Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.099
Filtrar
1.
NPJ Biofilms Microbiomes ; 10(1): 98, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358392

RESUMO

Extracellular polysaccharides are crucial components for biofilm development. Although Bacillus subtilis is one of the most characterized Gram-positive biofilm model system, the structure-function of its exopolysaccharide, EpsA-O, remains to be elucidated. By combining chemical analysis, NMR spectroscopy, rheology, and molecular modeling, high-resolution data of EpsA-O structure from atom to supramolecular scale was obtained. The repeating unit is composed of the trisaccharide backbone [→3)-ß-D-QuipNAc4NAc-(1→3)-ß-D-GalpNAc-(1→3)-α-D-GlcpNAc-(1]n, and the side chain ß-D-Galp(3,4-S-Pyr)-(1→6)-ß-D-Galp(3,4-S-Pyr)-(1→6)-α-D-Galp-(1→ linked to C4 of GalNAc. Close agreement between the primary structure and rheological behavior allowed us to model EpsA-O macromolecular and supramolecular solution structure, which can span the intercellular space forming a gel that leads to a complex 3D biofilm network as corroborated by a mutant strain with impaired ability to produce EpsA-O. This is a comprehensive structure-function investigation of the essential biofilm adhesive exopolysaccharide that will serve as a useful guide for future studies in biofilm architecture formation.


Assuntos
Bacillus subtilis , Biofilmes , Espectroscopia de Ressonância Magnética , Polissacarídeos Bacterianos , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Bacillus subtilis/química , Reologia , Modelos Moleculares , Aderência Bacteriana , Sequência de Carboidratos
2.
Org Lett ; 26(38): 8069-8073, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39284123

RESUMO

Acinetobacter baumannii poses a serious threat to human health. Pathogenic bacterial lipopolysaccharides (LPSs) are potent immunogens for the development of antibacterial vaccines. To investigate the antigenic properties of A. baumannii LPS, five well-defined core oligosaccharide fragments from the LPS of A. baumannii SMAL and ATCC 19606 were synthesized. A divergent synthesis strategy based on orthogonally protected α-(2 → 5)-linked Kdo dimer 6 was developed. Selective exposure of different positions in this key precursor and then elongation of sugar chains via stereocontrolled formation of both 1,2-trans and 1,2-cis-2-aminoglycosidic linkages permitted the efficient synthesis of the targets. The synthetic route also highlights a 4-O and then 7-O glycosylation sequence for assembly of the novel 4,7-branched Kdo framework. Antigenicity assay using the glycan microarray technique disclosed that tetrasaccharide 3 featuring both 4,7-branch and α-(2 → 5)-Kdo-Kdo structural elements was a potential antigenic determinant.


Assuntos
Acinetobacter baumannii , Lipopolissacarídeos , Oligossacarídeos , Acinetobacter baumannii/química , Acinetobacter baumannii/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Oligossacarídeos/química , Oligossacarídeos/síntese química , Glicosilação , Estrutura Molecular , Sequência de Carboidratos , Humanos
3.
Carbohydr Res ; 544: 109249, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39191198

RESUMO

An efficient synthetic strategy has been developed to achieve a pyruvic acid acetal containing tetrasaccharide repeating unit corresponding to the K82 capsular polysaccharide of Acinetobacter baumannii LUH5534 strain in very good yield. The synthetic scheme involves the use of suitably functionalized monosaccharide thioglycosides as glycosyl donors and a combination of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) as thiophilic glycosylation activator to furnish satisfactory yield of the products with appropriate stereochemistry at the glycosidic linkages. Incorporation of the (R)-pyruvic acid acetal in the d-galactose moiety was achieved in very good yield by the treatment of the diol derivative with methyl 2,2-bis(p-methylphenylthio)propionate in the presence of a combination of NIS and triflic acid.


Assuntos
Acetais , Acinetobacter baumannii , Oligossacarídeos , Polissacarídeos Bacterianos , Acinetobacter baumannii/química , Acetais/química , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/síntese química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Ácido Pirúvico/química , Sequência de Carboidratos , Cápsulas Bacterianas/química
4.
Carbohydr Res ; 542: 109204, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38981322

RESUMO

The hexasaccharide arabinan domain of Mycobacterial Arabinogalactan was provided with the versatile methodology toward ß-selective arabinofuranosylation directed by B(C6F5)3, demonstrating the effectiveness of the ß-arabinofuranosylation strategy. Derivatization of the amino moiety at the reducing end are essential prerequisites for elucidating the biosynthetic pathway and conjugating of this compound to a protein carrier for vaccine generation.


Assuntos
Galactanos , Galactanos/química , Galactanos/síntese química , Oligossacarídeos/síntese química , Oligossacarídeos/química , Sequência de Carboidratos , Mycobacterium/química , Polissacarídeos
5.
Glycoconj J ; 41(4-5): 241-254, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39046578

RESUMO

Pertussis vaccines have been very effective in controlling whooping-cough epidemics but are ineffective in controlling circulation in older children and adults, thus facilitating the onset of future outbreaks. Antibodies against the lipopolysaccharide could reduce the carriage of the bacteria, its circulation, and transmission. The oligosaccharide fragments from the lipopolysaccharide may become a potential complement to existing vaccines in the form of protein glycoconjugates. An important step in the development of this type of vaccine is defining the minimal oligosaccharide epitope recognized by B. pertussis anti-lipopolysaccharide antibodies. This paper describes the complete synthesis of oligosaccharides containing two to five monosaccharide units corresponding to the pentasaccharide at the nonreducing end of the lipooligosaccharide and their recognition by mice and rabbit antibodies elicited against whole-cell B. pertussis. For the first time, we report that the terminal disaccharide, α-D-GlcNAcp-(1 → 4)-(2,3-di-NAc)-D-ManAp acid is the minimal structure recognized by antibodies induced by B. pertussis.


Assuntos
Anticorpos Antibacterianos , Bordetella pertussis , Epitopos , Lipopolissacarídeos , Oligossacarídeos , Animais , Bordetella pertussis/imunologia , Bordetella pertussis/química , Oligossacarídeos/imunologia , Oligossacarídeos/química , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/química , Camundongos , Epitopos/imunologia , Epitopos/química , Coelhos , Anticorpos Antibacterianos/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Sequência de Carboidratos , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/química
6.
Carbohydr Res ; 542: 109176, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851144

RESUMO

Synthesis of the pentasaccharide repeating unit of the cell O-polysaccharide produced by Salmonella milwaukee O:43 strain (group U) has been achieved in very good yield adopting a convergent stereoselective [3 + 2] block glycosylation strategy. Thioglycosides and glycosyl trichloroacetimidate derivative were used as glycosyl donors in the presence of a combination of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) as thiophilic activator and TMSOTf as trichloroacetimidate activator respectively. The stereochemical outcome of all glycosylation reactions was excellent.


Assuntos
Sequência de Carboidratos , Parede Celular , Antígenos O , Antígenos O/química , Parede Celular/química , Salmonella/química , Glicosilação , Oligossacarídeos/química , Oligossacarídeos/síntese química , Succinimidas/química , Tioglicosídeos/química , Tioglicosídeos/síntese química , Estereoisomerismo , Compostos de Trimetilsilil/química , Acetamidas , Mesilatos , Cloroacetatos
7.
Carbohydr Polym ; 341: 122360, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876721

RESUMO

Kangiella japonica KMM 3899T is a Gram-negative bacterium isolated from a sandy sediment sample collected from the Sea of Japan. Here the results of the structure and the biological activity against breast cancer cells of the cell-wall polysaccharide from K. japonica KMM 3899T have been described. The structure of the repeating unit of the polysaccharide was elucidated using chemical analysis and NMR spectroscopy: →4)-α-L-GalpNAc3AcA-(1 â†’ 3)-α-D-GlcpNAc-(1 â†’ 4)-ß-D-GlcpNAc3NAcAN-(1→. The cell-wall polysaccharide had an antiproliferative effect against T-47D cells. Flow cytometric and Western blot analysis revealed that the polysaccharide induced S phase arrest and mitochondrial-dependent apoptosis.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Parede Celular , Humanos , Proliferação de Células/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Parede Celular/química , Parede Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Feminino , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Sequência de Carboidratos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
8.
Carbohydr Res ; 541: 109148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795397

RESUMO

Shewanella vesiculosa HM13 is a Gram-negative bacterium able to produce a large amount of extracellular membrane vesicles. These nanoparticles carry a major protein P49, the loading of which seems to be influenced by the glycans decorating the membrane. Here we report the structural characterization, using chemical analyses and NMR spectroscopy, of the capsular polysaccharides isolated from the nfnB-mutant strain of S. vesiculosa HM13, which is unable to load P49 on the membrane vesicles. In addition to the polysaccharide corona isolated and characterized from the parental strain, the nfnB-mutant strain released another polysaccharide composed of disaccharide repeating units having the following structure. →4)-ß-D-Glc-(1 â†’ 3)-ß-D-GlcNAc-(1→.


Assuntos
Mutação , Polissacarídeos Bacterianos , Shewanella , Shewanella/química , Shewanella/genética , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Configuração de Carboidratos , Polissacarídeos/química
9.
Carbohydr Res ; 540: 109145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759341

RESUMO

The cell wall of endophytic strain Rathayibacter oskolensis VKM Ac-2121T (family Microbacteriaceae, class Actinomycetes) was found to contain neutral and acidic glycopolymers. The neutral polymer is a block-type rhamnomannan partially should be substitutied by xylose residues, [→2)-α-[ß-D-Xylp-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼30 [→2)-α-D-Manp-(1 â†’ 3)-α-D-Rhap-(1→]∼45. The acidic polymer has branched chain, bearing lactate and pyruvate residues, →4)-α-D-[S-Lac-(2-3)-α-L-Rhap-(1 â†’ 3)]-D-Manp-(1 â†’ 3)-α-D-[4,6-R-Pyr]-D-Galp-(1 â†’ 3)-ß-D-Glcp-(1 â†’. The structures of both glycopolymers were not described in the Gram-positive bacteria to date. The glycopolymers were studied by chemical and NMR spectroscopic methods. The results of this study provide new data on diversity of bacterial glycopolymers and may prove useful in the taxonomy of the genus Rathayibacter and for understanding the molecular mechanisms of interaction between plants and plant endophytes.


Assuntos
Parede Celular , Xilose , Parede Celular/química , Parede Celular/metabolismo , Xilose/química , Xilose/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Mananas/química , Sequência de Carboidratos , Actinobacteria/química , Actinobacteria/metabolismo , Ramnose/química , Polissacarídeos Bacterianos/química , Polissacarídeos/química , Actinomycetales/química , Actinomycetales/metabolismo
10.
Carbohydr Res ; 541: 109165, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820992

RESUMO

Streptococcus pneumoniae is one of the globally important encapsulated human pathogens and more than 100 different serotypes have been identified. Despite very extensive genetic and immune-serological studies, the capsular polysaccharide repeating unit structure of several serotypes has not been determined yet, including the type 38 (type 38 in Danish nomenclature; type 71 in US nomenclature). Physicochemical data revealed that type 38 polysaccharide is composed of a pentasaccharide repeat unit →3)-[ß-D-Galf(1 â†’ 2)]-ß-D-GalpA6(L-Ser)-(1 â†’ 3)-α-D-GlcpNAc-(1 â†’ 3)-α-D-Sugp-(1 â†’ 4)-α-D-Galp(2OAc)-(1 â†’ . The polysaccharide is O-acetylated at position C2 of the α-Gal residue at approximately (68-87 %) of the repeat units.


Assuntos
Cápsulas Bacterianas , Sequência de Carboidratos , Polissacarídeos Bacterianos , Streptococcus pneumoniae , Streptococcus pneumoniae/química , Polissacarídeos Bacterianos/química , Cápsulas Bacterianas/química
11.
Org Lett ; 26(20): 4346-4350, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38722236

RESUMO

Here we report the first total synthesis of the conjugation-ready tetrasaccharide repeating unit of Shewanella japonica type strain KMM 3299T. The presence of rare deoxyamino sugars and installation of three consecutive 1,2-cis glycosidic linkages makes the synthesis formidable. The challenging late-stage oxidation was overcome by using a galacturonate donor. The total synthesis was completed via a longest linear sequence of 22 steps in an overall yield of 3.5% starting from d-mannose.


Assuntos
Oligossacarídeos , Shewanella , Shewanella/química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Estrutura Molecular , Sequência de Carboidratos , Manose/química , Oxirredução
12.
Org Lett ; 26(12): 2462-2466, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38498917

RESUMO

A methodology is described that can provide heparan sulfate oligosaccharides having a Δ4,5-double bond, which are needed as analytical standards and biomarkers for mucopolysaccharidoses. It is based on chemical oligosaccharide synthesis followed by modification of the C-4 hydroxyl of the terminal uronic acid moiety as methanesulfonate. This leaving group is stable under conditions used to remove temporary protecting groups, O-sulfation, and hydrogenolysis. Treatment with NaOH results in elimination of the methanesulfonate and formation of a Δ4,5-double bond.


Assuntos
Heparitina Sulfato , Oligossacarídeos , Sequência de Carboidratos , Oligossacarídeos/química , Ácidos Urônicos , Mesilatos
13.
Carbohydr Res ; 538: 109088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518663

RESUMO

Some cyanobacteria produce a wide range of secondary metabolites, some of which are of industrial interest. Exopolysaccharides, particularly interesting among them, represent relatively complex primary structures with interesting bioactivity, biodegradability and specific applications. Cultivation of the freshwater cyanobacterium Scytonema sp. provided a proteoglycan-type exopolysaccharide with a relatively low yield and a wide spectrum of molecular weights (Mw) ranging from 2.2 to 1313 × 103 g/mol. Chemical analyses detected the presence of carbohydrates (46 wt%), proteins (10 wt%) and uronic acids (8 wt%). Monosaccharide analysis revealed up to seven neutral sugars with a dominance of glucose (23.6 wt%), galactose (7.4 wt%) and fucose (5.0 wt%) residues, while the others had a much lower content (0.9-3.4 wt%). The presence of galacturonic acid (8.0 wt%) indicated the appearance of ionic type of exopolysaccharide. A preliminary structural study indicated that the α-D-galacturono-ß-D-glucan forms a dominant part of Scytonema sp. exopolymer. Its backbone is composed of two 1,6-linked and one 1,2-linked ß-D-Glcp residues, which is branched at O6 by side chains composed of α-D-GalAp(1 â†’ 2)-ß-D-Glcp(1→ dimer or monomeric ß-D-Glcp(1→ residue.


Assuntos
Cianobactérias , Glucanos , Sequência de Carboidratos , Peso Molecular , Glucose
14.
Carbohydr Res ; 537: 109056, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377833

RESUMO

Exopolysaccharides (EPSs) were isolated and purified from Lacticaseibacillus casei strains type V and RW-3703M grown under various fermentation conditions (carbon source, incubation temperature, and duration). Identical 1H NMR spectra were obtained in all cases. The molar mass determined by size-exclusion chromatography coupled with multi-angle light scattering was different for the two strains and in different culture media. The primary structure was elucidated using chemical and spectroscopic techniques. Monosaccharide and absolute configuration analyses gave the following composition: d-Glc, 1; d-Gal, 2; l-Rha, 2; d-GlcNAc, 1. Methylation analysis indicated the presence of 4-linked Glc, terminal and 6-linked Gal, terminal and 3-linked Rha, and 3,4,6-linked GlcNAc. On the basis of one- and two-dimensional 1H and 13C NMR data, the structure of the EPS was consistent with the following hexasaccharide repeating unit: {4)[Rhap(α1-3)][Galp(α1-6)]GlcpNAc(ß1-6)Galp(α1-3)Rhap(ß1-4)Glcp(ß1-}n. Complete 1H and 13C NMR assignments are reported.


Assuntos
Polissacarídeos Bacterianos , Sequência de Carboidratos , Polissacarídeos Bacterianos/química , Espectroscopia de Ressonância Magnética
15.
Carbohydr Polym ; 331: 121831, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388048

RESUMO

An undisclosed polysaccharide, BCP80-2, was isolated from Belamcanda chinensis (L.) DC. Structural investigation revealed that BCP80-2 consists of ten monosaccharide residues including t-α-Araf-(1→, →3,5)-α-Araf-(1→, →5)-α-Araf-(1→, →4)-ß-Xylp-(1→, →3)-α-Rhap-(1→, →4)-ß-Manp-(1→, t-ß-Glcp-(1→, →6)-α-Glcp-(1→, t-ß-Galp-(1→, and→3)-α-Galp-(1→. In vivo activity assays showed that BCP80-2 significantly suppressed neoplasmic growth, metastasis, and angiogenesis in zebrafish. Mechanistic studies have shown that BCP80-2 inhibited cell migration of HepG2 cells by suppressing the FAK signaling pathway. Moreover, BCP80-2 also activated immunomodulation and upregulated the secretion of co-stimulatory molecules CD40, CD86, CD80, and MHC-II. In conclusion, BCP80-2 inhibited tumor progression by targeting the FAK signaling pathway and activating CD40-induced adaptive immunity.


Assuntos
Arabinose , Neoplasias Hepáticas , Animais , Sequência de Carboidratos , Peixe-Zebra , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Neoplasias Hepáticas/tratamento farmacológico
16.
Org Lett ; 26(3): 745-750, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198674

RESUMO

Herein, we report the first total synthesis of the tetrasaccharide repeating unit of Vibrio cholerae O:3 O-antigen polysaccharide. The highly complex tetrasaccharide contains rare amino sugars such as d-bacillosamine and l-fucosamine, highly labile sugar ascarylose, and higher carbon sugar d-d-heptose. Stereoselective glycosylation of the notoriously reactive ascarylose with d-d-heptose, poor nucleophilicity of the axial C4-OH of l-fucosamine, and amide coupling are the key challenges encountered in the total synthesis, which was completed via a longest linear sequence of 23 steps in 4.2% overall yield.


Assuntos
Antígenos O , Vibrio cholerae , Sequência de Carboidratos , Oligossacarídeos , Heptoses
17.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003613

RESUMO

The aim of the study was the serological and structural characterization of the lipopolysaccharide (LPS) O antigen from P. mirabilis Dm55 coming from the urine of a patient from Lodz. The Dm55 LPS was recognized in ELISA only by the O54 antiserum, suggesting a serological distinction of the Dm55 O antigen from all the 84 Proteus LPS serotypes described. The obtained polyclonal rabbit serum against P. mirabilis Dm55 reacted in ELISA and Western blotting with a few LPSs (including O54), but the reactions were weaker than those observed in the homologous system. The LPS of P. mirabilis Dm55 was subjected to mild acid hydrolysis, and the obtained high-molecular-mass O polysaccharide was chemically studied using sugar and methylation analyses, mass spectrometry, and 1H and 13C NMR spectroscopy, including 1H,1H NOESY, and 1H,13C HMBC experiments. The Dm55 O unit is a branched three-saccharide, and its linear fragment contains α-GalpNAc and ß-Galp, whereas α-GlcpNAc occupies a terminal position. The Dm55 OPS shares a disaccharide epitope with the Proteus O54 antigen. Due to the structural differences of the studied O antigen from the other described Proteus O polysaccharides, we propose to classify the P. mirabilis Dm55 strain to a new Proteus O85 serogroup.


Assuntos
Lipopolissacarídeos , Proteus mirabilis , Animais , Humanos , Coelhos , Lipopolissacarídeos/química , Sorogrupo , Antígenos O/química , Sequência de Carboidratos , Carboidratos
18.
Mar Drugs ; 21(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37999397

RESUMO

Several sialoglycopeptides were isolated from several fish eggs and exerted anti-osteoporosis effects. However, few papers have explored sialoglycopeptide from tuna eggs (T-ES). Here, a novel T-ES was prepared through extraction with KCl solution and subsequent enzymolysis. Pure T-ES was obtained through DEAE-Sepharose ion exchange chromatography and sephacryl S-300 gel filtration chromatography. The T-ES was composed of 14.07% protein, 73.54% hexose, and 8.28% Neu5Ac, with a molecular weight of 9481 Da. The backbone carbohydrate in the T-ES was →4)-ß-D-GlcN-(1→3)-α-D-GalN-(1→3)-ß-D-Glc-(1→2)-α-D-Gal-(1→2)-α-D-Gal-(1→3)-α-D-Man-(1→, with two branches of ß-D-GlcN-(1→ and α-D-GalN-(1→ linking at o-4 in →2,4)-α-D-Gal-(1→. Neu5Ac in the T-ES was linked to the branch of α-D-GlcN-(1→. A peptide chain, Ala-Asp-Asn-Lys-Ser*-Met-Ile that was connected to the carbohydrate chain through O-glycosylation at the -OH of serine. Furthermore, in vitro data revealed that T-ES could remarkably enhance bone density, bone biomechanical properties, and bone microstructure in SAMP mice. The T-ES elevated serum osteogenesis-related markers and reduced bone resorption-related markers in serum and urine. The present study's results demonstrated that T-ES, a novel sialoglycopeptide, showed significant anti-osteoporosis effects, which will accelerate the utilization of T-ES as an alternative marine drug or functional food for anti-osteoporosis.


Assuntos
Sialoglicoproteínas , Atum , Humanos , Camundongos , Animais , Sequência de Carboidratos , Carboidratos , Hexoses
19.
Int J Biol Macromol ; 253(Pt 7): 127546, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863146

RESUMO

The aim of this work was to examine the structure and gene cluster of O-OPS of S. xiamenensis strain DCB-2-1 and survey its conceivability for chelating uranyl, chromate and vanadate ions from solution. O-polysaccharide (OPS, O-antigen) was isolated from the lipopolysaccharide of Shewanella xiamenensis DCB-2-1 and studied by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy and sugar analysis. The following structure of the brunched pentasaccharide was established: where d-ß-GlcpA(d-Ala) is d-glucuronic acid acylated with NH group of d-Ala. The OPS structure established is unique among known bacterial polysaccharide structures. Interestingly, that dN-(d-glucuronoyl)-d-alanine derivative is not found in bacterial polysaccharides early. The O-antigen gene cluster of Shewanella xiamenensis strain DCB-2-1 has been sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in agreement with the OPS structure. Based on the analysis of the IR spectra of the isolated polysaccharide DCB-2-1 and the products of its interaction with UO2(NO3)2 ∗ 6H2O, NH4VO3 and K2Cr2O7, a method of binding them can be proposed. Laboratory experiments show that the use of polysaccharide can be effective in removing uranyl, chromate and vanadate from solution.


Assuntos
Escherichia coli , Antígenos O , Sequência de Carboidratos , Antígenos O/genética , Antígenos O/química , Escherichia coli/genética , Amidas , Cromatos , Vanadatos , Família Multigênica , Ácido Glucurônico
20.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894724

RESUMO

The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.


Assuntos
Células Endoteliais , Oligossacarídeos , Humanos , Sequência de Carboidratos , Células Endoteliais/metabolismo , Oligossacarídeos/metabolismo , Antígenos , Sistema ABO de Grupos Sanguíneos , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA