Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
1.
Plant Cell Rep ; 43(6): 142, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744747

RESUMO

KEY MESSAGE: 111 PHD genes were newly identified in rye genome and ScPHD5's role in regulating cold tolerance and flowering time was suggested. Plant homeodomain (PHD)-finger proteins regulate the physical properties of chromatin and control plant development and stress tolerance. Although rye (Secale cereale L.) is a major winter crop, PHD-finger proteins in rye have not been studied. Here, we identified 111 PHD genes in the rye genome that exhibited diverse gene and protein sequence structures. Phylogenetic tree analysis revealed that PHDs were genetically close in monocots and diverged from those in dicots. Duplication and synteny analyses demonstrated that ScPHDs have undergone several duplications during evolution and that high synteny is conserved among the Triticeae species. Tissue-specific and abiotic stress-responsive gene expression analyses indicated that ScPHDs were highly expressed in spikelets and developing seeds and were responsive to cold and drought stress. One of these genes, ScPHD5, was selected for further functional characterization. ScPHD5 was highly expressed in the spike tissues and was localized in the nuclei of rye protoplasts and tobacco leaves. ScPHD5-overexpressing Brachypodium was more tolerant to freezing stress than wild-type (WT), with increased CBF and COR gene expression. Additionally, these transgenic plants displayed an extremely early flowering phenotype that flowered more than two weeks earlier than the WT, and vernalization genes, rather than photoperiod genes, were increased in the WT. RNA-seq analysis revealed that diverse stress response genes, including HSPs, HSFs, LEAs, and MADS-box genes, were also upregulated in transgenic plants. Our study will help elucidate the roles of PHD genes in plant development and abiotic stress tolerance in rye.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Secale , Flores/genética , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secale/genética , Secale/fisiologia , Temperatura Baixa , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Genoma de Planta/genética , Família Multigênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Dedos de Zinco PHD/genética
2.
Sci Rep ; 14(1): 11010, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745019

RESUMO

The presence of incompatibility alleles in primary amphidiploids constitutes a reproductive barrier in newly synthesized wheat-rye hybrids. To overcome this barrier, the genome stabilization process includes large-scale chromosome rearrangements. In incompatible crosses resulting in fertile amphidiploids, the elimination of one of the incompatible alleles Eml-A1 or Eml-R1b can occur already in the somatic tissue of the wheat × rye hybrid embryo. We observed that the interaction of incompatible loci Eml-A1 of wheat and Eml-R1b of rye after overcoming embryo lethality leads to hybrid sterility in primary triticale. During subsequent seed reproductions (R1, R2 or R3) most of the chromosomes of A, B, D and R subgenomes undergo rearrangement or eliminations to increase the fertility of the amphidiploid by natural selection. Genotyping-by-sequencing (GBS) coverage analysis showed that improved fertility is associated with the elimination of entire and partial chromosomes carrying factors that either cause the disruption of plant development in hybrid plants or lead to the restoration of the euploid number of chromosomes (2n = 56) in the absence of one of the incompatible alleles. Highly fertile offspring obtained in compatible and incompatible crosses can be successfully adapted for the production of triticale pre-breeding stocks.


Assuntos
Cromossomos de Plantas , Cruzamentos Genéticos , Hibridização Genética , Secale , Triticum , Triticum/genética , Secale/genética , Cromossomos de Plantas/genética , Alelos , Técnicas de Genotipagem
3.
BMC Plant Biol ; 24(1): 291, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632518

RESUMO

BACKGROUND: Leaf rust (LR) is among the most destructive fungal diseases of rye (Secale cereale L.). Despite intensive research using various analytical and methodological approaches, such as quantitative trait locus (QTL) mapping, candidate gene expression analysis, and transcriptome sequencing, the genetic basis of the rye immune response to LR remains unclear. RESULTS: A genome-wide association study was employed to detect QTLs controlling the immune response to LR of rye. A mapping population, G38A, was constructed by crossing two inbred lines: 723 (susceptible to LR) and JKI-NIL-Pr3 (a donor of the LR resistance gene Pr3). For genotyping, SNP-DArT and silico-DArT markers were used. Resistance phenotyping was conducted by visual assessment of the infection severity in detached leaf segments inoculated with two isolates of Puccinia recondita f. sp. secalis, namely, 60/17/2.1 (isolate S) in the main experiment and 86/n/2.1_5x (isolate N) in the validation experiment, at 10 and 17 days post-infection (dpi), respectively. In total, 42,773 SNP-DArT and 105,866 silico-DArT markers were included in the main analysis including isolate S, of which 129 and 140 SNP-DArTs and 767 and 776 silico-DArTs were significantly associated (p ≤ 0.001; - log10(p) ≥ 3.0) with the immune response to LR at 10 and 17 dpi, respectively. Most significant markers were mapped to chromosome 1R. The number of common markers from both systems and at both time points occupying common chromosomal positions was 37, of which 21 were positioned in genes, comprising 18 markers located in exons and three in introns. This gene pool included genes encoding proteins with a known function in response to LR (e.g., a NBS-LRR disease resistance protein-like protein and carboxyl-terminal peptidase). CONCLUSION: This study has expanded and supplemented existing knowledge of the genetic basis of rye resistance to LR by (1) detecting two QTLs associated with the LR immune response of rye, of which one located on the long arm of chromosome 1R is newly detected, (2) assigning hundreds of markers significantly associated with the immune response to LR to genes in the 'Lo7' genome, and (3) predicting the potential translational effects of polymorphisms of SNP-DArT markers located within protein-coding genes.


Assuntos
Basidiomycota , Locos de Características Quantitativas , Secale/genética , Estudo de Associação Genômica Ampla , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
4.
Genes (Basel) ; 15(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38540334

RESUMO

Leaf rust (LR) caused by Puccinia recondita f. sp. secalis (Prs) is a highly destructive disease in rye. However, the genetic mechanisms underlying the rye immune response to this disease remain relatively uncharacterised. In this study, we analysed the expression of four genes in 12 rye inbred lines inoculated with Prs at 20 and 36 h post-treatment (hpt): DXS (1-deoxy-D-xylulose 5-phosphate synthase), Glu (ß-1,3-glucanase), GT (UDP-glycosyltransferase) and PR-1 (pathogenesis-related protein 1). The RT-qPCR analysis revealed the upregulated expression of the four genes in response to Prs in all inbred lines and at both time-points. The gene expression data were supported by microscopic and macroscopic examinations, which revealed that eight lines were susceptible to LR and four lines were highly resistant to LR. A relationship between the infection profiles and the expression of the analysed genes was observed: in the resistant lines, the expression level fold changes were usually higher at 20 hpt than at 36 hpt, while the opposite trend was observed in the susceptible lines. The study results indicate that DXS, Glu, GT and PR-1 may encode proteins crucial for the rye defence response to the LR pathogen.


Assuntos
Basidiomycota , Secale , Secale/genética , Basidiomycota/genética , Genes de Plantas , Genótipo , Doenças das Plantas/genética
5.
J Integr Plant Biol ; 66(4): 638-641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351739

RESUMO

The compact CRISPR/CasΦ2 system provides a complementary genome engineering tool for efficient gene editing including cytosine and adenosine base editing in wheat and rye with high specificity, efficient use of the protospacer-adjacent motif TTN, and an alternative base-editing window.


Assuntos
Edição de Genes , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Secale/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
6.
BMC Plant Biol ; 24(1): 107, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347436

RESUMO

BACKGROUND: Rye (Secale cereale L.) is a cereal crop highly tolerant to environmental stresses, including abiotic and biotic stresses (e.g., fungal diseases). Among these fungal diseases, leaf rust (LR) is a major threat to rye production. Despite extensive research, the genetic basis of the rye immune response to LR remains unclear. RESULTS: An RNA-seq analysis was conducted to examine the immune response of three unrelated rye inbred lines (D33, D39, and L318) infected with compatible and incompatible Puccinia recondita f. sp. secalis (Prs) isolates. In total, 877 unique differentially expressed genes (DEGs) were identified at 20 and 36 h post-treatment (hpt). Most of the DEGs were up-regulated. Two lines (D39 and L318) had more up-regulated genes than down-regulated genes, whereas the opposite trend was observed for line D33. The functional classification of the DEGs helped identify the largest gene groups regulated by LR. Notably, these groups included several DEGs encoding cytochrome P450, receptor-like kinases, methylesterases, pathogenesis-related protein-1, xyloglucan endotransglucosylases/hydrolases, and peroxidases. The metabolomic response was highly conserved among the genotypes, with line D33 displaying the most genotype-specific changes in secondary metabolites. The effect of pathogen compatibility on metabolomic changes was less than the effects of the time-points and genotypes. Accordingly, the secondary metabolome of rye is altered by the recognition of the pathogen rather than by a successful infection. The results of the enrichment analysis of the DEGs and differentially accumulated metabolites (DAMs) reflected the involvement of phenylpropanoid and diterpenoid biosynthesis as well as thiamine metabolism in the rye immune response. CONCLUSION: Our work provides novel insights into the genetic and metabolic responses of rye to LR. Numerous immune response-related DEGs and DAMs were identified, thereby clarifying the mechanisms underlying the rye response to compatible and incompatible Prs isolates during the early stages of LR development. The integration of transcriptomic and metabolomic analyses elucidated the contributions of phenylpropanoid biosynthesis and flavonoid pathways to the rye immune response to Prs. This combined analysis of omics data provides valuable insights relevant for future research conducted to enhance rye resistance to LR.


Assuntos
Basidiomycota , Micoses , Puccinia , Transcriptoma , Secale/genética , Secale/microbiologia , Basidiomycota/fisiologia , Metaboloma , Doenças das Plantas/microbiologia
7.
BMC Plant Biol ; 24(1): 46, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216860

RESUMO

BACKGROUND: The GRAS transcription factor family plays a crucial role in various biological processes in different plants, such as tissue development, fruit maturation, and environmental stress. However, the GRAS family in rye has not been systematically analyzed yet. RESULTS: In this study, 67 GRAS genes in S. cereale were identified and named based on the chromosomal location. The gene structures, conserved motifs, cis-acting elements, gene replications, and expression patterns were further analyzed. These 67 ScGRAS members are divided into 13 subfamilies. All members include the LHR I, VHIID, LHR II, PFYRE, and SAW domains, and some nonpolar hydrophobic amino acid residues may undergo cross-substitution in the VHIID region. Interested, tandem duplications may have a more important contribution, which distinguishes them from other monocotyledonous plants. To further investigate the evolutionary relationship of the GRAS family, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. The response characteristics of 19 ScGRAS members from different subfamilies to different tissues, grains at filling stages, and different abiotic stresses of rye were systematically analyzed. Paclobutrazol, a triazole-based plant growth regulator, controls plant tissue and grain development by inhibiting gibberellic acid (GA) biosynthesis through the regulation of DELLA proteins. Exogenous spraying of paclobutrazol significantly reduced the plant height but was beneficial for increasing the weight of 1000 grains of rye. Treatment with paclobutrazol, significantly reduced gibberellin levels in grain in the filling period, caused significant alteration in the expression of the DELLA subfamily gene members. Furthermore, our findings with respect to genes, ScGRAS46 and ScGRAS60, suggest that these two family members could be further used for functional characterization studies in basic research and in breeding programmes for crop improvement. CONCLUSIONS: We identified 67 ScGRAS genes in rye and further analysed the evolution and expression patterns of the encoded proteins. This study will be helpful for further analysing the functional characteristics of ScGRAS genes.


Assuntos
Proteínas de Plantas , Secale , Secale/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Genoma de Planta/genética , Regulação da Expressão Gênica de Plantas
8.
BMC Genomics ; 25(1): 67, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233751

RESUMO

BACKGROUND: Rye (Secale cereale), one of the drought and cold-tolerant crops, is an important component of the Triticae Dumortier family of Gramineae plants. Basic helix-loop-helix (bHLH), an important family of transcription factors, has played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, no systemic analysis of the bHLH transcription factor family has yet been reported in rye. RESULTS: In this study, 220 bHLH genes in S. cereale (ScbHLHs) were identified and named based on the chromosomal location. The evolutionary relationships, classifications, gene structures, motif compositions, chromosome localization, and gene replication events in these ScbHLH genes are systematically analyzed. These 220 ScbHLH members are divided into 21 subfamilies and one unclassified gene. Throughout evolution, the subfamilies 5, 9, and 18 may have experienced stronger expansion. The segmental duplications may have contributed significantly to the expansion of the bHLH family. To systematically analyze the evolutionary relationships of the bHLH family in different plants, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. Finally, the gene expression response characteristics of 22 ScbHLH genes in various biological processes and stress responses were analyzed. Some candidate genes, such as ScbHLH11, ScbHLH48, and ScbHLH172, related to tissue developments and environmental stresses were screened. CONCLUSIONS: The results indicate that these ScbHLH genes exhibit characteristic expression in different tissues, grain development stages, and stress treatments. These findings provided a basis for a comprehensive understanding of the bHLH family in rye.


Assuntos
Genoma de Planta , Secale , Secale/genética , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Yi Chuan ; 46(1): 63-77, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38230457

RESUMO

Hexaploid triticale is an important genetic resource for genetic improvement of common wheat, which can broaden the genetic basis of wheat. In order to lay a foundation for the subsequent research and utilization of triticale germplasm materials, the chromosomal genetic characteristics of cross and backcross offspring of hexaploid triticale×hexaploid wheat were investigated in the process of transferring rye chromatin from hexaploid triticale to hexaploid wheat. Hybrid and backcross combinations were prepared with hexaploid triticale 16yin171 as the maternal parent and hexaploid wheat Chuanmai62 as the paternal parent. The chromosomes in root tip cells of F1, BC1F1 and BC1F2 plants were traced and identified non-denaturing florescence in situ hybridization (ND-FISH). The results indicated that the backcross setting rate of hybrid F1 was 2.61%. The transmission frequency of 2R chromosome was the highest in BC1F1 plants while the transmissibility of rye chromosome in BC1F2 plant was 6R>4R>2R, and the 5B-7B wheat translocation in BC1F2 plants showed severe segregation. A total of 24 structural variant chromosomes were observed both in BC1F1 and BC1F2 plants, including chromosome fragments, isochromosomes, translocations, and dicentric chromosomes. In addition, the seed length and 1000-grain weight of some BC1F2 plants were better than that of the hexaploid wheat parent Chuanmai 62. Therefore, multiple backcrosses should be adopted as far as possible to make the rapid recovery of group D chromosomes, ensuring the recovery of fertility in offspring, when hexaploid tritriale is used as a bridge to introduce rye genetic material into common wheat. At the same time, the potential application value of chromosomal structural variation materials should be also concerned.


Assuntos
Triticale , Triticum , Triticum/genética , Triticale/genética , Secale/genética , Cromossomos de Plantas/genética , Hibridização In Situ , Translocação Genética
10.
New Phytol ; 241(2): 607-622, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37897058

RESUMO

The fine centromere structure in Robertsonian wheat-rye translocation chromosomes exhibits variation among different translocation genotypes. Within extensively employed wheat-rye 1RS.1BL translocation lines in wheat breeding, their translocated chromosomes frequently display fused centromere. Nevertheless, the mechanism governing the functionality of the fused centromere in 1RS.1BL translocated chromosomes remains to be clarified. In this study, we investigated the fine centromere structure of the 1RS.1BL translocated chromosome through a combination of cytological and genomics methods. We found that only the rye-derived centromere exhibits functional activity, whether in breeding applications or artificially synthesized translocation chromosomes. The active rye-derived centromere had higher proportion of young full-length long terminal repeat retrotransposons (flLTR-RTs) and more stable non-B DNA structures, which may be beneficial toward transcription of centromeric repeats and CENH3 loading to maintain the activity of rye centromeres. High levels of DNA methylation and H3K9me2 were found in the inactive wheat-derived centromeres, suggesting that it may play a crucial role in maintaining the inactive status of the wheat centromere. Our works elucidate the fine structure of 1RS.1BL translocations and the potential mechanism of centromere inactivation in the fused centromere, contributing knowledge to the application of fused centromere in wheat breeding formation of new wheat-rye translocation lines.


Assuntos
Retroelementos , Secale , Retroelementos/genética , Secale/genética , Melhoramento Vegetal , Cromossomos de Plantas/genética , Triticum/genética , Centrômero/genética , Translocação Genética
11.
Plant Biotechnol J ; 22(1): 66-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153293

RESUMO

Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.


Assuntos
Ascomicetos , Secale , Secale/genética , Resistência à Doença/genética , Triticum/genética , Proteínas de Repetições Ricas em Leucina , Ascomicetos/fisiologia , Nucleotídeos , Cromossomos de Plantas/genética , Sítios de Ligação , Doenças das Plantas/genética
12.
J Hazard Mater ; 464: 132956, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976853

RESUMO

Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.


Assuntos
Alumínio , Secale , Secale/genética , Secale/metabolismo , Alumínio/toxicidade , Malatos/metabolismo , Malatos/farmacologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Folhas de Planta/metabolismo , Açúcares
13.
PLoS One ; 18(10): e0293604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37903124

RESUMO

Genetic maps provide the foundation for QTL mapping of important traits of crops. As a valuable food and forage crop, rye (Secale cereale L., RR) is also one of the tertiary gene sources of wheat, especially wild rye, Secale cereale subsp. segetale, possessing remarkable stress tolerance, tillering capacity and numerous valuable traits. In this study, based on the technique of specific-locus amplified fragment sequencing (SLAF-seq), a high-density single nucleotide polymorphism (SNP) linkage map of the cross-pollinated (CP) hybrid population crossed by S. cereale L (female parent) and S. cereale subsp. segetale (male parent) was successfully constructed. Following preprocessing, the number of 1035.11 M reads were collected and 2425800 SNP were obtained, of which 409134 SNP were polymorphic. According to the screening process, 9811 SNP markers suitable for constructing linkage groups (LGs) were selected. Subsequently, all of the markers with MLOD values lower than 3 were filtered out. Finally, an integrated map was constructed with 4443 markers, including 1931 female mapping markers and 3006 male mapping markers. A major quantitative trait locus (QTL) linked with spike length (SL) was discovered at 73.882 cM on LG4, which explained 25.29% of phenotypic variation. Meanwhile two candidate genes for SL, ScWN4R01G329300 and ScWN4R01G329600, were detected. This research presents the first high-quality genetic map of rye, providing a substantial number of SNP marker loci that can be applied to marker-assisted breeding. Additionally, the finding could help to use SLAF marker mapping to identify certain QTL contributing to important agronomic traits. The QTL and the candidate genes identified through the high-density genetic map above may provide diverse potential gene resources for the genetic improvement of rye.


Assuntos
Melhoramento Vegetal , Secale , Secale/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Ligação Genética
14.
PeerJ ; 11: e15972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663276

RESUMO

Background: Phosphorus nutrition is important for obtaining high yields of crop plants. However, wheat plants are known to be almost incapable of taking up phosphorus from insoluble phosphate sources, and reduced height genes are supposed to decrease this ability further. Methods: We performed a pot experiment using Triticum durum Desf. tall spring variety LD222, its near-isogenic semidwarf line carrying Rht17 (Reduced height 17) gene, and winter rye (Secale cereale L.) variety Chulpan. The individual plants were grown in quartz sand. The phosphorus was provided either as phosphate rock powder mixed with sand, or as monopotassium phosphate solution (normal nutrition control) or was not supplemented at all (no-phosphorus control). Other nutrients were provided in soluble form. During experiment the plants were assessed using the TraitFinder (Phenospex Ltd., Heerlen, Netherlands) digital phenotyping system for a standard set of parameters. Double scan with 90 degrees turns of pots around vertical axis vs. single scan were compared for accuracy of phenotyping. Results: The phenotyping showed that at least 20 days of growth after seedling emergence were necessary to get stable differences between genotypes. After this initial period, phenotyping confirmed poor ability of wheat to grow on substrate with phosphate rock as the only source of phosphorus compared to rye; however, Rht17 did not cause an additional reduction in growth parameters other than plant height under this variant of substrate. The agreement between digital phenotyping and conventionally measured traits was at previously reported level for grasses (R2 = 0.85 and 0.88 for digital biomass and 3D leaf area vs. conventionally measured biomass and leaf area, single scan). Among vegetation indices, only the normalized differential vegetation index (NDVI) and the green leaf index (GLI) showed significant correlations with manually measured traits, including the percentage of dead leaves area. The double scan improved phenotyping accuracy, but not substantially.


Assuntos
Abuso de Maconha , Fósforo , Triticum/genética , Secale/genética , Areia , Fosfatos
15.
BMC Plant Biol ; 23(1): 441, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37726665

RESUMO

BACKGROUND: Heat shock factor (HSF), a typical class of transcription factors in plants, has played an essential role in plant growth and developmental stages, signal transduction, and response to biotic and abiotic stresses. The HSF genes families has been identified and characterized in many species through leveraging whole genome sequencing (WGS). However, the identification and systematic analysis of HSF family genes in Rye is limited. RESULTS: In this study, 31 HSF genes were identified in Rye, which were unevenly distributed on seven chromosomes. Based on the homology of A. thaliana, we analyzed the number of conserved domains and gene structures of ScHSF genes that were classified into seven subfamilies. To better understand the developmental mechanisms of ScHSF family during evolution, we selected one monocotyledon (Arabidopsis thaliana) and five (Triticum aestivum L., Hordeum vulgare L., Oryza sativa L., Zea mays L., and Aegilops tauschii Coss.) specific representative dicotyledons associated with Rye for comparative homology mapping. The results showed that fragment replication events modulated the expansion of the ScHSF genes family. In addition, interactions between ScHSF proteins and promoters containing hormone- and stress-responsive cis-acting elements suggest that the regulation of ScHSF expression was complex. A total of 15 representative genes were targeted from seven subfamilies to characterize their gene expression responses in different tissues, fruit developmental stages, three hormones, and six different abiotic stresses. CONCLUSIONS: This study demonstrated that ScHSF genes, especially ScHSF1 and ScHSF3, played a key role in Rye development and its response to various hormones and abiotic stresses. These results provided new insights into the evolution of HSF genes in Rye, which could help the success of molecular breeding in Rye.


Assuntos
Aegilops , Arabidopsis , Secale/genética , Filogenia , Resposta ao Choque Térmico
16.
Mol Biol Rep ; 50(10): 8373-8383, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615923

RESUMO

BACKGROUND: Alkylresorcinols (ARs) are compounds belonging to the class of phenolic lipids. A rich source of ARs are cereal grains such as rye, wheat, triticale or barley. ARs found in plants are characterized by a variety of biological properties such as antimicrobial, antifungal and cytotoxic activity. Moreover, they are proven to have a positive influence on human health. Here, we aimed to find and characterize the gene with ARs synthase activity in the species Secale cereale. METHODS AND RESULTS: Using BAC library screening, two BAC clones containing the gene candidate were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of the gene, including promoter, intron, 3'UTR and 5'UTR. Mapping using the FISH procedure located the gene on the 4R chromosome. Comparative analysis showed that the gene is highly similar to sequences coding for type III polyketide synthase. The level of gene expression in various parts of the plant was investigated, and the biochemical function of the gene was confirmed by heterologous expression in yeast. CONCLUSIONS: The conducted analyses contributed to a better understanding of the processes related to ARs synthesis. Although the research concerned the rye model, the knowledge gained may help in understanding the genetic basis of ARs biosynthesis in other species of the Poaceae family as well.


Assuntos
Grão Comestível , Secale , Humanos , Secale/genética , Secale/química , Secale/metabolismo , Biblioteca Gênica , Sequência de Bases , Íntrons , Grão Comestível/genética
17.
Int J Mol Sci ; 24(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37569728

RESUMO

This research is about the profiling of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), and rye (Secale cereale L.) FPG and OGG1 genes during grain germination. During seed germination, reactive oxygen species accumulate, which leads to DNA damage. In the base excision repair (BER) system, the enzymes formamidopyrimidine DNA glycosylase (FPG) and 8-oxoguanine DNA glycosylase (OGG1), among others, are responsible for repairing such damage. We decided to check how the expression of genes encoding these two enzymes changes in germinating grains. Spring varieties of barley, wheat, and rye from the previous growing season were used in the study. Expression level changes were checked using Real-Time PCR. After analyzing the obtained results, the maximum expression levels of FPG and OGG1 genes during germination were determined for barley, wheat, and rye. The results of the study show differences in expression levels specific to each species. The highest expression was observed at different time points for each of them. There were no differences in the highest expression for FPG and OGG1 within one species. In conclusion, the research provides information on how the level of FPG and OGG1 gene expression changes during the germination process in cereals. This is the first study looking at the expression levels of these two genes in cereals.


Assuntos
Hordeum , DNA-Formamidopirimidina Glicosilase , Hordeum/genética , Triticum/genética , Grão Comestível/genética , Secale/genética , Germinação/genética
18.
BMC Genomics ; 24(1): 455, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568100

RESUMO

BACKGROUND: The 1RS arm of wheat-rye 1BL.1RS translocations contains several subtelomeric tandem repeat families. To study the effect of the difference in the composition of these tandem repeats on the meiotic recombination of 1RS arms can help to enrich the genetic diversity of 1BL.1RS translocation chromosomes. RESULTS: Five wheat-rye 1BL.1RS translocation cultivars/lines were used to build two cross combinations including group 1 (20T401 × Zhou 8425B, 20T401 × Lovrin 10 and 20T401 × Chuannong 17) and group 2 (20T360-2 × Zhou 8425B, 20T360-2 × Lovrin 10 and 20T360-2 × Chuannong 17). Oligonucleotide (oligo) probes Oligo-s120.3, Oligo-TR72, and Oligo-119.2-2 produced the same signal pattern on the 1RS arms in lines 20T401 and 20T360-2, and another signal pattern in the three cultivars Zhou 8425B, Lovrin 10 and Chuannong 17. The Oligo-pSc200 signal disappeared from the 1RS arms of the line 20T401, and the signal intensity of this probe on the 1RS arms of the line 20T360-2 was weaker than that of the three cultivars. The five cultivars/lines had the same signal pattern of the probe Oligo-pSc250. The recombination rate of 1RS arms in group 1 was significantly lower than that in group 2. In the progenies from group 1, unequal meiotic recombination in the subtelomeric pSc119.2 and pSc250 tandem repeat regions, and a 1BL.1RS with inversion of 1RS segment between the pSc200 and the nucleolar organizer region were found. CONCLUSIONS: This study provides a visual tool to detect the meiotic recombination of 1RS arms. The meiotic recombination rate of 1RS arms was affected by the variation of pSc200 tandem repeat, indicating the similar composition of subtelomeric tandem repeats on these arms could increase their recombination rate. These results indicate that the 1RS subtelomeric structure will affect its recombination, and thus the localization of genes on 1RS by means of meiotic recombination might also be affected.


Assuntos
Secale , Triticum , Humanos , Triticum/genética , Secale/genética , Cromossomos de Plantas/genética , Translocação Genética , Telômero/genética
19.
Theor Appl Genet ; 136(9): 179, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37548696

RESUMO

KEY MESSAGE: Novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance were developed, and the resistance gene PmW6RS was physically mapped onto 6RS-0.58-0.66-bin corresponding to 18.38 Mb in Weining rye. Rye (Secale cereale L., RR) contains valuable genes for wheat improvement. However, most of the rye resistance genes have not been successfully used in wheat cultivars. Identification of new rye resistance genes and transfer of these genes to wheat by developing small fragment translocation lines will make these genes more usable for wheat breeding. In this study, a broad-spectrum powdery mildew resistance gene PmW6RS was localized on rye chromosome arm 6RS using a new set of wheat-rye disomic and telosomic addition lines. To further study and use PmW6RS, 164 wheat-rye 6RS translocation lines were developed by 60Coγ-ray irradiation. Seedling and adult stage powdery mildew resistance analysis showed that 106 of the translocation lines were resistant. A physical map of 6RS was constructed using the 6RS translocation and deletion lines, and PmW6RS was localized in the 6RS-0.58-0.66-bin, flanked by markers X6RS-3 and X6RS-10 corresponding to the physical interval of 50.23-68.61 Mb in Weining rye genome. A total of 23 resistance-related genes were annotated. Nine markers co-segregate with the 6RS-0.58-0.66-bin, which can be used to rapidly trace the 6RS fragment carrying PmW6RS. Small fragment translocation lines with powdery mildew resistance were backcrossed with wheat cultivars, and 39 agronomically acceptable homozygous 6RS small fragment translocation lines were obtained. In conclusion, this study not only provides novel gene source and germplasms for wheat resistance breeding, but also laid a solid foundation for cloning of PmW6RS.


Assuntos
Ascomicetos , Secale , Secale/genética , Triticum/genética , Melhoramento Vegetal , Resistência à Doença/genética , Translocação Genética , Doenças das Plantas/genética
20.
PLoS One ; 18(7): e0288520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440539

RESUMO

The genetic background of the immune response of rye to leaf rust (LR), although extensively studied, is still not well understood. The recent publication of the genome of rye line Lo7 and the development of efficient transcriptomic methods has aided the search for genes that confer resistance to this disease. In this study, we investigated the potential role of rye orthologs of wheat Lr genes (Lr1, Lr10, Lr21, Lr22a, and RGA2/T10rga2-1A) in the LR seedling-stage resistance of inbred rye lines D33, D39, and L318. Bioinformatics analysis uncovered numerous Lr orthologs in the Lo7 genome, namely, 14 ScLr1, 15 ScRga2, and 2 ScLr21 paralogs, and 1 each of ScLr10 and ScLr22a genes. The paralogs of ScLr1, ScRga2, and ScLr21 were structurally different from one another and their wheat counterparts. According to an RNA sequencing analysis, only four wheat Lr gene orthologs identified in the Lo7 genome (ScLr1_3, ScLr1_4, ScLr1_8, and ScRga2_6) were differentially expressed; all four were downregulated after infection with compatible or incompatible isolates of Puccinia recondita f. sp. secalis (Prs). Using a more precise tool, RT-qPCR, we found that two genes were upregulated at 20 h post-infection, namely, ScLr1_4 and ScLr1_8 in lines D33 and D39, respectively, both of which have been found to be resistant to LR under field conditions and after treatment with a semi-compatible Prs strain. We were unable to discern any universal pattern of gene expression after Prs infection; on the contrary, all detected relationships were plant genotype-, Prs isolate-, or time-specific. Nevertheless, at least some Lr orthologs in rye (namely, ScLr1_3 ScLr1_4, ScLr1_8, and ScRga2_6), even though mainly downregulated, may play an important role in the response of rye to LR.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Secale/genética , Basidiomycota/genética , Genes de Plantas , Genótipo , Doenças das Plantas/genética , Resistência à Doença/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA