Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.135
Filtrar
1.
Elife ; 122024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695862

RESUMO

Here, we investigated the mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development, including asymmetric cell division, cell-type specification, and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (Numbl) in mouse myofibers caused weakness, disorganization of sarcomeres, and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, Numbl knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb that Septin 7 is a potential Numb-binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets, and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb-binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos Knockout , Contração Muscular , Proteínas do Tecido Nervoso , Sarcômeros , Septinas , Animais , Septinas/metabolismo , Septinas/genética , Sarcômeros/metabolismo , Camundongos , Contração Muscular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia
2.
J Med Life ; 17(1): 4-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38737656

RESUMO

Colorectal cancer (CRC) is one of the most frequent types of cancer, with high incidence rates and mortality globally. The extended timeframe for developing CRC allows for the potential screening and early identification of the disease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are made at earlier stages. Recent research suggests that the development of CRC, including its precancerous lesion, is influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due to the variability of CRC, it shows promise as a potential method for understanding and addressing the disease. This review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In addition, we also discussed the feasibility of translating these methodologies into clinical settings. Several markers show promising potential, including the methylation of vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully optimized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. biomarkers, diagnostic biomarkers.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Detecção Precoce de Câncer , Epigênese Genética , Septinas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , Septinas/genética , Metilação de DNA/genética , Sindecana-2/genética , Vimentina/genética
3.
Cell Chem Biol ; 31(5): 962-972.e4, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759620

RESUMO

The Nod-like receptor protein 3 (NLRP3) inflammasome is activated by stimuli that induce perturbations in cell homeostasis, which commonly converge on cellular potassium efflux. NLRP3 has thus emerged as a sensor for ionic flux. Here, we identify forchlorfenuron (FCF) as an inflammasome activator that triggers NLRP3 signaling independently of potassium efflux. FCF triggers the rearrangement of septins, key cytoskeletal proteins that regulate mitochondrial function. We report that FCF triggered the rearrangement of SEPT2 into tubular aggregates and stimulated SEPT2-independent NLRP3 inflammasome signaling. Similar to imiquimod, FCF induced the collapse of the mitochondrial membrane potential and mitochondrial respiration. FCF thereby joins the imidazoquinolines as a structurally distinct class of molecules that triggers NLRP3 inflammasome signaling independent of potassium efflux, likely by inducing mitochondrial damage.


Assuntos
Mitocôndrias , Proteína 3 que Contém Domínio de Pirina da Família NLR , Compostos de Fenilureia , Potássio , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Potássio/metabolismo , Humanos , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/química , Animais , Camundongos , Septinas/metabolismo , Inflamassomos/metabolismo , Piridinas/farmacologia , Piridinas/química , Camundongos Endogâmicos C57BL , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
Nat Commun ; 15(1): 3890, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719850

RESUMO

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Assuntos
Proteínas de Bactérias , Septinas , Shigella flexneri , Transdução de Sinais , Ubiquitina , Ubiquitinação , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Septinas/metabolismo , Septinas/genética , Humanos , Ubiquitina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fosforilação , Interações Hospedeiro-Patógeno , Células HeLa , Proteínas Culina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Células HEK293 , Disenteria Bacilar/microbiologia , Disenteria Bacilar/metabolismo
6.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719752

RESUMO

Septins are cytoskeletal proteins that participate in cell adhesion, migration, and polarity establishment. The septin subunit SEPT9 directly interacts with the single LIM domain of epithelial protein lost in neoplasm (EPLIN), an actin-bundling protein. Using a human SEPT9 KO fibroblast cell line, we show that cell adhesion and migration are regulated by the interplay between both proteins. The low motility of SEPT9-depleted cells could be partly rescued by increased levels of EPLIN. The normal organization of actin-related filopodia and stress fibers was directly dependent on the expression level of SEPT9 and EPLIN. Increased levels of SEPT9 and EPLIN enhanced the size of focal adhesions in cell protrusions, correlating with stabilization of actin bundles. Conversely, decreased levels had the opposite effect. Our work thus establishes the interaction between SEPT9 and EPLIN as an important link between the septin and the actin cytoskeleton, influencing cell adhesion, motility, and migration.


Assuntos
Adesão Celular , Movimento Celular , Fibroblastos , Adesões Focais , Proteínas com Domínio LIM , Septinas , Humanos , Septinas/metabolismo , Septinas/genética , Movimento Celular/genética , Fibroblastos/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Adesões Focais/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Pseudópodes/metabolismo , Citoesqueleto de Actina/metabolismo , Linhagem Celular , Actinas/metabolismo , Fibras de Estresse/metabolismo
7.
Methods Mol Biol ; 2794: 79-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630222

RESUMO

Reconstitution of intracellular transport in cell-free in vitro assays enables the understanding and dissection of the molecular mechanisms that underlie membrane traffic. Using total internal reflection fluorescence (TIRF) microscopy and microtubules, which are immobilized to a functionalized glass surface, the kinetic properties of single kinesin molecules can be imaged and analyzed in the presence or absence of microtubule-associated proteins. Here, we describe methods for the in vitro reconstitution of the motility of the neuronal kinesin motor KIF1A on microtubules associated with heteromeric septin (SEPT2/6/7) complexes. This method can be adapted for various neuronal septin complexes and kinesin motors, leading to new insights into the spatial regulation of neuronal membrane traffic by microtubule-associated septins.


Assuntos
Cinesinas , Septinas , Microtúbulos , Citoesqueleto , Proteínas Associadas aos Microtúbulos
8.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38668767

RESUMO

The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.


Assuntos
Microtúbulos , Corpos Multivesiculares , Septinas , Animais , Cães , Células Madin Darby de Rim Canino , Microtúbulos/química , Microtúbulos/metabolismo , Corpos Multivesiculares/química , Corpos Multivesiculares/metabolismo , Septinas/química , Septinas/metabolismo , Tetraspanina 30/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Endocitose
9.
Biomarkers ; 29(4): 194-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644767

RESUMO

INTRODUCTION: Methylated circulating tumour DNA (ctDNA) blood tests for BCAT1/IKZF1 (COLVERA) and SEPT9 (Epi proColon) are used to detect colorectal cancer (CRC). However, there are no ctDNA assays approved for other gastrointestinal adenocarcinomas. We aimed to characterize BCAT1, IKZF1 and SEPT9 methylation in different gastrointestinal adenocarcinoma and non-gastrointestinal tumours to determine if these validated CRC biomarkers might be useful for pan-gastrointestinal adenocarcinoma detection. METHODS: Tissue DNA methylation data from colorectal (COAD, READ), gastroesophageal (ESCA, STAD), pancreatic (PAAD) and cholangiocarcinoma (CHOL) adenocarcinoma cohorts within The Cancer Genome Atlas were used for differential methylation analyses. Clinicodemographic predictors of BCAT1, IKZF1 and SEPT9 methylation, and the selectivity of hypermethylated BCAT1, IKZF1 and SEPT9 for colorectal adenocarcinomas in comparison to other cancers were each explored with beta regression. RESULTS: Hypermethylated BCAT1, IKZF1 and SEPT9 were each differentially methylated in colorectal and gastroesophageal adenocarcinomas. IKZF1 was differentially methylated in pancreatic adenocarcinoma. Hypermethylated DNA biomarkers BCAT1, IKZF1 and SEPT9 were largely stable across different stages of disease and were highly selective for gastrointestinal adenocarcinomas relative to other cancer types. DISCUSSION: Existing CRC methylated ctDNA blood tests for BCAT1/IKZF1 and SEPT9 might be usefully repurposed for use in other gastrointestinal adenocarcinomas and warrant further prospective ctDNA studies.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Metilação de DNA , Neoplasias Gastrointestinais , Fator de Transcrição Ikaros , Septinas , Humanos , Septinas/genética , Septinas/sangue , Fator de Transcrição Ikaros/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Adenocarcinoma/genética , Adenocarcinoma/diagnóstico , Adenocarcinoma/sangue , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/diagnóstico , Neoplasias Gastrointestinais/sangue , Masculino , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Feminino , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/sangue , Colangiocarcinoma/genética , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Pessoa de Meia-Idade , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue
10.
BMC Med Genomics ; 17(1): 117, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689296

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the significant global health concerns with an increase in cases. Regular screening tests are crucial for early detection as it is often asymptomatic in the initial stages. Liquid biopsies, a non-invasive approach that examines biomarkers in biofluids, offer a promising future in diagnosing and screening cancer. Circulating-tumour DNA (ctDNA) is the genetic material in biofluids released into the circulatory system by cells. ctDNA is a promising marker for monitoring patients since cancer cells display distinct DNA methylation patterns compared to normal cells. The potential of our research to contribute to early detection and improved patient outcomes is significant. AIMS: The primary objective of this research project was to explore the HAND1 methylation levels in plasma ctDNA as a potential biomarker for diagnosing CRC and evaluate the methylation level of the well-established gene SPET9 to compare it with the methylation level of HAND1. MATERIALS AND METHODS: Plasma samples were collected from 30 CRC patients and 15 healthy individuals, with CRC samples obtained pre-treatment. ctDNA was extracted and treated with bisulfite for methylation status assessment. Quantitative methylation-specific PCR (qMS-PCR) was performed for HAND1 and SEPT9, using ß-actin (ACTB gene) as a reference. The study aims to evaluate the potential of these genes as diagnostic biomarkers for CRC, contributing to early detection and improved patient outcomes. RESULTS: Our study yielded significant results: 90% of CRC patients (27 out of 30) had hypermethylation in the SEPT9 gene, and 83% (25 out of 30) exhibited hypermethylation in the HAND1 gene. The methylation levels of both genes were significantly higher in CRC patients than in healthy donors. These findings underscore the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC, potentially leading to early detection and improved patient outcomes. CONCLUSION: These findings highlight the potential of SEPT9 and HAND1 methylation as promising biomarkers for diagnosing CRC. However, further research and validation studies are needed to confirm these findings and to explore their clinical utility in CRC diagnosis and management.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores Tumorais , DNA Tumoral Circulante , Neoplasias Colorretais , Metilação de DNA , Detecção Precoce de Câncer , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/sangue , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Masculino , Feminino , Pessoa de Meia-Idade , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/sangue , Idoso , Septinas/genética , Septinas/sangue , Estudos de Casos e Controles
11.
Nat Commun ; 15(1): 3383, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649354

RESUMO

A double septin ring accompanies cytokinesis in yeasts and mammalian cells. In budding yeast, reorganisation of the septin collar at the bud neck into a dynamic double ring is essential for actomyosin ring constriction and cytokinesis. Septin reorganisation requires the Mitotic Exit Network (MEN), a kinase cascade essential for cytokinesis. However, the effectors of MEN in this process are unknown. Here we identify the F-BAR protein Hof1 as a critical target of MEN in septin remodelling. Phospho-mimicking HOF1 mutant alleles overcome the inability of MEN mutants to undergo septin reorganisation by decreasing Hof1 binding to septins and facilitating its translocation to the actomyosin ring. Hof1-mediated septin rearrangement requires its F-BAR domain, suggesting that it may involve a local membrane remodelling that leads to septin reorganisation. In vitro Hof1 can induce the formation of intertwined septin bundles, while a phosphomimetic Hof1 protein has impaired septin-bundling activity. Altogether, our data indicate that Hof1 modulates septin architecture in distinct ways depending on its phosphorylation status.


Assuntos
Citocinese , Proteínas Associadas aos Microtúbulos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Septinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilação , Septinas/metabolismo , Septinas/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Actomiosina/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/genética , Mutação , Ligação Proteica
12.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448162

RESUMO

The septin cytoskeleton is extensively regulated by posttranslational modifications, such as phosphorylation, to achieve the diversity of architectures including rings, hourglasses, and gauzes. While many of the phosphorylation events of septins have been extensively studied in the budding yeast Saccharomyces cerevisiae, the regulation of the kinases involved remains poorly understood. Here, we show that two septin-associated kinases, the LKB1/PAR-4-related kinase Elm1 and the Nim1/PAR-1-related kinase Gin4, regulate each other at two discrete points of the cell cycle. During bud emergence, Gin4 targets Elm1 to the bud neck via direct binding and phosphorylation to control septin hourglass assembly and stability. During mitosis, Elm1 maintains Gin4 localization via direct binding and phosphorylation to enable timely remodeling of the septin hourglass into a double ring. This mutual control between Gin4 and Elm1 ensures that septin architecture is assembled and remodeled in a temporally controlled manner to perform distinct functions during the cell cycle.


Assuntos
Citoesqueleto , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Septinas , Ciclo Celular , Mitose , Fosforilação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Septinas/genética
13.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542408

RESUMO

Septins play a key regulatory role in cell division, cytokinesis, and cell polar growth of the rice blast fungus (Magnaporthe oryzae). We found that the organization of the septin ring, which is essential for appressorium-mediated infection in M. oryzae, requires long-chain fatty acids (LCFAs), which act as mediators of septin organization at membrane interfaces. However, it is unclear how septin ring formation and LCFAs regulate the pathogenicity of the rice blast fungus. In this study, a novel protein was named MoLfa1 because of its role in LCFAs utilization. MoLfa1 affects the utilization of LCFAs, lipid metabolism, and the formation of the septin ring by binding with phosphatidylinositol phosphates (PIPs), thereby participating in the construction of penetration pegs of M. oryzae. In addition, MoLfa1 is localized in the endoplasmic reticulum (ER) and interacts with the ER-related protein MoMip11 to affect the phosphorylation level of Mps1. (Mps1 is the core protein in the MPS1-MAPK pathway.) In conclusion, MoLfa1 affects conidia morphology, appressorium formation, lipid metabolism, LCFAs utilization, septin ring formation, and the Mps1-MAPK pathway of M. oryzae, influencing pathogenicity.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Septinas/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Citoesqueleto/metabolismo , Oryza/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/metabolismo , Regulação Fúngica da Expressão Gênica
14.
Sci Adv ; 10(11): eadj1512, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478607

RESUMO

Endoplasmic reticulum (ER)-plasma membrane (PM) tethering is crucial for the non-vesicular lipid transport between the ER membrane and the PM. However, the PM-associated ER can impede the PM binding of cytoskeletons and other organelles. It is poorly understood how the competition between the ER and cytoskeletons/organelles on the PM is resolved. Here, we show that, upon septin collar assembly, ER-PM tethering proteins are excluded from the yeast bud sites, and the PM-associated ER is locally detached from the PM. Our results suggest that PM flows by polarized exocytosis extrude PM proteins, including ER-PM tethering proteins, from the bud sites. When the reorganization of the ER-PM tethering was inhibited by exocytosis repression, septin localization was restricted to the PM sites poor in ER-PM tethering proteins. This study proposes machinery reconciling ER-septin competition on the PM, providing mechanistic insights into the spatial organization of PM-associated organelles and cytoskeletons.


Assuntos
Retículo Endoplasmático , Septinas , Septinas/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto/metabolismo
15.
Mol Cell Proteomics ; 23(3): 100730, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311109

RESUMO

Vibrio species, the Gram-negative bacterial pathogens causing cholera and sepsis, produce multiple secreted virulence factors for infection and pathogenesis. Among these is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin that releases several critical effector domains with distinct functions inside eukaryotic host cells. One such effector domain, the Rho inactivation domain (RID), has been discovered to catalyze long-chain Nε-fatty-acylation on lysine residues of Rho GTPases, causing inactivation of Rho GTPases and disruption of the host actin cytoskeleton. However, whether RID modifies other host proteins to exert additional functions remains to be determined. Herein, we describe the integration of bioorthogonal chemical labeling and quantitative proteomics to globally profile the target proteins modified by RID in living cells. More than 246 proteins are identified as new RID substrates, including many involved in GTPase regulation, cytoskeletal organization, and cell division. We demonstrate that RID extensively Nε-fatty-acylates septin proteins, the fourth cytoskeletal component of mammalian cells with important roles in diverse cellular processes. While affinity purification and mass spectrometry analysis show that RID-mediated Nε-fatty-acylation does not affect septin-septin interactions, this modification increases the membrane association of septins and confers localization to detergent-resistant membrane rafts. As a result, the filamentous assembly and organization of septins are disrupted by RID-mediated Nε-fatty-acylation, further contributing to cytoskeletal and mitotic defects that phenocopy the effects of septin depletion. Overall, our work greatly expands the substrate scope and function of RID and demonstrates the role of RID-mediated Nε-fatty-acylation in manipulating septin localization and organization.


Assuntos
Toxinas Bacterianas , Vibrio , Animais , Septinas/metabolismo , Proteômica , Vibrio/metabolismo , Proteínas rho de Ligação ao GTP , Acilação , Mamíferos/metabolismo
16.
J Cell Biol ; 223(3)2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38381149

RESUMO

The annulus, a septin-based structure in vertebrate sperm connecting the MP and PP, has unclear migration mechanics. In this issue, Hoque et al. (https://doi.org/10.1083/jcb.202307147) report that the CBY3/CIBAR1 complex ensures its precise positioning by regulating membrane properties.


Assuntos
Centríolos , Flagelos , Sêmen , Animais , Masculino , Septinas , Camundongos
17.
J Cell Biochem ; 125(3): e30529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38308620

RESUMO

Sept8 is a vesicle associated protein and there are two typical transcriptional variants (Sept8-204 and Sept8-201) expressed in mice brain. Interestingly, the coexpression of Sept8-204/Sept5 induces the formation of small sized vesicle-like structure, while that of the Sept8-201/Sept5 produces large puncta. Sept8 is previously shown to be palmitoylated. Here it was further revealed that protein palmitoylation is required for Sept8-204/Sept5 to maintain small sized vesicle-like structure and colocalize with synaptophysin, since either the expression of nonpalmitoylated Sept8-204 mutant (Sept8-204-3CA) or inhibiting Sept8-204 palmitoylation by 2-BP with Sept5 produces large puncta, which barely colocalizes with synaptophysin (SYP). Moreover, it was shown that the dynamic palmitoylation of Sept8-204 is controlled by ZDHHC17 and PPT1, loss of ZDHHC17 decreases Sept8-204 palmitoylation and induces large puncta, while loss of PPT1 increases Sept8-204 palmitoylation and induces small sized vesicle-like structure. Together, these findings suggest that palmitoylation is essential for the maintenance of the small sized vesicle-like structure for Sept8-204/Sept5, and may hint their important roles in synaptic functions.


Assuntos
Lipoilação , Septinas , Animais , Camundongos , Proteínas de Ciclo Celular/metabolismo , Septinas/genética , Septinas/metabolismo , Sinaptofisina/genética , Sinaptofisina/metabolismo
18.
Bioorg Chem ; 144: 107164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306824

RESUMO

Cancer spreading through metastatic processes is one of the major causes of tumour-related mortality. Metastasis is a complex phenomenon which involves multiple pathways ranging from cell metabolic alterations to changes in the biophysical phenotype of cells and tissues. In the search for new effective anti-metastatic agents, we modulated the chemical structure of the lead compound AA6, in order to find the structural determinants of activity, and to identify the cellular target responsible of the downstream anti-metastatic effects observed. New compounds synthesized were able to inhibit in vitro B16-F10 melanoma cell invasiveness, and one selected compound, CM365, showed in vivo anti-metastatic effects in a lung metastasis mouse model of melanoma. Septin-4 was identified as the most likely molecular target responsible for these effects. This study showed that CM365 is a promising molecule for metastasis prevention, remarkably effective alone or co-administered with drugs normally used in cancer therapy, such as paclitaxel.


Assuntos
Neoplasias Pulmonares , Melanoma Experimental , Animais , Camundongos , Septinas , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
19.
Biosci Rep ; 44(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38372298

RESUMO

Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.


Assuntos
Septinas , Viroses , Animais , Humanos , Septinas/genética , Septinas/metabolismo , Proteínas de Ligação ao GTP , Citoesqueleto/metabolismo , Citoplasma/metabolismo , Viroses/genética
20.
Curr Biol ; 34(3): 615-622.e4, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38199065

RESUMO

Convergent extension (CE) requires the coordinated action of the planar cell polarity (PCP) proteins1,2 and the actin cytoskeleton,3,4,5,6 but this relationship remains incompletely understood. For example, PCP signaling orients actomyosin contractions, yet actomyosin is also required for the polarized localization of PCP proteins.7,8 Moreover, the actin-regulating Septins play key roles in actin organization9 and are implicated in PCP and CE in frogs, mice, and fish5,6,10,11,12 but execute only a subset of PCP-dependent cell behaviors. Septin loss recapitulates the severe tissue-level CE defects seen after core PCP disruption yet leaves overt cell polarity intact.5 Together, these results highlight the general fact that cell movement requires coordinated action by distinct but integrated actin populations, such as lamella and lamellipodia in migrating cells13 or medial and junctional actin populations in cells engaged in apical constriction.14,15 In the context of Xenopus mesoderm CE, three such actin populations are important, a superficial meshwork known as the "node-and-cable" system,4,16,17,18 a contractile network at deep cell-cell junctions,6,19 and mediolaterally oriented actin-rich protrusions, which are present both superficially and deeply.4,19,20,21 Here, we exploited the amenability of the uniquely "two-dimensional" node and cable system to probe the relationship between PCP proteins, Septins, and the polarization of this actin network. We find that the PCP proteins Vangl2 and Prickle2 and Septins co-localize at nodes, and that the node and cable system displays a cryptic, PCP- and Septin-dependent anteroposterior (AP) polarity in its organization and dynamics.


Assuntos
Actinas , Septinas , Camundongos , Animais , Septinas/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Proteínas de Membrana/metabolismo , Proteínas com Domínio LIM/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA