Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.186
Filtrar
1.
Environ Monit Assess ; 196(6): 566, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775858

RESUMO

Microbial communities from freshwater sediments are involved in biogeochemical cycles and they can be modified by physical and chemical changes in the environment. Linking the microbial community structure (MCS) with physicochemistry of freshwater courses allows a better understanding of its ecology and can be useful to assess the ecological impact generated by human activity. The MCS of tributary channels from La Plata River affected by oil refinery (C, D, and E) and one also by urban discharges (C) was studied. For this purpose, 16S rRNA metabarcoding analysis, in silico metagenome functional prediction, and the hydrocarbon degradation potential (in silico predictions of hydrocarbon-degrading genes and their quantification by qPCR) of the MCS were studied. Principal coordinate analysis revealed that the MCS was different between sites, and it was not structured by the hydrocarbon content. Site C showed physicochemical characteristics, bacterial taxa, and an in silico functional prediction related to fermentative/heterotrophic metabolism. Site D, despite having higher concentration of hydrocarbon, presented autotrophic, syntrophic, and methanogenic pathways commonly involved in natural processes in anoxic sediments. Site E showed and intermediate autotrophic/heterotrophic behavior. The hydrocarbon degradation potential showed no positive correlation between the hydrocarbon-degrading genes quantified and predicted. The results suggest that the hydrocarbon concentration in the sites was not enough selection pressure to structure the bacterial community composition. Understanding which is the variable that structures the bacterial community composition is essential for monitoring and designing of sustainable management strategies for contaminated freshwater ecosystems.


Assuntos
Monitoramento Ambiental , Microbiota , Rios , Poluentes Químicos da Água , Rios/microbiologia , Rios/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Argentina , RNA Ribossômico 16S/genética , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Recuperação e Remediação Ambiental/métodos
2.
Environ Sci Technol ; 58(20): 8909-8918, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728532

RESUMO

Over 4 million liters of mixed acidic (∼pH 2.5), high ionic strength (∼5 M nitrate) plutonium (Pu) processing waste were released into the 216-Z-9 (Z-9) trench at the Hanford Site, USA, and trace Pu has migrated 37 m below the trench. In this study, we used flowthrough columns to investigate Pu transport in simplified processing waste through uncontaminated Hanford sediments to determine the conditions that led to Pu migration. In low pH aqueous fluids, some Pu breakthrough is observed at pH < 4, and increased Pu transport (14% total Pu breakthrough) is observed at pH < 2. However, Pu migrates in organic processing solvents through low pH sediments virtually uninhibited with approximately 94 and 86% total Pu breakthrough observed at pH 1 and pH 3, respectively. This study demonstrates that Pu migration can occur both with and without organic solvents at pH < 4, but significantly more Pu can be transported when partitioned into organic processing solvents. Our data suggest that under acidic conditions (pH < 4) in the vadose zone beneath the Z-9 trench, Pu present in organic processing solvents moved relatively unhindered and may explain the historical downward migration of Pu tens of meters below the Z-9 trench.


Assuntos
Plutônio , Concentração de Íons de Hidrogênio , Poluentes Radioativos da Água , Sedimentos Geológicos/química , Resíduos Radioativos , Solventes/química
3.
Sci Rep ; 14(1): 10585, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719868

RESUMO

Here, a comprehensive study was designed to estimate the human risk assessment attributed to exposure of polycyclic aromatic hydrocarbons (PAHs)in sediment and fish in most polluted shore area in north of Persian Gulf. To this end, a total of 20 sediment and inhabitual Fish, as one of most commercial fish, samples were randomly collected from 20 different stations along Bushehr Province coastline. The 16 different components of PAHs were extracted from sediment and edible parts of inhabitual fish and measured with high-performance liquid chromatography (HPLC) and gas chromatography (GC), respectively. In addition, dietary daily intake (DDI) values of PAHs via ingestion Indian halibut and the incremental lifetime cancer risk (ILCR) attributed to human exposure to sediments PAHs via (a) inhalation, (b) ingestion, and (c) dermal contact for two groups of ages: children (1-11 years) and adults (18-70 years) were estimated. The results indicated that all individual PAHs except for Benzo(b)flouranthene (BbF) and Benzo(ghi) perylene (BgP) were detected in different sediment sample throughout the study area with average concentration between 2.275 ± 4.993 mg.kg-1 dw. Furthermore, Naphthalene (Nap) with highest average concentration of 3.906 ± 3.039 mg.kg-1 dw was measured at the Indian halibut. In addition, the human risk analysis indicated that excess cancer risk (ECR) attributed to PAHs in sediment and fish in Asaluyeh with high industrial activities on oil and derivatives were higher the value recommended by USEPA (10-6). Therefore, a comprehensive analysis on spatial distribution and human risk assessment of PAHs in sediment and fish can improve the awareness on environmental threat in order to aid authorities and decision maker to find a sustainable solution.


Assuntos
Peixes , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oceano Índico , Animais , Medição de Risco , Adulto , Poluentes Químicos da Água/análise , Criança , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Pré-Escolar , Idoso , Lactente , Monitoramento Ambiental
4.
Water Environ Res ; 96(5): e11033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720414

RESUMO

The escalating issue of microplastic (MP) pollution poses a significant threat to the marine environment due to increasing plastic production and improper waste management. The current investigation was aimed at quantifying the MP concentration on 25 beaches on the Maharashtra coast, India. Beach sediments (1 kg) were collected from each site, with five replicates to evaluate the extent of MPs. The samples were homogenized, and three 20 g replicas were prepared for subsequent analysis. Later, the samples were sieved, and MPs were extracted using previously published protocols. The abundance of MPs found as 1.56 ± 0.79 MPs/g, ranges from 0.43 ± 0.07 to 3 ± 0.37 MPs/g. Fibers were found as the most abundant shape of MPs. Size-wise classification revealed dominance of <1 mm and 1-2 mm-sized MPs. Blue- and black-colored MPs were recorded dominantly. Polymer identification of MPs revealed polyurethane, polypropylene, polyvinyl chloride, acrylic or polymethyl methacrylate, and rubber. The findings revealed that MPs were found to be higher at highly impacted sites, followed by moderately impacted sites and low-impacted sites, possibly due to a different degree of anthropogenic pressure. The study recommended the urgent need for effective policy to prevent plastics accumulation in the coastal environment of Maharashtra State, India. PRACTITIONER POINTS: The study investigated the abundance and distribution of microplastics in the marine environment, specifically in sediments. The most common type of microplastic found was fibers, followed by fragments and films. Microplastics were found to pose a potential risk to the marine ecosystem, although further research is needed to fully understand their ecological impact. Future research should focus on expanding the sample size, assessing long-term effects, exploring sources and pathways, and considering size and shape of microplastics. The findings recommended urgent action to mitigate plastic pollution in Maharashtra coast.


Assuntos
Praias , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Índia , Microplásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Plásticos/química , Plásticos/análise
5.
Environ Sci Technol ; 58(19): 8510-8517, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38695484

RESUMO

Anthropogenic activities have fundamentally changed the chemistry of the Baltic Sea. According to results reported in this study, not even the thallium (Tl) isotope cycle is immune to these activities. In the anoxic and sulfidic ("euxinic") East Gotland Basin today, Tl and its two stable isotopes are cycled between waters and sediments as predicted based on studies of other redox-stratified basins (e.g., the Black Sea and Cariaco Trench). The Baltic seawater Tl isotope composition (ε205Tl) is, however, higher than predicted based on the results of conservative mixing calculations. Data from a short sediment core from East Gotland Basin demonstrates that this high seawater ε205Tl value originated sometime between about 1940 and 1947 CE, around the same time other prominent anthropogenic signatures begin to appear in the same core. This juxtaposition is unlikely to be coincidental and suggests that human activities in the surrounding area have altered the seawater Tl isotope mass-balance of the Baltic Sea.


Assuntos
Sedimentos Geológicos , Oceanos e Mares , Água do Mar , Tálio , Água do Mar/química , Sedimentos Geológicos/química , Atividades Humanas , Humanos , Monitoramento Ambiental , Poluentes Químicos da Água , Isótopos
6.
Bull Environ Contam Toxicol ; 112(5): 73, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691196

RESUMO

Southeast Asia (SEA) faces significant environmental challenges due to rapid population growth and economic activity. Rivers in the region are major sources of plastic waste in oceans. Concerns about their contribution have grown, but knowledge of microplastics in the area is still limited. This article compares microplastic levels in sediment and water from urban zones of three major rivers in SEA: Chao Phraya River (Thailand), Saigon River (Vietnam), and Citarum River (Indonesia). The study reveals that in all three rivers, microplastics were found, with the highest concentrations in Chao Phraya's water (80 ± 60 items/m3) and Saigon's sediment (9167 ± 4559 items/kg). The variations in microplastic sizes and concentrations among these rivers may be attributed to environmental factors and the exposure duration of plastic to the environment. Since these rivers are important water supply sources, rigorous land-use regulations and raising public awareness are crucial to mitigate plastic and microplastic pollution.


Assuntos
Monitoramento Ambiental , Microplásticos , Rios , Poluentes Químicos da Água , Rios/química , Poluentes Químicos da Água/análise , Microplásticos/análise , Densidade Demográfica , Sudeste Asiático , Tailândia , Vietnã , Poluição Química da Água/estatística & dados numéricos , Plásticos/análise , Indonésia , Sedimentos Geológicos/química
7.
Environ Monit Assess ; 196(6): 496, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693437

RESUMO

This study examined the presence of two heavy metals (Cd and Pb) in the sediments and Asian swamp eels (Monopterus albus) in the downstream area of Cisadane River. The average concentrations of Cd and Pb in the sediments from all sampling locations were 0.594 ± 0.230 mg/kg and 34.677 ± 24.406 mg/kg, respectively. These concentrations were above the natural background concentration and the recommended value of interim sediment quality guidelines (ISQG), suggesting an enrichment process and potential ecological risk of studied metals to the ecosystem of Cisadane River. The increase in contamination within this region may be attributed to point sources such as landfill areas, as well as the industrial and agricultural land activities in surrounding area, and experienced an increasing level leading towards the estuary of Cisadane River. Meanwhile, the average concentrations of Cd and Pb in the eels from all sampling locations were 0.775 ± 0.528 µg/g and 28.940 ± 12.921 µg/g, respectively. This study also discovered that gill tissues contained higher levels of Cd and Pb than the digestive organ and flesh of Asian swamp eels. These concentrations were higher than Indonesian and international standards, suggesting a potential human health risk and therefore the needs of limitations in the consumption of the eels. Based on the human health risk assessment, the eels from the downstream of Cisadane River are still considered safe to be consumed as long as they comply with the specified maximum consumption limits.


Assuntos
Cádmio , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo , Rios , Smegmamorpha , Poluentes Químicos da Água , Animais , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Rios/química , Indonésia , Cádmio/análise , Chumbo/análise , Chumbo/metabolismo , Smegmamorpha/metabolismo
8.
Environ Geochem Health ; 46(6): 205, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695945

RESUMO

The eastern coastline of Gresik, located in East Java, Indonesia, experienced significant industrialization, leading to the development of numerous diverse sectors. These diverse industrial activities, in addition to other human activities, result in the contamination of sediment across the eastern coast of Gresik with a variety of metals. Metals like arsenic (As), cadmium (Cd), copper (Cu), and zinc (Zn) have exceeded the international standards for sediment quality, potentially causing significant harm to the aquatic ecosystem in this coastal region. The results of the multivariate analysis indicate that the metals found in the sediment are related to a combination of anthropogenic inputs, specifically those originating from industrial effluents in the area under study. Based on the assessment of enrichment factor, contamination factor, geo-accumulation index, degree of contamination, ecological risk index, and pollution load index, it can be concluded that the metals examined displayed different degrees of sediment contamination, ranging from minimal to severely contaminated.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Poluentes Químicos da Água , Indonésia , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Medição de Risco , Desenvolvimento Industrial , Metais/análise
9.
Environ Geochem Health ; 46(6): 196, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695954

RESUMO

We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.


Assuntos
Carpas , Exposição Dietética , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rios , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Rios/química , Medição de Risco , Sedimentos Geológicos/química , Carpas/metabolismo , Humanos , Monitoramento Ambiental/métodos
10.
Environ Geochem Health ; 46(6): 187, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696018

RESUMO

The presence of toxic trace elements (TEs) has resulted in a worldwide deterioration in freshwater ecosystem quality. This study aimed to analyze the distribution of TEs, including chromium (Cr), nickel (Ni), arsenic (As), mercury (Hg), cadmium (Cd), and lead (Pb), in water, sediment, and organs of Tilapia (Oreochromis mossambicus) collected from selected inland water bodies in Tamil Nadu, India. The water samples exhibited a range of concentrations for TEs: Cr varied from 0.014 to 5.193 µg/L, Ni ranged from 0.283 to 11.133 µg/L, As ranged from 0.503 to 1.519 µg/L, Cd from 0.001 to 0.616 µg/L, and Pb ranged from non-detectable (ND) to 6.103 µg/L. The concentrations of TEs in sediment were found to vary within the following ranges: 5.259 to 32.621 mg/kg for Cr, 1.932 to 30.487 mg/kg for Ni, 0.129 to 0.563 mg/kg for As, 0.003 to 0.011 mg/kg for Cd, ND to 0.003 mg/kg for Hg, and 0.404 to 1.575 mg/kg for Pb. The study found that the accumulation pattern of TE in fishes across all selected areas was liver > bone > gill > muscle. The organs had TE concentrations of Cr (ND-0.769 mg/kg), Ni (ND-1.053 mg/kg), As (0.002-0.080 mg/kg), Pb (ND-0.411 mg/kg), and Hg (ND-0.067 mg/kg), which was below the maximum residual limit prescribed by EC and FSSAI. The bioconcentration factor (BCF) of TEs exhibited a greater magnitude in comparison with the biota-sediment accumulation factor due to the higher concentration of TEs in fish and lower level in water. The assessment of both carcinogenic and non-carcinogenic risks suggests that the consumption of Tilapia from the study region does not pose any significant risks.


Assuntos
Bioacumulação , Sedimentos Geológicos , Tilápia , Oligoelementos , Poluentes Químicos da Água , Animais , Tilápia/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Medição de Risco , Sedimentos Geológicos/química , Oligoelementos/análise , Oligoelementos/metabolismo , Índia , Monitoramento Ambiental , Metais Pesados/análise , Humanos , Água Doce
11.
Environ Geochem Health ; 46(6): 191, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696024

RESUMO

Pesticides are frequently used to protect crop yields and manage malaria vectors; however, their inadvertent transport into aquatic habitats poses a significant concern. Various anthropogenic activities influence the Indus River in Pakistan. This study aimed to assess the presence of eight pesticide residues at three different sites (Kalabagh, Kundian, and Chashma) in water, sediment, and the fish species (Labeo rohita) during both dry and wet seasons to measure the intensity of this pressure. Pesticide analysis was carried out using gas chromatography equipped with an electron capture detector. The results revealed the highest concentrations of pesticides during both dry and wet seasons at all sites, measuring 0.83 and 0.62 µg/l (water), 12.37 and 9.20 µg/g/dw (sediment), and 14.27 and 11.29 µg/g/ww (L. rohita), respectively. Overall, pesticide concentrations were higher in the dry season than in the wet season across all study sites. Based on detection frequency and concentration in both seasons at all sites, dominant pesticides included cypermethrin and carbofuran (in water), as well as endosulfan and cypermethrin (in sediment and fish tissue). Levels of endosulfan and cypermethrin exceeded standard limits. Moreover, principal component analysis (PCA) indicated no correlation among pesticides in fish tissue, sediment, and water. However, pesticides exhibited different behavior in different seasons. Furthermore, endosulfan and triazophos impose great human health risk, as indicated by the THQ value (> 1). The overall HI value was greater for site 1 in the dry season (8.378). The study concluded that the presence of agricultural pesticides in the Indus River poses a risk to aquatic life and has the potential to disrupt the entire food chain. This highlights the importance of sustainable practices for the study area and Pakistan overall agricultural and environmental sustainability. It is further recommended to strengthen regulations for reduced pesticide use and promote eco-friendly pest management.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Praguicidas , Rios , Poluentes Químicos da Água , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Animais , Rios/química , Paquistão , Humanos , Medição de Risco , Praguicidas/análise , Monitoramento Ambiental/métodos , Estações do Ano , Resíduos de Praguicidas/análise , Cyprinidae , Peixes
12.
Geobiology ; 22(3): e12594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700397

RESUMO

Lehman Caves is an extensively decorated high desert cave that represents one of the main tourist attractions in Great Basin National Park, Nevada. Although traditionally considered a water table cave, recent studies identified abundant speleogenetic features consistent with a hypogenic and, potentially, sulfuric acid origin. Here, we characterized white mineral deposits in the Gypsum Annex (GA) passage to determine whether these secondary deposits represent biogenic minerals formed during sulfuric acid corrosion and explored microbial communities associated with these and other mineral deposits throughout the cave. Powder X-ray diffraction (pXRD), scanning electron microscopy with electron dispersive spectroscopy (SEM-EDS), and electron microprobe analyses (EPMA) showed that, while most white mineral deposits from the GA contain gypsum, they also contain abundant calcite, silica, and other phases. Gypsum and carbonate-associated sulfate isotopic values of these deposits are variable, with δ34SV-CDT between +9.7‰ and +26.1‰, and do not reflect depleted values typically associated with replacement gypsum formed during sulfuric acid speleogenesis. Petrographic observations show that the sulfates likely co-precipitated with carbonate and SiO2 phases. Taken together, these data suggest that the deposits resulted from later-stage meteoric events and not during an initial episode of sulfuric acid speleogenesis. Most sedimentary and mineral deposits in Lehman Caves have very low microbial biomass, with the exception of select areas along the main tour route that have been impacted by tourist traffic. High-throughput 16S rRNA gene amplicon sequencing showed that microbial communities in GA sediments are distinct from those in other parts of the cave. The microbial communities that inhabit these oligotrophic secondary mineral deposits include OTUs related to known ammonia-oxidizing Nitrosococcales and Thaumarchaeota, as well as common soil taxa such as Acidobacteriota and Proteobacteria. This study reveals microbial and mineralogical diversity in a previously understudied cave and expands our understanding of the geomicrobiology of desert hypogene cave systems.


Assuntos
Bactérias , Cavernas , Minerais , Cavernas/microbiologia , Minerais/análise , Bactérias/classificação , Bactérias/metabolismo , Nevada , Archaea/metabolismo , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Parques Recreativos , RNA Ribossômico 16S/genética , Ácidos Sulfúricos , Filogenia , Microbiota , Sulfato de Cálcio/química , Microscopia Eletrônica de Varredura
13.
Geobiology ; 22(3): e12598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700417

RESUMO

Tonian (ca. 1000-720 Ma) marine environments are hypothesised to have experienced major redox changes coinciding with the evolution and diversification of multicellular eukaryotes. In particular, the earliest Tonian stratigraphic record features the colonisation of benthic habitats by multicellular macroscopic algae, which would have been powerful ecosystem engineers that contributed to the oxygenation of the oceans and the reorganisation of biogeochemical cycles. However, the paleoredox context of this expansion of macroalgal habitats in Tonian nearshore marine environments remains uncertain due to limited well-preserved fossils and stratigraphy. As such, the interdependent relationship between early complex life and ocean redox state is unclear. An assemblage of macrofossils including the chlorophyte macroalga Archaeochaeta guncho was recently discovered in the lower Mackenzie Mountains Supergroup in Yukon (Canada), which archives marine sedimentation from ca. 950-775 Ma, permitting investigation into environmental evolution coincident with eukaryotic ecosystem evolution and expansion. Here we present multi-proxy geochemical data from the lower Mackenzie Mountains Supergroup to constrain the paleoredox environment within which these large benthic macroalgae thrived. Two transects show evidence for basin-wide anoxic (ferruginous) oceanic conditions (i.e., high FeHR/FeT, low Fepy/FeHR), with muted redox-sensitive trace metal enrichments and possible seasonal variability. However, the weathering of sulfide minerals in the studied samples may obscure geochemical signatures of euxinic conditions. These results suggest that macroalgae colonized shallow environments in an ocean that remained dominantly anoxic with limited evidence for oxygenation until ca. 850 Ma. Collectively, these geochemical results provide novel insights into the environmental conditions surrounding the evolution and expansion of benthic macroalgae and the eventual dominance of oxygenated oceanic conditions required for the later emergence of animals.


Assuntos
Evolução Biológica , Fósseis , Oxirredução , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Eucariotos , Canadá , Ecossistema , Clorófitas
14.
Geobiology ; 22(3): e12597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38700422

RESUMO

Ediacara-type macrofossils appear as early as ~575 Ma in deep-water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep-water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf-to-slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf-to-slope depositional system to understand the spatiotemporal and environmental context of Ediacara-type organisms' stratigraphic occurrence. New sedimentological and paleontological data presented herein from the Wernecke Mountains establish a stratigraphic framework relating shelfal strata in the Goz/Corn Creek area to lower slope deposits in the Nadaleen River area. We report new discoveries of numerous Aspidella hold-fast discs, indicative of frondose Ediacara organisms, from deep-water slope deposits of the Nadaleen Formation stratigraphically below the Shuram carbon isotope excursion (CIE) in the Nadaleen River area. Such fossils are notably absent in coeval shallow-water strata in the Goz/Corn Creek region despite appropriate facies for potential preservation. The presence of pre-Shuram CIE Ediacara-type fossils occurring only in deep-water facies within a basin that has equivalent well-preserved shallow-water facies provides the first stratigraphic paleobiological support for a deep-water origination of the Ediacara biota. In contrast, new occurrences of Ediacara-type fossils (including juvenile fronds, Beltanelliformis, Aspidella, annulated tubes, and multiple ichnotaxa) are found above the Shuram CIE in both deep- and shallow-water deposits of the Blueflower Formation. Given existing age constraints on the Shuram CIE, it appears that Ediacaran organisms may have originated in the deeper ocean and lived there for up to ~15 million years before migrating into shelfal environments in the terminal Ediacaran. This indicates unique ecophysiological constraints likely shaped the initial habitat preference and later environmental expansion of the Ediacara biota.


Assuntos
Biota , Fósseis , Sedimentos Geológicos , Sedimentos Geológicos/química , Sedimentos Geológicos/análise , Isótopos de Carbono/análise , Yukon , Terra Nova e Labrador , Paleontologia , Territórios do Noroeste
15.
Environ Monit Assess ; 196(6): 514, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709331

RESUMO

Microplastics (MPs, plastic items from 1 µm to 5 mm in size) are present in all environmental compartments. The evaluation of their concentration, fate, and spatial distribution is still a challenge for the scientific community. This concern is just debuting in developing countries, (i.e., Asia, South America, and Africa). This study deals with the MP contamination in the abiotic marine compartments of Northern Vietnam: seawater and intertidal sediments. Four sites located in the intertidal zone or near the coastline in Tonkin Bay, Vietnam were studied. A total of 16 samples (eight for each compartment) were collected in July 2020 (rainy season) and January 2021 (dry season). Anthropogenic particles (total observed fibers and fragments) were found at levels ranging from 3 to 303 particles/m3 in seawater and from 63 to 955 particles/kg dry weight in sediments. Most of these were fibers less than 300-µm long. Higher levels of seawater at the Nam Dinh site were found in the rainy season compared to the dry one. As the river flow was estimated six times higher during the rainy season than during the dry season, these results suggest the river discharge is a potential source of contamination for the coastal zone. The temporal variability was lower for the sediments than for the seawater, suggesting the long-term integration of the anthropogenic particles in this compartment. A small portion of sorted particles were analyzed by µFTIR (8.35%), and this sub-sample was only composed of fragments. Still, fragments were mostly composed of polypropylene (PP, 82%), polyethylene (PE, 9%), and polystyrene (PS, 9%). The fragment size was similar in the two studied compartments, but it was dependent on polymer types since PS fragments (140 ± 17 µm) were smaller than those made of PE (622 ± 123 µm) and PP (869 ± 905 µm). Future works should investigate the smallest fraction of MP (even nanoplastics) as well as find solutions in order to mitigate MP contamination in the marine environment.


Assuntos
Baías , Monitoramento Ambiental , Sedimentos Geológicos , Microplásticos , Água do Mar , Poluentes Químicos da Água , Vietnã , Água do Mar/química , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Microplásticos/análise
16.
Sci Rep ; 14(1): 10681, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724542

RESUMO

The organic enrichment effects on the meiofauna and nematofauna were assessed for field sediment and other experimental ones enriched with organic matters conducted in the laboratory for 4 weeks. Also, dissolved oxygen (DO) and pH were monitored for each one. The abundance and diversity of meiofaunal groups and nematofauna varied. Strong significant correlations were found between DO and the studied items. Nematoda was the most abundant group in the field sediment and other experimental ones; their counts increased with the increase in organic enrichments and were dominated by deposit feeders. Amphipoda, Ostracoda and predator/omnivore nematodes disappeared in highly organic-enriched sediments. Changes in DO and organic enrichments might be the more attributable reasons for the alteration of the meiobenthic assemblages. The generic compositions of Nematoda provide a good indicator for environmental alterations.


Assuntos
Biodiversidade , Sedimentos Geológicos , Animais , Sedimentos Geológicos/química , Nematoides , Oxigênio/análise , Concentração de Íons de Hidrogênio , Invertebrados , Anfípodes
17.
Environ Monit Assess ; 196(6): 564, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773003

RESUMO

This study investigated the impact of micropollutants on fish health from Segredo hydroelectric reservoir (HRS) along the Iguaçu River, Southern Brazil, contaminated by urban, industrial, and agricultural activities. This is the first comprehensive study assessment in the river after the severe drought in the 2020s in three fish species from different trophic levels Astyanax spp. (water column depth/omnivorous), Hypostomus commersoni (demersal/herbivorous), and Pimelodus maculatus (demersal/omnivorous). Animals, water, and sediment samples were collected from three distinct sites within the reservoir: Floresta (upstream), Iratim (middle), and Station (downstream). The chemical analysis revealed elevated concentrations of metals (Al, Cu, Fe) and the metalloid As in water, or Cu, Zn, and As in sediment, surpassing Brazilian regulatory limits, while the organic pollutants as DDT, PAHs, PCBs, and PBDEs were found under the Brazilian regulatory limits. The metal bioaccumulation was higher in gills with no significant differences among sites. The species Astyanax spp. and H. commersoni displayed variations in hepatosomatic index (HSI) and P. maculatus in the condition factor index (K) between sites, while adverse effects due to micropollutants bioaccumulation were observed by biochemical, genotoxic, and histopathological biomarkers. The principal component analysis and integrated biomarker response highlighted the upstream site Floresta as particularly inhospitable for biota, with distinctions based on trophic level. Consequently, this multifaceted approach, encompassing both fish biomarkers and chemical analyses, furnishes valuable insights into the potential toxic repercussions of micropollutant exposure. These findings offer crucial data for guiding management and conservation endeavors in the Iguaçu River.


Assuntos
Monitoramento Ambiental , Rios , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Brasil , Rios/química , Biomarcadores/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Metais/análise , Characidae , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Sedimentos Geológicos/química , Peixes/metabolismo
18.
Sci Total Environ ; 931: 172908, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697552

RESUMO

Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.


Assuntos
Bactérias , Lagos , Óxido Nitroso , Óxido Nitroso/análise , Lagos/química , Bactérias/classificação , Monitoramento Ambiental , Ciclo do Nitrogênio , Poluentes Atmosféricos/análise , Sedimentos Geológicos/química
19.
Sci Total Environ ; 931: 172925, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697551

RESUMO

Subfossil pine and oak tree trunks were excavated during exploitation of the Budwity peatland in Northern Poland. Based on dendrochronological analysis, the woodland successions in peatland were reconstructed and correlated with moisture dynamics of the peatland ecosystem inferred from the high-resolution multi-proxy analysis of the peatland deposits. From the results of dendrochronological analysis and the 14C wiggle matching methods, four floating pine chronologies (5882-5595; 5250-5089; 3702-3546; and 2222-1979 mod. cal BP) and two oak chronologies (4932-4599 and 4042-3726 mod. cal BP) were developed. The organic sediments of the peatland (6 m thick) were deposited over approximately nine thousand years. The lower complex (525-315 cm) comprises minerogenic peat, while the upper complex (315.0-0.0 cm) is composed of ombrogenic peat. Subfossil tree trunks are distributed across various peat horizons, which suggests multiple stages of tree colonisation followed by subsequent dying-off phases. Multiproxy sediment analyses (lithological, geochemical and δ13C stable isotope, pollen, plant macrofossils, Cladocera, diatom, and Diptera analyses) indicate that the two earliest phases of pine colonisation (5882-5595 and 5250-5089 mod. cal BP) and the two stages of oak colonisation (4932-4599 and 4042-3726 mod. cal BP) were associated with periodic drying of the peatland. Conversely, tree dying-off phases occurred during periods of increased water levels in the peatland, coinciding with stages of increasing climate humidity during the Holocene. The two most recent phases of pine colonisation occurred during the ombrogenic stage of mire development. Remnants of the dead forest from these phases, marked by subfossil trunks still rooted in the ground, were preserved and exposed presently during peat exploitation, approximately 2.5 m below ground level. The identified phases of tree colonisation and subsequent dying-off phases show correlation with analogical phenomena observed in the other investigated European peatlands.


Assuntos
Pinus , Quercus , Solo , Áreas Alagadas , Polônia , Solo/química , Monitoramento Ambiental , Hidrologia , Ecossistema , Sedimentos Geológicos/química
20.
J Environ Manage ; 359: 120943, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701583

RESUMO

Historical reconstruction of heavy metals (HMs) contamination in sediments is a key for understanding the effects of anthropogenic stresses on water bodies and predicting the variation trends of environmental state. In this work, eighteen sediment cores from the Pearl River Estuary (PRE) were collected to determine concentrations and geochemical fractions of HMs. Then, their potential sources and the relative contributions during different time periods were quantitatively identified by integrating lead-210 (210Pb) radioisotope dating technique into positive matrix factorisation (PMF) method. Pollution levels and potential ecological risks (PERs) caused by HMs were accurately assessed by enrichment factors (EF) based on establishment of their geochemical baselines (GCBs) and multiparameter evaluation index (MPE). HMs concentrations generally showed a particle size- and organic matter-dependent distribution pattern. During the period of 1958-1978, HMs concentrations remained at low levels with agricultural activities and natural processes being identified as the predominant sources and averagely contributing >60%. Since the reform and opening-up in 1978, industrial and traffic factors become the primary anthropogenic sources of HMs (such as Cu, Zn, Cd, Pb, Cr, and Ni), averagely increasing from 22.1% to 28.1% and from 11.6% to 23.4%, respectively. Conversely, the contributions of agricultural and natural factors decreased from 37.0% to 28.5% and from 29.3% to 20.0%, respectively. Subsequently, implementation of environmental preservation policies was mainly responsible for the declining trend of HMs after 2010. Little enrichment of sediment Cu, Zn, Pb, Cr and Ni with EFs (0.15-1.43) was found in the PRE, whereas EFs of Cd (1.16-2.70) demonstrated a slight to moderate enrichment. MPE indices of Cu (50.7-252), Pb (52.0-147), Zn (35.5-130), Ni (19.6-71.5), Cr (14.2-68.8) and Cd (0-9.90) highlighted their potential ecological hazards due to their non-residual fractions and anthropogenic sources.


Assuntos
Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Metais Pesados , Rios , Poluentes Químicos da Água , Metais Pesados/análise , Medição de Risco , China , Rios/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA