Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Biomed Res Int ; 2022: 1558860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35039793

RESUMO

Increasing outbreaks of new pathogenic viruses have promoted the exploration of novel alternatives to time-consuming vaccines. Thus, it is necessary to develop a universal approach to halt the spread of new and unknown viruses as they are discovered. One such promising approach is to target lipid membranes, which are common to all viruses and bacteria. The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has reaffirmed the importance of interactions between the virus envelope and the host cell plasma membrane as a critical mechanism of infection. Metadichol®, a nanolipid emulsion of long-chain alcohols, has been demonstrated as a strong candidate that inhibits the proliferation of SARS-CoV-2. Naturally derived substances, such as long-chain saturated lipid alcohols, reduce viral infectivity, including that of coronaviruses (such as SARS-CoV-2) by modifying their lipid-dependent attachment mechanism to human host cells. The receptor ACE2 mediates the entry of SARS-CoV-2 into the host cells, whereas the serine protease TMPRSS2 primes the viral S protein. In this study, Metadichol® was found to be 270 times more potent an inhibitor of TMPRSS2 (EC50 = 96 ng/mL) than camostat mesylate (EC50 = 26000 ng/mL). Additionally, it inhibits ACE with an EC50 of 71 ng/mL, but it is a very weak inhibitor of ACE2 at an EC50 of 31 µg/mL. Furthermore, the live viral assay performed in Caco-2 cells revealed that Metadichol® inhibits SARS-CoV-2 replication at an EC90 of 0.16 µg/mL. Moreover, Metadichol® had an EC90 of 0.00037 µM, making it 2081 and 3371 times more potent than remdesivir (EC50 = 0.77 µM) and chloroquine (EC50 = 1.14 µM), respectively.


Assuntos
Álcoois Graxos/farmacologia , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Vírus/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Ésteres/farmacologia , Guanidinas/farmacologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/química , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
2.
J Allergy Clin Immunol ; 149(3): 923-933.e6, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34902435

RESUMO

BACKGROUND: Treatments for coronavirus disease 2019, which is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), are urgently needed but remain limited. SARS-CoV-2 infects cells through interactions of its spike (S) protein with angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) on host cells. Multiple cells and organs are targeted, particularly airway epithelial cells. OM-85, a standardized lysate of human airway bacteria with strong immunomodulating properties and an impeccable safety profile, is widely used to prevent recurrent respiratory infections. We found that airway OM-85 administration inhibits Ace2 and Tmprss2 transcription in the mouse lung, suggesting that OM-85 might hinder SARS-CoV-2/host cell interactions. OBJECTIVES: We sought to investigate whether and how OM-85 treatment protects nonhuman primate and human epithelial cells against SARS-CoV-2. METHODS: ACE2 and TMPRSS2 mRNA and protein expression, cell binding of SARS-CoV-2 S1 protein, cell entry of SARS-CoV-2 S protein-pseudotyped lentiviral particles, and SARS-CoV-2 cell infection were measured in kidney, lung, and intestinal epithelial cell lines, primary human bronchial epithelial cells, and ACE2-transfected HEK293T cells treated with OM-85 in vitro. RESULTS: OM-85 significantly downregulated ACE2 and TMPRSS2 transcription and surface ACE2 protein expression in epithelial cell lines and primary bronchial epithelial cells. OM-85 also strongly inhibited SARS-CoV-2 S1 protein binding to, SARS-CoV-2 S protein-pseudotyped lentivirus entry into, and SARS-CoV-2 infection of epithelial cells. These effects of OM-85 appeared to depend on SARS-CoV-2 receptor downregulation. CONCLUSIONS: OM-85 inhibits SARS-CoV-2 epithelial cell infection in vitro by downregulating SARS-CoV-2 receptor expression. Further studies are warranted to assess whether OM-85 may prevent and/or reduce the severity of coronavirus disease 2019.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , COVID-19/prevenção & controle , Extratos Celulares/administração & dosagem , Receptores Virais/antagonistas & inibidores , Receptores Virais/imunologia , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/imunologia , COVID-19/virologia , Células CACO-2 , Extratos Celulares/imunologia , Células Cultivadas , Chlorocebus aethiops , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/virologia , Células HEK293 , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Técnicas In Vitro , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/imunologia , Células Vero
3.
Molecules ; 26(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833913

RESUMO

Dengue fever is a dangerous infectious endemic disease that affects over 100 nations worldwide, from Africa to the Western Pacific, and is caused by the dengue virus, which is transmitted to humans by an insect bite of Aedes aegypti. Millions of citizens have died as a result of dengue fever and dengue hemorrhagic fever across the globe. Envelope (E), serine protease (NS3), RNA-directed RNA polymerase (NS5), and non-structural protein 1 (NS1) are mostly required for cell proliferation and survival. Some of the diterpenoids and their derivatives produced by nature possess anti-dengue viral properties. The goal of the computational study was to scrutinize the effectiveness of diterpenoids and their derivatives against dengue viral proteins through in silico study. Methods: molecular docking was performed to analyze the binding affinity of compounds against four viral proteins: the envelope (E) protein, the NS1 protein, the NS3 protein, and the NS5 protein. Results: among the selected drug candidates, triptolide, stevioside, alepterolic acid, sphaeropsidin A, methyl dodovisate A, andrographolide, caesalacetal, and pyrimethamine have demonstrated moderate to good binding affinities (-8.0 to -9.4 kcal/mol) toward the selected proteins: E protein, NS3, NS5, and NS1 whereas pyrimethamine exerts -7.5, -6.3, -7.8, and -6.6 kcal/mol with viral proteins, respectively. Interestingly, the binding affinities of these lead compounds were better than those of an FDA-approved anti-viral medication (pyrimethamine), which is underused in dengue fever. Conclusion: we can conclude that diterpenoids can be considered as a possible anti-dengue medication option. However, in vivo investigation is recommended to back up the conclusions of this study.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Diterpenos/farmacologia , Antivirais/química , Antivirais/farmacocinética , Sítios de Ligação , Simulação por Computador , Dengue/tratamento farmacológico , Dengue/virologia , Diterpenos/química , Diterpenos/farmacocinética , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/farmacologia , Ligação Proteica , RNA Helicases/química , RNA Helicases/efeitos dos fármacos , RNA Helicases/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34635581

RESUMO

The host cell serine protease TMPRSS2 is an attractive therapeutic target for COVID-19 drug discovery. This protease activates the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and of other coronaviruses and is essential for viral spread in the lung. Utilizing rational structure-based drug design (SBDD) coupled to substrate specificity screening of TMPRSS2, we have discovered covalent small-molecule ketobenzothiazole (kbt) TMPRSS2 inhibitors which are structurally distinct from and have significantly improved activity over the existing known inhibitors Camostat and Nafamostat. Lead compound MM3122 (4) has an IC50 (half-maximal inhibitory concentration) of 340 pM against recombinant full-length TMPRSS2 protein, an EC50 (half-maximal effective concentration) of 430 pM in blocking host cell entry into Calu-3 human lung epithelial cells of a newly developed VSV-SARS-CoV-2 chimeric virus, and an EC50 of 74 nM in inhibiting cytopathic effects induced by SARS-CoV-2 virus in Calu-3 cells. Further, MM3122 blocks Middle East respiratory syndrome coronavirus (MERS-CoV) cell entry with an EC50 of 870 pM. MM3122 has excellent metabolic stability, safety, and pharmacokinetics in mice, with a half-life of 8.6 h in plasma and 7.5 h in lung tissue, making it suitable for in vivo efficacy evaluation and a promising drug candidate for COVID-19 treatment.


Assuntos
Benzotiazóis/farmacologia , Tratamento Farmacológico da COVID-19 , Oligopeptídeos/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Animais , Benzamidinas/química , Benzotiazóis/farmacocinética , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Ésteres/química , Guanidinas/química , Humanos , Pulmão/efeitos dos fármacos , Pulmão/virologia , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Oligopeptídeos/farmacocinética , SARS-CoV-2/patogenicidade , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/ultraestrutura , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
6.
Nutrients ; 13(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34444960

RESUMO

Hesperidin (HD) is a common flavanone glycoside isolated from citrus fruits and possesses great potential for cardiovascular protection. Hesperetin (HT) is an aglycone metabolite of HD with high bioavailability. Through the docking simulation, HD and HT have shown their potential to bind to two cellular proteins: transmembrane serine protease 2 (TMPRSS2) and angiotensin-converting enzyme 2 (ACE2), which are required for the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results further found that HT and HD suppressed the infection of VeroE6 cells using lentiviral-based pseudo-particles with wild types and variants of SARS-CoV-2 with spike (S) proteins, by blocking the interaction between the S protein and cellular receptor ACE2 and reducing ACE2 and TMPRSS2 expression. In summary, hesperidin is a potential TMPRSS2 inhibitor for the reduction of the SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , Hesperidina/química , Hesperidina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/virologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
7.
Microbiol Spectr ; 9(1): e0047221, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34378968

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative agent of the coronavirus disease 2019 (COVID-19) pandemic, and the development of therapeutic interventions is urgently needed. So far, monoclonal antibodies and drug repositioning are the main methods for drug development, and this effort was partially successful. Since the beginning of the COVID-19 pandemic, the emergence of SARS-CoV-2 variants has been reported in many parts of the world, and the main concern is whether the current vaccines and therapeutics are still effective against these variant viruses. Viral entry and viral RNA-dependent RNA polymerase (RdRp) are the main targets of current drug development; therefore, the inhibitory effects of transmembrane serine protease 2 (TMPRSS2) and RdRp inhibitors were compared among the early SARS-CoV-2 isolate (lineage A) and the two recent variants (lineage B.1.1.7 and lineage B.1.351) identified in the United Kingdom and South Africa, respectively. Our in vitro analysis of viral replication showed that the drugs targeting TMPRSS2 and RdRp are equally effective against the two variants of concern. IMPORTANCE The COVID-19 pandemic is causing unprecedented global problems in both public health and human society. While some vaccines and monoclonal antibodies were successfully developed very quickly and are currently being used, numerous variants of the causative SARS-CoV-2 are emerging and threatening the efficacy of vaccines and monoclonal antibodies. In order to respond to this challenge, we assessed antiviral efficacy of small-molecule inhibitors that are being developed for treatment of COVID-19 and found that they are still very effective against the SARS-CoV-2 variants. Since most small-molecule inhibitors target viral or host factors other than the mutated sequence of the viral spike protein, they are expected to be potent control measures against the COVID-19 pandemic.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , RNA Polimerase Dependente de RNA/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Chlorocebus aethiops , Humanos , África do Sul , Reino Unido , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
Virol J ; 18(1): 154, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301275

RESUMO

The COVID-19 pandemic has put healthcare infrastructures and our social and economic lives under unprecedented strain. Effective solutions are needed to end the pandemic while significantly lessening its further impact on mortality and social and economic life. Effective and widely-available vaccines have appropriately long been seen as the best way to end the pandemic. Indeed, the current availability of several effective vaccines are already making a significant progress towards achieving that goal. Nevertheless, concerns have risen due to new SARS-CoV-2 variants that harbor mutations against which current vaccines are less effective. Furthermore, some individuals are unwilling or unable to take the vaccine. As health officials across the globe scramble to vaccinate their populations to reach herd immunity, the challenges noted above indicate that COVID-19 therapeutics are still needed to work alongside the vaccines. Here we describe the impact that neutralizing antibodies have had on those with early or mild COVID-19, and what their approval for early management of COVID-19 means for other viral entry inhibitors that have a similar mechanism of action. Importantly, we also highlight studies that show that therapeutic strategies involving various viral entry inhibitors such as multivalent antibodies, recombinant ACE2 and miniproteins can be effective not only for pre-exposure prophylaxis, but also in protecting against SARS-CoV-2 antigenic drift and future zoonotic sarbecoviruses.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/virologia , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , Vacinas contra COVID-19/farmacologia , Catepsinas/metabolismo , Humanos , Mutação , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Viruses ; 13(5)2021 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063247

RESUMO

In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged to severely impact the global population, creating an unprecedented need for effective treatments. This study aims to investigate the potential of Scutellaria barbata D. Don (SB) as a treatment for SARS-CoV-2 infection through the inhibition of the proteases playing important functions in the infection by SARS-CoV-2. FRET assay was applied to investigate the inhibitory effects of SB on the two proteases involved in SARS-CoV-2 infection, Mpro and TMPRSS2. Additionally, to measure the potential effectiveness of SB treatment on infection inhibition, cellular models based on the Calu3 and VeroE6 cells and their TMPRSS2- expressing derivatives were assessed by viral pseudoparticles (Vpp) infection assays. The experimental approaches were conjugated with LC/MS analyses of the aqueous extracts of SB to identify the major constituent compounds, followed by a literature review to determine the potential active components of the inhibitory effects on protease activities. Our results showed that SB extracts inhibited the enzyme activities of Mpro and TMPRSS2. Furthermore, SB extracts effectively inhibited SARS-CoV-2 Vpp infection through a TMPRSS2-dependent mechanism. The aqueous extract analysis identified six major constituent compounds present in SB. Some of them have been known associated with inhibitory activities of TMPRSS2 or Mpro. Thus, SB may effectively prevent SARS-CoV-2 infection and replication through inhibiting Mpro and TMPRSS2 protease activities.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/metabolismo , Extratos Vegetais/farmacologia , Serina Endopeptidases/metabolismo , Animais , COVID-19/metabolismo , Linhagem Celular , Chlorocebus aethiops , Proteases 3C de Coronavírus/efeitos dos fármacos , Humanos , Pulmão/virologia , Pandemias , Peptídeo Hidrolases , Peptidil Dipeptidase A/metabolismo , Extratos Vegetais/metabolismo , Proteólise , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Scutellaria , Serina Endopeptidases/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
10.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34089595

RESUMO

Coronavirus disease 2019 (COVID-19) is characterized by a gender disparity in severity, with men exhibiting higher hospitalization and mortality rates than women. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, infects cells following recognition and attachment of the viral spike glycoprotein to the angiotensin-converting enzyme 2 transmembrane protein, followed by spike protein cleavage and activation by cell surface transmembrane protease serine 2 (TMPRSS2). In prostate cancer cells, androgen acting on the androgen receptor increases TMPRSS2 expression, which has led to the hypothesis that androgen-dependent expression of TMPRSS2 in the lung may increase men's susceptibility to severe COVID-19 and that, accordingly, suppressing androgen production or action may mitigate COVID-19 severity by reducing SARS-CoV-2 amplification. Several ongoing clinical trials are testing the ability of androgen deprivation therapies or anti-androgens to mitigate COVID-19. This perspective discusses clinical and molecular advances on the rapidly evolving field of androgen receptor (AR) action on cell surface transmembrane protease serine 2 (TMPRSS2) expression and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the potential effect of anti-androgens on coronavirus disease 2019 (COVID-19) severity in male patients. It discusses limitations of current studies and offers insight for future directions.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Pulmão/virologia , Masculino , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/fisiologia , SARS-CoV-2/fisiologia , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/genética , Serina Endopeptidases/fisiologia , Fatores Sexuais
11.
Sci Rep ; 11(1): 5207, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664446

RESUMO

The strain SARS-CoV-2, newly emerged in late 2019, has been identified as the cause of COVID-19 and the pandemic declared by WHO in early 2020. Although lipids have been shown to possess antiviral efficacy, little is currently known about lipid compounds with anti-SARS-CoV-2 binding and entry properties. To address this issue, we screened, overall, 17 polyunsaturated fatty acids, monounsaturated fatty acids and saturated fatty acids, as wells as lipid-soluble vitamins. In performing target-based ligand screening utilizing the RBD-SARS-CoV-2 sequence, we observed that polyunsaturated fatty acids most effectively interfere with binding to hACE2, the receptor for SARS-CoV-2. Using a spike protein pseudo-virus, we also found that linolenic acid and eicosapentaenoic acid significantly block the entry of SARS-CoV-2. In addition, eicosapentaenoic acid showed higher efficacy than linolenic acid in reducing activity of TMPRSS2 and cathepsin L proteases, but neither of the fatty acids affected their expression at the protein level. Also, neither reduction of hACE2 activity nor binding to the hACE2 receptor upon treatment with these two fatty acids was observed. Although further in vivo experiments are warranted to validate the current findings, our study provides a new insight into the role of lipids as antiviral compounds against the SARS-CoV-2 strain.


Assuntos
COVID-19/prevenção & controle , Ácidos Graxos Ômega-3/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Células A549 , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Catepsina L/antagonistas & inibidores , Ácidos Graxos Ômega-3/farmacologia , Humanos , Serina Endopeptidases/efeitos dos fármacos
12.
J Med Virol ; 93(7): 4205-4218, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33638460

RESUMO

Epidemiological data shows a discrepancy in COVID-19 susceptibility and outcomes with some regions being more heavily affected than others. However, the factors that determine host susceptibility and pathogenicity remain elusive. An increasing number of publications highlight the role of Transmembrane Serine Protease 2 (TMPRSS2) in the susceptibility of the host cell to SARS-CoV-2. Cleavage of viral spike protein via the host cell's TMPRSS2 enzyme activity mediates viral entry into the host cell. The enzyme synthesis is regulated by the TMPRSS2 gene, which has also been implicated in the entry mechanisms of previously reported Coronavirus infections. In this review, we have investigated the pathogenicity of SARS-CoV-2 and disease susceptibility dependence on the TMPRSS2 gene as expressed in various population groups. We further discuss how the differential expression of this gene in various ethnic groups can affect the SARS-CoV-2 infection and Coronavirus disease (COVID)-19 outcomes. Moreover, promising new TMPRSS2 protease blockers and inhibitors are discussed for COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Anosmia/patologia , COVID-19/patologia , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
13.
Aging (Albany NY) ; 13(5): 6982-6998, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621955

RESUMO

Androgen receptor (AR) and histone deacetylase 6 (HDAC6) are important targets for cancer therapy. Given that both AR antagonists and HDAC6 inhibitors modulate AR signaling, a novel AR/HDAC6 dual inhibitor is investigated for its anticancer effects in castration-resistant prostate cancer (CRPC). Zeta55 inhibits nuclear translocation of AR and suppresses androgen-induced PSA and TMPRSS2 expression. Meanwhile, Zeta55 selectively inhibits HDAC6 activity, leading to AR degradation. Zeta55 reduces the growth of AR-overexpressing VCaP prostate cancer cells both in vitro and in a CRPC xenograft model. These results provide preclinical proof of principle for Zeta55 as a promising therapeutic in prostate cancer treatment.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Desacetilase 6 de Histona/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/química , Animais , Masculino , Camundongos SCID , Antígeno Prostático Específico/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos
14.
J Med Chem ; 64(3): 1454-1480, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33492963

RESUMO

Sphingosine-1-phosphate (S1P) binds to a family of sphingosine-1-phosphate G-protein-coupled receptors (S1P1-5). The interaction of S1P with these S1P receptors has a fundamental role in many physiological processes in the vascular and immune systems. Agonist-induced functional antagonism of S1P1 has been shown to result in lymphopenia. As a result, agonists of this type hold promise as therapeutics for autoimmune disorders. The previously disclosed differentiated S1P1 modulator BMS-986104 (1) exhibited improved preclinical cardiovascular and pulmonary safety profiles as compared to earlier full agonists of S1P1; however, it demonstrated a long pharmacokinetic half-life (T1/2 18 days) in the clinic and limited formation of the desired active phosphate metabolite. Optimization of this series through incorporation of olefins, ethers, thioethers, and glycols into the alkyl side chain afforded an opportunity to reduce the projected human T1/2 and improve the formation of the active phosphate metabolite while maintaining efficacy as well as the improved safety profile. These efforts led to the discovery of 12 and 24, each of which are highly potent, biased agonists of S1P1. These compounds not only exhibited shorter in vivo T1/2 in multiple species but are also projected to have significantly shorter T1/2 values in humans when compared to our first clinical candidate. In models of arthritis, treatment with 12 and 24 demonstrated robust efficacy.


Assuntos
Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/farmacologia , Pró-Proteína Convertases/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Animais , Artrite Experimental/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Biotransformação , Compostos Bicíclicos com Pontes/efeitos adversos , Líquido da Lavagem Broncoalveolar , Quimiotaxia de Leucócito/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Pneumopatias/induzido quimicamente , Pneumopatias/patologia , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Fosforilação , Ratos , Ratos Endogâmicos Lew , Relação Estrutura-Atividade
15.
PLoS Pathog ; 17(1): e1009212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465165

RESUMO

Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.


Assuntos
COVID-19/prevenção & controle , Hidroxicloroquina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Chlorocebus aethiops/virologia , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero/virologia , Tratamento Farmacológico da COVID-19
16.
Diabetes ; 70(3): 759-771, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33310740

RESUMO

The causes of the increased risk of severe coronavirus disease 2019 (COVID-19) in people with diabetes are unclear. It has been speculated that renin-angiotensin system (RAS) blockers may promote COVID-19 by increasing ACE2, which severe acute respiratory syndrome coronavirus 2 uses to enter host cells, along with the host protease TMPRSS2. Taking a reverse translational approach and by combining in situ hybridization, primary cell isolation, immunoblotting, quantitative RT-PCR, and liquid chromatography-tandem mass spectrometry, we studied lung and kidney ACE2 and TMPRSS2 in diabetic mice mimicking host factors linked to severe COVID-19. In healthy young mice, neither the ACE inhibitor ramipril nor the AT1 receptor blocker telmisartan affected lung or kidney ACE2 or TMPRSS2, except for a small increase in kidney ACE2 protein with ramipril. In contrast, mice with comorbid diabetes (aging, high-fat diet, and streptozotocin-induced diabetes) had heightened lung ACE2 and TMPRSS2 protein levels and increased lung ACE2 activity. None of these parameters were affected by RAS blockade. ACE2 was similarly upregulated in the kidneys of mice with comorbid diabetes compared with aged controls, whereas TMPRSS2 (primarily distal nephron) was highest in telmisartan-treated animals. Upregulation of lung ACE2 activity in comorbid diabetes may contribute to an increased risk of severe COVID-19. This upregulation is driven by comorbidity and not by RAS blockade.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Rim/metabolismo , Pulmão/metabolismo , Serina Endopeptidases/genética , Fatores Etários , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Enzima de Conversão de Angiotensina 2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , COVID-19 , Immunoblotting , Hibridização In Situ , Rim/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Ramipril/farmacologia , Receptores de Coronavírus/efeitos dos fármacos , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Telmisartan/farmacologia
17.
Basic Clin Pharmacol Toxicol ; 128(2): 204-212, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33176395

RESUMO

The coronavirus responsible for COVID-19, SARS-CoV-2, utilizes a viral membrane spike protein for host cell entry. For the virus to engage in host membrane fusion, SARS-CoV-2 utilizes the human transmembrane surface protease, TMPRSS2, to cleave and activate the spike protein. Camostat mesylate, an orally available well-known serine protease inhibitor, is a potent inhibitor of TMPRSS2 and has been hypothesized as a potential antiviral drug against COVID-19. In vitro human cell and animal studies have shown that camostat mesylate inhibits virus-cell membrane fusion and hence viral replication. In mice, camostat mesylate treatment during acute infection with influenza, also dependent on TMPRSS2, leads to a reduced viral load. The decreased viral load may be associated with an improved patient outcome. Because camostat mesylate is administered as an oral drug, it may be used in outpatients as well as inpatients at all disease stages of SARS-CoV-2 infection if it is shown to be an effective antiviral agent. Clinical trials are currently ongoing to test whether this well-known drug could be repurposed and utilized to combat the current pandemic. In the following, we will review current knowledge on camostat mesylate mode of action, potential benefits as an antiviral agent and ongoing clinical trials.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Ésteres/uso terapêutico , Guanidinas/uso terapêutico , Inibidores de Serina Proteinase/uso terapêutico , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Reposicionamento de Medicamentos , Ésteres/administração & dosagem , Ésteres/efeitos adversos , Guanidinas/administração & dosagem , Guanidinas/efeitos adversos , Humanos , Camundongos , Segurança do Paciente , Serina Endopeptidases/efeitos dos fármacos , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/efeitos adversos
18.
Med Hypotheses ; 146: 110394, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33239231

RESUMO

No definitive treatment for COVID-19 exists although promising results have been reported with remdesivir and glucocorticoids. Short of a truly effective preventive or curative vaccine against SARS-CoV-2, it is becoming increasingly clear that multiple pathophysiologic processes seen with COVID-19 as well as SARS-CoV-2 itself should be targeted. Because alpha-1-antitrypsin (AAT) embraces a panoply of biologic activities that may antagonize several pathophysiologic mechanisms induced by SARS-CoV-2, we hypothesize that this naturally occurring molecule is a promising agent to ameliorate COVID-19. We posit at least seven different mechanisms by which AAT may alleviate COVID-19. First, AAT is a serine protease inhibitor (SERPIN) shown to inhibit TMPRSS-2, the host serine protease that cleaves the spike protein of SARS-CoV-2, a necessary preparatory step for the virus to bind its cell surface receptor ACE2 to gain intracellular entry. Second, AAT has anti-viral activity against other RNA viruses HIV and influenza as well as induces autophagy, a known host effector mechanism against MERS-CoV, a related coronavirus that causes the Middle East Respiratory Syndrome. Third, AAT has potent anti-inflammatory properties, in part through inhibiting both nuclear factor-kappa B (NFκB) activation and ADAM17 (also known as tumor necrosis factor-alpha converting enzyme), and thus may dampen the hyper-inflammatory response of COVID-19. Fourth, AAT inhibits neutrophil elastase, a serine protease that helps recruit potentially injurious neutrophils and implicated in acute lung injury. AAT inhibition of ADAM17 also prevents shedding of ACE2 and hence may preserve ACE2 inhibition of bradykinin, reducing the ability of bradykinin to cause a capillary leak in COVID-19. Fifth, AAT inhibits thrombin, and venous thromboembolism and in situ microthrombi and macrothrombi are increasingly implicated in COVID-19. Sixth, AAT inhibition of elastase can antagonize the formation of neutrophil extracellular traps (NETs), a complex extracellular structure comprised of neutrophil-derived DNA, histones, and proteases, and implicated in the immunothrombosis of COVID-19; indeed, AAT has been shown to change the shape and adherence of non-COVID-19-related NETs. Seventh, AAT inhibition of endothelial cell apoptosis may limit the endothelial injury linked to severe COVID-19-associated acute lung injury, multi-organ dysfunction, and pre-eclampsia-like syndrome seen in gravid women. Furthermore, because both NETs formation and the presence of anti-phospholipid antibodies are increased in both COVID-19 and non-COVID pre-eclampsia, it suggests a similar vascular pathogenesis in both disorders. As a final point, AAT has an excellent safety profile when administered to patients with AAT deficiency and is dosed intravenously once weekly but also comes in an inhaled preparation. Thus, AAT is an appealing drug candidate to treat COVID-19 and should be studied.


Assuntos
Tratamento Farmacológico da COVID-19 , Modelos Biológicos , alfa 1-Antitripsina/uso terapêutico , Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Antitrombinas/uso terapêutico , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , COVID-19/fisiopatologia , Armadilhas Extracelulares/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Pandemias , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Serina Endopeptidases/efeitos dos fármacos , Serina Endopeptidases/fisiologia , Internalização do Vírus/efeitos dos fármacos , alfa 1-Antitripsina/administração & dosagem
19.
J Cardiovasc Pharmacol ; 77(3): 323-331, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33278189

RESUMO

ABSTRACT: The high mortality of specific groups from COVID-19 highlights the importance of host-viral interactions and the potential benefits from enhancing host defenses. SARS-CoV-2 requires angiotensin-converting enzyme (ACE) 2 as a receptor for cell entry and infection. Although both ACE inhibitors and spironolactone can upregulate tissue ACE2, there are important points of discrimination between these approaches. The virus requires proteolytic processing of its spike protein by transmembrane protease receptor serine type 2 (TMPRSS2) to enable binding to cellular ACE2. Because TMPRSS2 contains an androgen promoter, it may be downregulated by the antiandrogenic actions of spironolactone. Furin and plasmin also process the spike protein. They are inhibited by protease nexin 1 or serpin E2 (PN1) that is upregulated by angiotensin II but downregulated by aldosterone. Therefore, spironolactone should selectively downregulate furin and plasmin. Furin also promotes pulmonary edema, whereas plasmin promotes hemovascular dysfunction. Thus, a downregulation of furin and plasmin by PN1 could be a further benefit of MRAs beyond their well-established organ protection. We review the evidence that spironolactone may be the preferred RASSi to increase PN1 and decrease TMPRSS2, furin, and plasmin activities and thereby reduce viral cell binding, entry, infectivity, and bad outcomes. This hypothesis requires direct investigation.


Assuntos
Tratamento Farmacológico da COVID-19 , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Sistema Renina-Angiotensina/efeitos dos fármacos , Espironolactona/uso terapêutico , Humanos , Serina Endopeptidases/efeitos dos fármacos
20.
Commun Biol ; 3(1): 547, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005001

RESUMO

Rising antibiotic resistance urgently begs for novel targets and strategies for antibiotic discovery. Here, we report that over-activation of the periplasmic DegP protease, a member of the highly conserved HtrA family, can be a viable strategy for antibiotic development. We demonstrate that tripodal peptidyl compounds that mimic DegP-activating lipoprotein variants allosterically activate DegP and inhibit the growth of an Escherichia coli strain with a permeable outer membrane in a DegP-dependent fashion. Interestingly, these compounds inhibit bacterial growth at a temperature at which DegP is not essential for cell viability, mainly by over-proteolysis of newly synthesized proteins. Co-crystal structures show that the peptidyl arms of the compounds bind to the substrate-binding sites of DegP. Overall, our results represent an intriguing example of killing bacteria by activating a non-essential enzyme, and thus expand the scope of antibiotic targets beyond the traditional essential proteins or pathways.


Assuntos
Antibacterianos/farmacologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/metabolismo , Sítios de Ligação , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Escherichia coli/efeitos dos fármacos , Polarização de Fluorescência , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas Periplásmicas/química , Proteínas Periplásmicas/efeitos dos fármacos , Estrutura Terciária de Proteína , Serina Endopeptidases/química , Serina Endopeptidases/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA