes adverse effects on the aquatic ecosystem. The efficient treatment of aquaculture wastewater is vital in reaching a sustainable and ecological way of fish farming. Bioremediation in the form of the Green Liver System employing macrophytes was considered as wastewater treatment for a tilapia farm, COOPVALE, in Itacuruba, Brazil, based on previously demonstrated success. A large-scale system was constructed, and the macrophytes Azolla caroliniana, Egeria densa, Myriophyllum aquaticum, and Eichhornia crassipes were selected for phytoremediation. As cyanobacterial blooms persisted in the eutrophic wastewater, two microcystin congeners (MC-LR and -RR) were used as indicator contaminants for system efficiency and monitored by liquid-chromatography-tandem-mass-spectrometry. Two trial studies were conducted to decide on the final macrophyte selection and layout of the Green Liver System. In the first trial, 58% MC-LR and 66% MC-RR were removed and up to 32% MC-LR and 100% MC-RR were removed in the second trial. Additional risks that were overcome included animals grazing on the macrophytes and tilapia were spilling over from the hatchery. The implementation of the Green Liver System significantly contributed to the bioremediation of contaminants from the fish farm.


Assuntos
Aquicultura , Cianobactérias/metabolismo , Monitoramento Ambiental , Toxinas Marinhas/análise , Microcistinas/análise , Traqueófitas/fisiologia , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Purificação da Água , Animais , Biodegradação Ambiental , Brasil , Cianobactérias/crescimento & desenvolvimento , Eichhornia/fisiologia , Gleiquênias/fisiologia , Proliferação Nociva de Algas , Humanos , Hydrocharitaceae/fisiologia , Saxifragales/fisiologia , Alimentos Marinhos , Tilápia , Microbiologia da Água
3.
Ecotoxicol Environ Saf ; 205: 111362, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979807

RESUMO

Combined antibiotic and heavy metal pollution has generated considerable concern. Constructed wetlands (CWs) have been shown to efficiently remove pollutants; however, the microbial community responses to combined pollutants remain enigmatic. In this study, seven microcosm CWs were planted with Myriophyllum aquaticum, spiked with tetracyclines (TCs) (300-30,000 µg/L), alone or with Cu(II), to investigate the response of plant-associated microbial communities. TCs and the Cu/TC ratio greatly affected the performance of CWs. Tetracyclines led to higher microbial diversity, evenness and richness, while UniFrac distances and principal coordinate (PCO) and redundancy analyses revealed that the co-presence of TCs and Cu(II) led to variations in bacterial communities. Proteobacteria, Cyanobacteria and Bacteroidetes were the dominant microbial phyla and Cloacibacterium, Hydrogenophaga, Rheinheimera and Denitratisoma accounted for 6.2-21.0% of all genera. Therefore, the co-occurrence of heavy metals should be considered when judging the removal potential of TCs in phytoremediation.


Assuntos
Antibacterianos/toxicidade , Saxifragales/fisiologia , Tetraciclinas/toxicidade , Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Biodegradação Ambiental , Cianobactérias , Compostos Heterocíclicos , Metais Pesados , Microbiota , Proteobactérias , Poluentes Químicos da Água/análise
4.
Environ Pollut ; 260: 114015, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31991363

RESUMO

Aquatic macrophytes play a significant role in nutrients removal in constructed wetlands, yet nutrients could be re-released due to plant debris decomposition. In this study, Myriophyllum aquaticum was used as a model plant debris and three debris biomass levels of 3 g, 9 g dry biomass, and 20 g fresh biomass (D3, D9, and F20, respectively) were used to simulate 120-d plant debris decomposition in a sediment-water system. The biomass first-order decomposition rate constants of D3, D9, and F20 treatments were 0.0058, 0.0117, and 0.0201 d-1, respectively with no significant difference of decomposition rate among three mass groups (p > 0.05). Plant debris decomposition decreased nitrate and total nitrogen concentrations but increased ammonium, organic nitrogen, and dissolved organic carbon (DOC) concentrations in overlying water. The parallel factor analysis confirms that three components of DOC in overlying water changed over decomposition time. Emission fluxes of methane and nitrous oxide in the plant debris treatments were several to thousands of times higher than the control group within the initial 0-45 d, which was mainly attributed to DOC released from the plant debris. Plant debris decomposition can affect the gas emission fluxes for relatively shorter time (30-60 d) than water quality (>120 d). The 16S rRNA, nirK, nirS and hazA gene abundance increased in the early stage for plant debris treatments, and then decreased to the end of 120-d incubation time while ammonia monooxygenase α-subunit A gene abundance of ammonia-oxidizing archaea and bacteria had no large variations during the entire decay time compared with no plant debris treatment. The results demonstrate that decomposition of M. aquaticum debris could affect greenhouse gas emission fluxes and microbial gene abundance in the sediment-water system besides overlying water quality.


Assuntos
Gases de Efeito Estufa , Saxifragales/fisiologia , Nitrogênio , Nutrientes , RNA Ribossômico 16S , Água
5.
Chemosphere ; 245: 125552, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31846788

RESUMO

Genotypic variability has been considered for years as a key attribute in species adaptation to new environments. It has been extensively studied in a context of chemical resistance, but remains poorly studied in response to chemical exposure in a context of global change. As aquatic ecosystems are particularly affected by environmental changes, we aimed to study how genotypic variability could inflect the sensitivity of aquatic plants to chemicals. Seven genotypes of Myriophyllum spicatum were exposed to three copper concentrations at 0, 0.15 and 0.5 mg/L. The sensitivity of the different genotypes was assessed through several endpoints such as relative growth rate (RGR) and morphological traits, as well as physiological markers, such as plant biomacromolecular composition. Our results showed that genotypes exhibited significant differences in their life-history traits in absence of chemical contamination. Some trait syndromes were observed, and three growth strategies were identified: (1) biomass production and main shoot elongation, (2) dry matter storage with denser whorls to promote resource conservation and (3) lateral shoot production. An up to eightfold difference in sensitivity for growth-related endpoints was observed among genotypes. Differences in sensitivity were partly attributed to morphological life-history traits. Our results confirm that genotypic variability can significantly affect M. spicatum sensitivity to Cu, and may influence the outcomes of laboratory testing based on the study of one single genotype. We recommend including genotypic variation as an assessment factor in ecological risk assessment and to study this source of variability more in depth as a possible driver of ecosystem resilience.


Assuntos
Cobre/toxicidade , Saxifragales/fisiologia , Poluentes Químicos da Água/toxicidade , Biomassa , Ecossistema , Genótipo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Plantas , Medição de Risco
6.
Proc Natl Acad Sci U S A ; 116(22): 10874-10882, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085636

RESUMO

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and trait evolution, but there are plausible alternative models. Little is known about the association between diversification and key ecological and phenotypic traits at broad phylogenetic and spatial scales. Do trait evolutionary rates coincide with rates of diversification, are there lags among these rates, or is diversification niche-neutral? To address these questions, we combine a deeply sampled phylogeny for a major flowering plant clade-Saxifragales-with phenotype and niche data to examine temporal patterns of evolutionary rates. The considerable phenotypic and habitat diversity of Saxifragales is greatest in temperate biomes. Global expansion of these habitats since the mid-Miocene provided ecological opportunities that, with density-dependent adaptive radiation, should result in simultaneous rate increases for diversification, niche, and phenotype, followed by decreases with habitat saturation. Instead, we find that these rates have significantly different timings, with increases in diversification occurring at the mid-Miocene Climatic Optimum (∼15 Mya), followed by increases in niche and phenotypic evolutionary rates by ∼5 Mya; all rates increase exponentially to the present. We attribute this surprising lack of temporal coincidence to initial niche-neutral diversification followed by ecological and phenotypic divergence coincident with more extreme cold and dry habitats that proliferated into the Pleistocene. A lack of density-dependence contrasts with investigations of other cosmopolitan lineages, suggesting alternative patterns may be common in the diversification of temperate lineages.


Assuntos
Biodiversidade , Evolução Biológica , Ecossistema , Fenótipo , Filogenia , Saxifragales/classificação , Saxifragales/genética , Saxifragales/fisiologia
7.
Sci Rep ; 9(1): 4801, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30886354

RESUMO

Plants easily experience ammonia (NH4+) toxicity, especially aquatic plants. However, a unique wetland plant species, Myriophyllum aquaticum, can survive in livestock wastewater with more than 26 mM NH4+. In this study, the mechanisms of the M. aquaticum response to NH4+ toxicity were analysed with RNA-seq. Preliminary analysis of enzyme activities indicated that key enzymes involved in nitrogen metabolism were activated to assimilate toxic NH4+ into amino acids and proteins. In response to photosystem damage, M. aquaticum seemed to remobilize starch and cellulose for greater carbon and energy supplies to resist NH4+ toxicity. Antioxidative enzyme activity and the secondary metabolite content were significantly elevated for reactive oxygen species removal. Transcriptomic analyses also revealed that genes involved in diverse functions (e.g., nitrogen, carbon and secondary metabolisms) were highly responsive to NH4+ stress. These results suggested that a complex physiological and genetic regulatory network in M. aquaticum contributes to its NH4+ tolerance.


Assuntos
Adaptação Biológica/genética , Amônia/toxicidade , Redes Reguladoras de Genes , Saxifragales/fisiologia , Águas Residuárias/toxicidade , Regulação da Expressão Gênica de Plantas , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , RNA-Seq , Espécies Reativas de Oxigênio/metabolismo , Metabolismo Secundário/genética , Estresse Fisiológico/genética , Poluentes Químicos da Água/toxicidade , Áreas Alagadas
8.
Glob Chang Biol ; 24(11): 5231-5242, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120802

RESUMO

Temperatures have been rising throughout recent decades and are predicted to rise further in the coming century. Global warming affects carbon cycling in freshwater ecosystems, which both emit and bury substantial amounts of carbon on a global scale. Currently, most studies focus on the effect of warming on overall carbon emissions from freshwater ecosystems, while net effects on carbon budgets may strongly depend on burial in sediments. Here, we tested whether year-round warming increases the production, sedimentation, or decomposition of particulate organic carbon and eventually alters the carbon burial in a typical shallow freshwater system. We performed an indoor experiment in eight mesocosms dominated by the common submerged aquatic plant Myriophyllum spicatum testing two temperature treatments: a temperate seasonal temperature control and a warmed (+4°C) treatment (n = 4). During a full experimental year, the carbon stock in plant biomass, dissolved organic carbon in the water column, sedimented organic matter, and decomposition of plant detritus were measured. Our results showed that year-round warming nearly doubled the final carbon stock in plant biomass from 6.9 ± 1.1 g C in the control treatment to 12.8 ± 0.6 g C (mean ± SE), mainly due to a prolonged growing season in autumn. DOC concentrations did not differ between the treatments, but organic carbon sedimentation increased by 60% from 96 ± 9.6 to 152 ± 16 g C m-2  yaer-1 (mean ± SE) from control to warm treatments. Enhanced decomposition of plant detritus in the warm treatment, however, compensated for the increased sedimentation. As a result, net carbon burial was 40 ± 5.7 g C m-2  year-1 in both temperature treatments when fluxes were combined into a carbon budget model. These results indicate that warming can increase the turnover of organic carbon in shallow macrophyte-dominated systems, while not necessarily affecting net carbon burial on a system scale.


Assuntos
Ciclo do Carbono , Sequestro de Carbono , Água Doce/química , Aquecimento Global , Biomassa , Carbono , Ecossistema , Saxifragales/fisiologia , Estações do Ano , Temperatura
9.
Environ Sci Pollut Res Int ; 25(8): 7785-7795, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29290062

RESUMO

Constructed wetlands (CWs) cultivated with Myriophyllum aquaticum showed great potential for total nitrogen (TN) removal from aquatic ecosystems in previous studies. To evaluate the growth characteristics, photosynthetic pigment content, and antioxidative responses of M. aquaticum, as well as its TN removal efficiency in CWs, M. aquaticum was treated with different levels of ammonium (NH4+) and nitrate (NO3-) for 28 days. The results indicated that M. aquaticum had strong nitrogen stress tolerance and was more likely to be suppressed by high levels of NH4+ than NO3-. High levels of NH4+ also led to inhibition of synthesis of photosynthetic pigments and increased peroxidase activity in plant leaves, which was not found in the NO3- treatments. High levels of both NH4+ and NO3- generated obvious oxidative stress through elevation of malondialdehyde content while decreasing superoxide dismutase activity in the early stage. A sustainable increase of TN removal efficiency in most of the CWs indicated that M. aquaticum was a candidate species for treating wastewater with high levels of nitrogen because of its higher tolerance for NH4+ and NO3- stress. However, the increase of TN removal efficiency was hindered in the late stage when treated with high levels of NH4+ of 26 and 36 mmol/L, indicating that its tolerance to NH4+ stress might have a threshold. The results of this study will enrich the studies on detoxification of high ammonium ion content in NH4+-tolerant submerged plants and supply valuable reference data for proper vegetation of M. aquaticum in CWs.


Assuntos
Nitrogênio/metabolismo , Saxifragales/fisiologia , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Áreas Alagadas , Adaptação Fisiológica , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Desnitrificação/fisiologia , Nitratos/metabolismo , Nitratos/farmacologia , Nitrogênio/análise , Saxifragales/efeitos dos fármacos , Saxifragales/enzimologia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA