RESUMO
Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17 responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains an unsolved question. This review discusses how SEA modulates human immune responses and its potential for development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects of other non-SEA schistosome antigens at different stages of the parasite's life cycle.
Title: Les antigènes de Schistosoma : une solution clinique miracle pour les maladies auto-immunes? Abstract: Les maladies auto-immunes sont caractérisées par une immunité dysrégulée contre les auto-antigènes. Le traitement actuel des maladies auto-immunes repose en grande partie sur la suppression de l'immunité de l'hôte pour prévenir une inflammation excessive. D'autres options d'immunothérapie, telles que les thérapies à base de cytokines ou à cellules ciblées, ont également été utilisées. Cependant, la plupart des patients ne bénéficient pas de ces thérapies car la maladie récidive généralement. Par conséquent, des efforts supplémentaires doivent être faits pour trouver des thérapies immunitaires alternatives. L'infection à Schistosoma est un problème de santé publique important dans la plupart des pays en développement. Les parasites Schistosoma produisent des Åufs qui sécrètent en continu des antigènes solubles d'Åufs (ASO), qui sont connus comme des modulateurs des réponses immunitaires de l'hôte en renforçant l'immunité Th2 et en atténuant les résultats des réponses Th1 et Th17. Récemment, les ASO se sont révélés prometteurs dans le traitement des troubles auto-immuns en raison de leurs effets immuno-régulateurs substantiels. Malgré cet intérêt, la façon dont ces antigènes modulent l'immunité humaine ne montre que des éléments de preuve limités, et la question de savoir si les antigènes de Schistosoma pourraient être utiles dans d'autres maladies à l'avenir reste sans réponse. Cette revue examine la manière dont les ASO modulent les réponses immunitaires humaines et leur potentiel pour le développement de nouveaux traitements immunothérapeutiques contre les maladies auto-immunes. Nous discutons également des effets immunomodulateurs d'autres antigènes de schistosomes non-ASO à différents stades du cycle de vie du parasite.
Assuntos
Antígenos de Helmintos , Doenças Autoimunes , Schistosoma , Esquistossomose , Humanos , Animais , Antígenos de Helmintos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Schistosoma/imunologia , Esquistossomose/imunologia , Esquistossomose/prevenção & controle , Imunoterapia/métodos , Células Th2/imunologiaRESUMO
Schistosomiasis-induced pulmonary hypertension (PH) presents a significant global health burden, yet the underlying mechanisms remain poorly understood. Here, we investigate the involvement of platelets and the complement system in the initiation events leading to Schistosoma-induced PH. We demonstrate that Schistosoma exposure leads to thrombocytopenia, platelet accumulation in the lung, and platelet activation. In addition, we observed increased plasma complement anaphylatoxins C3a and C5a, indicative of complement system activation, and elevated platelet expression of C1q, C3, decay activating factor (DAF), and complement C3a and C5a receptors. Our findings suggest the active involvement of platelets in responding to complement system signals induced by Schistosoma exposure and form the basis for future mechanistic studies on how complement may regulate platelet activation and promote the development of Schistosoma-induced PH.NEW & NOTEWORTHY Schistosomiasis-induced pulmonary hypertension (PH) is a significant global health burden, yet the underlying mechanisms remain poorly understood. We demonstrate that Schistosoma exposure leads to platelet accumulation in the lung and platelet activation. We observed increased plasma levels of C3a and C5a, indicative of complement system activation, and elevated expression of platelet complement proteins and receptors. These findings underscore the role of platelets and complement in the inflammatory responses associated with Schistosoma-induced PH.
Assuntos
Plaquetas , Hipertensão Pulmonar , Ativação Plaquetária , Animais , Hipertensão Pulmonar/parasitologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/imunologia , Plaquetas/metabolismo , Plaquetas/imunologia , Camundongos , Ativação do Complemento , Camundongos Endogâmicos C57BL , Esquistossomose/complicações , Esquistossomose/imunologia , Esquistossomose/parasitologia , Complemento C3a/metabolismo , Pulmão/parasitologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/metabolismo , Proteínas do Sistema Complemento/metabolismo , Feminino , Complemento C5a/metabolismo , Masculino , Schistosoma/imunologiaRESUMO
Background: Schistosomiasis is a common cause of pulmonary hypertension (PH) worldwide. Type 2 inflammation contributes to the development of Schistosoma-induced PH. Specifically, interstitial macrophages (IMs) derived from monocytes play a pivotal role by producing thrombospondin-1 (TSP-1), which in turn activates TGF-ß, thereby driving the pathology of PH. Resident and recruited IM subpopulations have recently been identified. We hypothesized that in Schistosoma-PH, one IM subpopulation expresses monocyte recruitment factors, whereas recruited monocytes become a separate IM subpopulation that expresses TSP-1. Methods: Mice were intraperitoneally sensitized and then intravenously challenged with S. mansoni eggs. Flow cytometry on lungs and blood was performed on wildtype and reporter mice to identify IM subpopulations and protein expression. Single-cell RNA sequencing (scRNAseq) was performed on flow-sorted IMs from unexposed and at day 1, 3 and 7 following Schistosoma exposure to complement flow cytometry based IM characterization and identify gene expression. Results: Flow cytometry and scRNAseq both identified 3 IM subpopulations, characterized by CCR2, MHCII, and FOLR2 expression. Following Schistosoma exposure, the CCR2+ IM subpopulation expanded, suggestive of circulating monocyte recruitment. Schistosoma exposure caused increased monocyte-recruitment ligand CCL2 expression in the resident FOLR2+ IM subpopulation. In contrast, the vascular pathology-driving protein TSP-1 was greatest in the CCR2+ IM subpopulation. Conclusion: Schistosoma-induced PH involves crosstalk between IM subpopulations, with increased expression of monocyte recruitment ligands by resident FOLR2+ IMs, and the recruitment of CCR2+ IMs which express TSP-1 that activates TGF-ß and causes PH.
Assuntos
Hipertensão Pulmonar , Macrófagos , Animais , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/parasitologia , Hipertensão Pulmonar/imunologia , Hipertensão Pulmonar/patologia , Camundongos , Macrófagos/imunologia , Macrófagos/parasitologia , Fenótipo , Schistosoma mansoni/imunologia , Camundongos Endogâmicos C57BL , Esquistossomose/imunologia , Esquistossomose/complicações , Esquistossomose/parasitologia , Modelos Animais de Doenças , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Esquistossomose mansoni/complicações , Esquistossomose mansoni/patologia , Trombospondina 1/genética , Trombospondina 1/metabolismo , Monócitos/imunologia , Receptores CCR2/genética , Receptores CCR2/metabolismo , Feminino , Schistosoma/imunologia , Schistosoma/fisiologia , Pulmão/imunologia , Pulmão/parasitologia , Pulmão/patologiaRESUMO
Schistosomiasis is a neglected tropical disease referring to the infection with blood parasitic trematodes of the genus Schistosoma. It impacts millions of people worldwide, primarily in low-to-middle-income countries. Patients infected with schistosomiasis often exhibit a distinct hematological profile, including anemia, eosinophilia, thrombocytopenia, and coagulopathy. Platelets, essential components of the hemostatic system, play a crucial role in the pathogenesis of schistosomiasis. Schistosomes secrete serine proteases and express ectoenzymes, such as calpain protease, alkaline phosphatase (SmAP), phosphodiesterase (SmNPP5), ATP diphosphohydrolase (SmATPDase1), serine protease Sk1, SmSP2, and Sm22.6, which can interfere with platelet normal functioning. This report provides comprehensive, up-to-date information on platelet abnormalities observed in patients with schistosomiasis, highlighting their importance in the disease progression and complications. It delves into the interactions between platelets and schistosomes, including the impact of platelet dysfunction on hemostasis and immune responses, immune-mediated platelet destruction, and the potential mechanisms by which schistosome tegumental ectoenzymes affect platelets. Furthermore, the report clarifies the relationship between platelet abnormalities and clinical manifestations such as thrombocytopenia, coagulation disorders, and the emergence of portal hypertension and gastrointestinal bleeding. Understanding the complex interplay between platelets and schistosomes is crucial for improving patient management and outcomes in schistosomiasis, particularly for those with platelet alterations. This knowledge contributes to improved diagnostic methods, innovative treatment strategies, and global efforts to control and eliminate schistosomiasis.
Assuntos
Plaquetas , Esquistossomose , Humanos , Esquistossomose/parasitologia , Esquistossomose/diagnóstico , Plaquetas/parasitologia , Animais , Schistosoma/imunologia , Transtornos PlaquetáriosRESUMO
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Assuntos
Proteínas de Helminto/imunologia , Fatores Imunológicos/imunologia , Schistosoma/imunologia , Esquistossomose/imunologia , Animais , HumanosRESUMO
Schistosomiasis is a parasitic disease endemic to freshwater areas of Southeast Asia, Africa, and South America that is capable of causing serious damage to the internal organs. Recent studies have linked exosomes to the progression of schistosomiasis. These structures are important mediators for intercellular communication, assist cells to exchange proteins, lipids, and genetic material and have been shown to play critical roles during host-parasite interactions. This review aims to discuss the pathophysiology of exosomes in schistosomiasis and their roles in regulating the host immune response. Understanding how exosomes are involved in the pathogenesis of schistosomiasis may provide new perspectives in diagnosing and treating this neglected disease.
Assuntos
Exossomos/parasitologia , Schistosoma/patogenicidade , Esquistossomose/parasitologia , Animais , Exossomos/imunologia , Exossomos/metabolismo , Exossomos/transplante , Interações Hospedeiro-Patógeno , Humanos , Prognóstico , Vacinas Protozoárias/uso terapêutico , Schistosoma/efeitos dos fármacos , Schistosoma/imunologia , Esquistossomose/imunologia , Esquistossomose/metabolismo , Esquistossomose/prevenção & controle , Esquistossomicidas/uso terapêutico , Transdução de SinaisRESUMO
The host-parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host's standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.
Assuntos
Citocinas/metabolismo , Interações Hospedeiro-Parasita/imunologia , Esquistossomose/imunologia , Esquistossomose/metabolismo , Animais , Linfócitos B Reguladores/imunologia , Basófilos/imunologia , Células Dendríticas/imunologia , Eosinófilos/imunologia , Humanos , Macrófagos/imunologia , Mastócitos/imunologia , MicroRNAs/imunologia , Modelos Imunológicos , Estresse Oxidativo , Schistosoma/imunologia , Schistosoma/patogenicidade , Esquistossomose/parasitologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologiaRESUMO
As a relatively successful pathogen, several parasites can establish long-term infection in host. This "harmonious symbiosis" status relies on the "precise" manipulation of host immunity and metabolism, however, the underlying mechanism is still largely elusive. Immunometabolism is an emerging crossed subject in recent years. It mainly discusses the regulatory mechanism of metabolic changes on reprogramming the key transcriptional and post-transcriptional events related to immune cell activation and effect, which provides a novel insight for understanding how parasites regulate the infection and immunity in hosts. The present study reviewed the current research progress on metabolic reprogramming mechanism exploited by parasites to modulate the function in various immune cells, highlighting the future exploitation of key metabolites or metabolic events to clarify the underlying mechanism of anti-parasite immunity and design novel intervention strategies against parasitic infection.
Assuntos
Células Dendríticas/imunologia , Linfócitos/imunologia , Macrófagos/imunologia , Doenças Parasitárias/imunologia , Plasmodium/imunologia , Schistosoma/imunologia , Trypanosoma/imunologia , Animais , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Linfócitos/metabolismo , Linfócitos/parasitologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Doenças Parasitárias/metabolismo , Doenças Parasitárias/parasitologia , Plasmodium/fisiologia , Schistosoma/fisiologia , Trypanosoma/fisiologiaRESUMO
Schistosome infection is a major cause of global morbidity, particularly in sub-Saharan Africa. However, there is no effective vaccine for this major neglected tropical disease, and re-infection routinely occurs after chemotherapeutic treatment. Following invasion through the skin, larval schistosomula enter the circulatory system and migrate through the lung before maturing to adulthood in the mesenteric or urogenital vasculature. Eggs released from adult worms can become trapped in various tissues, with resultant inflammatory responses leading to hepato-splenic, intestinal, or urogenital disease - processes that have been extensively studied in recent years. In contrast, although lung pathology can occur in both the acute and chronic phases of schistosomiasis, the mechanisms underlying pulmonary disease are particularly poorly understood. In chronic infection, egg-mediated fibrosis and vascular destruction can lead to the formation of portosystemic shunts through which eggs can embolise to the lungs, where they can trigger granulomatous disease. Acute schistosomiasis, or Katayama syndrome, which is primarily evident in non-endemic individuals, occurs during pulmonary larval migration, maturation, and initial egg-production, often involving fever and a cough with an accompanying immune cell infiltrate into the lung. Importantly, lung migrating larvae are not just a cause of inflammation and pathology but are a key target for future vaccine design. However, vaccine efforts are hindered by a limited understanding of what constitutes a protective immune response to larvae. In this review, we explore the current understanding of pulmonary immune responses and inflammatory pathology in schistosomiasis, highlighting important unanswered questions and areas for future research.
Assuntos
Pneumopatias Parasitárias/parasitologia , Pulmão/parasitologia , Schistosoma/patogenicidade , Esquistossomose/parasitologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Parasita , Humanos , Evasão da Resposta Imune , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pneumopatias Parasitárias/imunologia , Pneumopatias Parasitárias/prevenção & controle , Camundongos , Vacinas Protozoárias/uso terapêutico , Schistosoma/efeitos dos fármacos , Schistosoma/imunologia , Esquistossomose/imunologia , Esquistossomose/prevenção & controle , Esquistossomicidas/uso terapêuticoRESUMO
Although a growing number of studies suggest interactions between Schistosoma parasites and viral infections, the effects of schistosome infections on the host response to viruses have not been evaluated comprehensively. In this systematic review, we investigated how schistosomes impact incidence, virulence, and prevention of viral infections in humans and animals. We also evaluated immune effects of schistosomes in those coinfected with viruses. We screened 4,730 studies and included 103. Schistosomes may increase susceptibility to some viruses, including HIV and Kaposi's sarcoma-associated herpesvirus, and virulence of hepatitis B and C viruses. In contrast, schistosome infection may be protective in chronic HIV, Human T-cell Lymphotropic Virus-Type 1, and respiratory viruses, though further research is needed. Schistosome infections were consistently reported to impair immune responses to hepatitis B and possibly measles vaccines. Understanding the interplay between schistosomes and viruses has ramifications for anti-viral vaccination strategies and global control of viral infections.
Assuntos
Antivirais/farmacologia , Coinfecção/prevenção & controle , Imunidade/imunologia , Schistosoma/imunologia , Esquistossomose/complicações , Viroses/prevenção & controle , Vírus/imunologia , Animais , Coinfecção/etiologia , Coinfecção/patologia , Humanos , Esquistossomose/parasitologia , Viroses/etiologia , Viroses/patologiaRESUMO
Over 90% of schistosomiasis infections occur in sub-Saharan Africa. A rapid ICT test would be a cheap and easy tool that could be used also in the field. We preliminarily evaluated the performance of a new Schistosoma black-latex based IgG-IgM ICT (Black-ICT) on serum samples. The results indicate a high sensitivity (98.0%) but the specificity depends on the application of a cut-off value that can discriminate between positive and negative samples. Considering a possible direct application of this test on blood from finger prick, the results are promising, providied that a signal intensity scale is developed, guiding the result interpretation.
Assuntos
Testes Imunológicos/métodos , Schistosoma/isolamento & purificação , Animais , Anticorpos Anti-Helmínticos/sangue , Humanos , Imunoglobulina G/sangue , Schistosoma/imunologia , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: An accurate test for the diagnosis and post-treatment follow-up of patients with schistosomiasis is needed. We assessed the performance of different laboratory parameters, including the up-converting reporter particle technology lateral flow assay to detect circulating anodic antigen (UCP-LF CAA), for the post-treatment follow-up of schistosomiasis in migrants attending a dedicated outpatient clinic in a non-endemic country. METHODS: Routine anti-Schistosoma serology results and eosinophil counts were obtained of patients with positive urine/stool microscopy and/or PCR (confirmed cases) or only positive serology (possible cases), and at least one follow-up visit at 6 (T6) or 12 (T12) months after praziquantel treatment. All sera samples were tested with the UCP-LF CAA assay. RESULTS: Forty-eight patients were included, 23 confirmed and 25 possible cases. The percentage seropositivity and median antibody titers did not change significantly during follow-up. UCP-LF CAA was positive in 86.9% of confirmed and 20% of possible cases. The percentage positivity and median CAA levels decreased significantly post-treatment, with only two patients having positive CAA levels at T12. CONCLUSIONS: The UCP-LF CAA assay proved useful for the diagnosis of active infection with Schistosoma spp. and highly valuable for post-treatment monitoring in migrants, encouraging the development of a commercial test.
Assuntos
Antígenos de Helmintos/sangue , Eosinófilos/imunologia , Glicoproteínas/sangue , Proteínas de Helminto/sangue , Testes Imunológicos/normas , Microscopia/normas , Schistosoma/imunologia , Esquistossomose/diagnóstico , Migrantes/estatística & dados numéricos , Adolescente , Adulto , Animais , Antígenos de Helmintos/imunologia , Feminino , Glicoproteínas/imunologia , Proteínas de Helminto/imunologia , Humanos , Testes Imunológicos/métodos , Contagem de Leucócitos/métodos , Contagem de Leucócitos/normas , Masculino , Microscopia/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Schistosoma/classificação , Schistosoma/genética , Esquistossomose/sangue , Esquistossomose/urina , Sensibilidade e Especificidade , Adulto JovemRESUMO
Schistosomiasis is a parasitic disease that affects about 166 million people around the world. It is estimated that 5%-10% of individuals with schistosomiasis develop severe forms of the disease, which are characterized by pulmonary hypertension, ascites, periportal fibrosis, and other significant complications. The chronic phase of the disease is associated with a Th2 type immune response, but evidence also suggests there are roles for Th1 and Th17 in the development of severe disease. The aim of this study was to evaluate the CD4+ T lymphocyte profile of patients with different degrees of periportal fibrosis secondary to schistosomiasis. These individuals had been treated for schistosomiasis, but since they live in a S. mansoni endemic area, they are at risk of reinfection. They were evaluated in relation to the degree of periportal fibrosis and classified into three groups: without fibrosis or with incipient fibrosis (WF/IFNE), n=12, possible periportal fibrosis/periportal fibrosis, n=13, and advanced periportal fibrosis/advanced periportal fibrosis with portal hypertension, n=4. We observed in the group without fibrosis a balance between the low expression of Th2 cytokines and high expression of T reg cells. As has already been described in the literature, we found an increase of the Th2 cytokines IL-4, IL-5, and IL-13 in the group with periportal fibrosis. In addition, this group showed higher expression of IL-17 and IL-10 but lower IL-10/IL-13 ratio than patients in the WF/IFNE group. Cells from individuals who present any level of fibrosis expressed more TGF-ß compared to the WF/IFNE group and a positive correlation with left lobe enlargement and portal vein wall thickness. There was a negative correlation between IL-17 and the thickness of the portal vein wall, but more studies are necessary in order to explore the possible protective role of this cytokine. Despite the fibrosis group having presented a higher expression of pro-fibrotic molecules compared to WF/IFNE patients, it seems there is a regulation through IL-10 and T reg cells that is able to maintain the low morbidity of this group.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Fibrose/etiologia , Fibrose/metabolismo , Schistosoma/imunologia , Esquistossomose/complicações , Esquistossomose/parasitologia , Animais , Biomarcadores , Citocinas/metabolismo , Suscetibilidade a Doenças , Feminino , Fibrose/patologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200 million people worldwide. Control efforts have focussed on the disruption of the life cycle targeting the parasite, vector and human host. Parasite burdens are highly skewed, and the majority of eggs are shed into the environment by a minority of the infected population. Most morbidity results from hepatic fibrosis leading to portal hypertension and is not well-correlated with worm burden. Genetics as well as environmental factors may play a role in these skewed distributions and understanding the genetic risk factors for intensity of infection and morbidity may help improve control measures. In this review, we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal hypertension. We found 28 studies on the genetics of human infection and 20 studies on the genetics of pathology in humans. S. mansoni and S. haematobium infection intensity have been showed to be controlled by a major quantitative trait locus SM1, on chromosome 5q31-q33 containing several genes involved in the Th2 immune response, and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common pathology associated with schistosomiasis is hepatic and portal vein fibroses and the SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis. Although there has been an emphasis on Th2 cytokines in candidate gene studies, we found that four of the five QTL regions contain Th17 pathway genes that have been included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in response to schistosome infection and hepatic fibrosis but variants in this pathway have not been tested for any effect on the regulation of these phenotypes. These should be priorities for future studies.
Assuntos
Variação Genética , Genoma Helmíntico , Hepatopatias/etiologia , Schistosoma/genética , Esquistossomose/parasitologia , Alelos , Animais , Mapeamento Cromossômico , Biologia Computacional/métodos , Gerenciamento Clínico , Genes de Helmintos , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipertensão Portal/diagnóstico , Hipertensão Portal/etiologia , Hepatopatias/diagnóstico , Anotação de Sequência Molecular , Carga Parasitária , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Schistosoma/imunologia , Esquistossomose/complicações , Esquistossomose/diagnóstico , Índice de Gravidade de DoençaRESUMO
Schistosomes infect about 250 million people globally causing the devastating and persistent disease of schistosomiasis. These blood flukes have a complicated life cycle involving alternating infection of freshwater snail intermediate and definitive mammalian hosts. To survive and flourish in these diverse environments, schistosomes transition through a number of distinct life-cycle stages as a result of which they change their body plan in order to quickly adapt to each new environment. Current research suggests that stem cells, present in adults and larvae, are key in aiding schistosomes to facilitate these changes. Given the recent advances in our understanding of schistosome stem cell biology, we review the key roles that two major classes of cells play in the different life cycle stages during intramolluscan and intramammalian development; these include the germinal cells of sporocysts involved in asexual reproduction in molluscan hosts and the neoblasts of adult worms involved in sexual reproduction in human and other mammalian hosts. These studies shed considerable new light in revealing the stem cell heterogeneity driving the propagation of the schistosome life cycle. We also consider the possibility and value of establishing stem cell lines in schistosomes to advance schistosomiasis research. The availability of such self-renewable resources will provide new platforms to study stem cell behavior and regulation, and to address fundamental aspects of schistosome biology, reproductive development and survival. In turn, such studies will create new avenues to unravel individual gene function and to optimize genome-editing processes in blood flukes, which may lead to the design of novel intervention strategies for schistosomiasis.
Assuntos
Schistosoma , Esquistossomose/imunologia , Células-Tronco , Animais , Pesquisa Biomédica , Schistosoma/citologia , Schistosoma/imunologia , Células-Tronco/citologia , Células-Tronco/imunologiaRESUMO
Despite mass drug administration programmes with praziquantel, the prevalence of schistosomiasis remains high. A vaccine is urgently needed to control transmission of this debilitating disease. As some promising schistosomiasis vaccine candidates are moving through pre-clinical and clinical testing, we review the immunological challenges that these vaccine candidates may encounter in transitioning through the clinical trial phases in endemic settings. Prior exposure of the target population to schistosomes and other infections may impact vaccine response and efficacy and therefore requires considerable attention. Schistosomes are known for their potential to induce T-reg/IL-10 mediated immune suppression in populations which are chronically infected. Moreover, endemicity of schistosomiasis is focal whereby target and trial populations may exhibit several degrees of prior exposure as well as in utero exposure which may increase heterogeneity of vaccine responses. The age dependent distribution of exposure and development of acquired immunity, and general differences in the baseline immunological profile, adds to the complexity of selecting suitable trial populations. Similarly, prior or concurrent infections with other parasitic helminths, viral and bacterial infections, may alter immunological responses. Consequently, treatment of co-infections may benefit the immunogenicity of vaccines and may be considered despite logistical challenges. On the other hand, viral infections leave a life-long immunological imprint on the human host. Screening for serostatus may be needed to facilitate interpretation of vaccine responses. Co-delivery of schistosome vaccines with PZQ is attractive from a perspective of implementation but may complicate the immunogenicity of schistosomiasis vaccines. Several studies have reported PZQ treatment to induce both transient and long-term immuno-modulatory effects as a result of tegument destruction, worm killing and subsequent exposure of worm antigens to the host immune system. These in turn may augment or antagonize vaccine immunogenicity. Understanding the complex immunological interactions between vaccine, co-infections or prior exposure is essential in early stages of clinical development to facilitate phase 3 clinical trial design and implementation policies. Besides well-designed studies in different target populations using schistosome candidate vaccines or other vaccines as models, controlled human infections could also help identify markers of immune protection in populations with different disease and immunological backgrounds.
Assuntos
Desenvolvimento de Medicamentos , Doenças Endêmicas/prevenção & controle , Vacinas Protozoárias/uso terapêutico , Schistosoma/imunologia , Esquistossomose/prevenção & controle , Animais , Coinfecção , Desenho de Fármacos , Interações Hospedeiro-Parasita , Humanos , Imunogenicidade da Vacina , Praziquantel/uso terapêutico , Vacinas Protozoárias/efeitos adversos , Vacinas Protozoárias/imunologia , Schistosoma/patogenicidade , Esquistossomose/epidemiologia , Esquistossomose/imunologia , Esquistossomose/transmissão , Esquistossomicidas/uso terapêuticoRESUMO
BACKGROUND: The regulation of the balance between inflammatory and anti-inflammatory events during the treatment of pulmonary infection is very important. Soluble Schistosoma egg antigens (SEA) can effectively inhibit the expression of cytokines during hepatic acute inflammation. However, the mechanisms by which these proteins suppress the inflammatory responses in lung cells remain unclear. The purpose of this study was to investigate the ability of SEA to inhibit pulmonary inflammation. METHODS: The effects of SEA were investigated in LPS-treated lung IMR-90 cells. The involvement of the JAK/STAT-1 signaling pathway in these effects was evaluated by employing CBA assays, quantitative polymerase chain reaction, and western blotting experiments. RESULTS: Pretreatment of IMR-90 cells with appropriate concentrations of SEA protected cells against the cytotoxic effects of LPS-induced inflammation in a time-dependent manner. SEA pretreatment significantly attenuated the LPS-induced activation of the JAK/STAT1 signaling pathway, including the upregulation of JAK1/2 and STAT1, as well as the production of inflammatory cytokines. The level of phosphorylated STAT1 gradually declined in response to increasing concentrations of SEA. Based on these findings, we hypothesize that SEA-induced anti-inflammatory effects initiate with the downregulation of the IFN-γ-JAK-STAT1 signaling pathway, resulting in the attenuation of LPS-induced inflammation in IMR-90 cells. CONCLUSION: Our study is the first to demonstrate the anti-inflammatory activity of SEA in an in vitro model of pulmonary inflammation, involving the modulation of JAK/STAT1 signaling. We propose SEA as potential therapeutic or preventive agents for the selective suppression of STAT1 and the control of inflammatory response in lung IMR-90 cells.
Assuntos
Antígenos de Helmintos/farmacologia , Fibroblastos/efeitos dos fármacos , Inflamação/prevenção & controle , Janus Quinase 1/metabolismo , Lipopolissacarídeos/farmacologia , Óvulo/química , Fator de Transcrição STAT1/metabolismo , Schistosoma/imunologia , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Janus Quinase 1/imunologia , Lipopolissacarídeos/metabolismo , Fator de Transcrição STAT1/imunologia , Schistosoma/químicaRESUMO
Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.
Assuntos
Anti-Helmínticos/farmacologia , Receptores Purinérgicos/imunologia , Esquistossomose/tratamento farmacológico , Animais , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Schistosoma/efeitos dos fármacos , Schistosoma/imunologia , Esquistossomose/imunologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologiaRESUMO
Macrophages are fundamental to sustain physiological equilibrium and to regulate the pathogenesis of parasitic and metabolic processes. The functional heterogeneity and immune responses of macrophages are shaped by cellular metabolism in response to the host's intrinsic factors, environmental cues and other stimuli during disease. Parasite infections induce a complex cascade of cytokines and metabolites that profoundly remodel the metabolic status of macrophages. In particular, helminths polarize macrophages to an M2 state and induce a metabolic shift towards reliance on oxidative phosphorylation, lipid oxidation and amino acid metabolism. Accumulating data indicate that helminth-induced activation and metabolic reprogramming of macrophages underlie improvement in overall whole-body metabolism, denoted by improved insulin sensitivity, body mass in response to high-fat diet and atherogenic index in mammals. This review aims to highlight the metabolic changes that occur in human and murine-derived macrophages in response to helminth infections and helminth products, with particular interest in schistosomiasis and soil-transmitted helminths.
Assuntos
Helmintíase/imunologia , Helmintos/imunologia , Intestinos/imunologia , Intestinos/parasitologia , Macrófagos/imunologia , Schistosoma/imunologia , Esquistossomose/imunologia , Animais , Citocinas/imunologia , Humanos , Macrófagos/parasitologiaRESUMO
Schistosome infection is regarded as one of the most important and neglected tropical diseases associated with poor sanitation. Like other living organisms, schistosomes employ multiple biological processes, of which some are regulated by a post-translational modification called Adenosine Diphosphate-ribosylation (ADP-ribosylation), catalyzed by ADP-ribosyltransferases. ADP-ribosylation is the addition of ADP-ribose moieties from Nicotinamide Adenine Dinucleotide (NAD+) to various targets, which include proteins and nucleotides. It is crucial in biological processes such as DNA repair, apoptosis, carbohydrate metabolism and catabolism. In the absence of a vaccine against schistosomiasis, this becomes a promising pathway in the identification of drug targets against various forms of this infection. The tegument of the worm is an encouraging immunogenic target for anti-schistosomal vaccine development. Vaccinology, molecular modeling and target-based drug discovery strategies have been used for years in drug discovery and for vaccine development. In this paper, we outline ADP-ribosylation and other different approaches to drug discovery and vaccine development against schistosomiasis.