Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 379(6637): 1105-1111, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36758104

RESUMO

Tight regulation of apoptosis is essential for metazoan development and prevents diseases such as cancer and neurodegeneration. Caspase activation is central to apoptosis, and inhibitor of apoptosis proteins (IAPs) are the principal actors that restrain caspase activity and are therefore attractive therapeutic targets. IAPs, in turn, are regulated by mitochondria-derived proapoptotic factors such as SMAC and HTRA2. Through a series of cryo-electron microscopy structures of full-length human baculoviral IAP repeat-containing protein 6 (BIRC6) bound to SMAC, caspases, and HTRA2, we provide a molecular understanding for BIRC6-mediated caspase inhibition and its release by SMAC. The architecture of BIRC6, together with near-irreversible binding of SMAC, elucidates how the IAP inhibitor SMAC can effectively control a processive ubiquitin ligase to respond to apoptotic stimuli.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Caspases , Proteínas Inibidoras de Apoptose , Proteínas Mitocondriais , Animais , Humanos , Caspases/química , Caspases/metabolismo , Microscopia Crioeletrônica , Ativação Enzimática , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Domínios Proteicos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo
2.
Science ; 379(6637): 1117-1123, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36758105

RESUMO

Inhibitor of apoptosis proteins (IAPs) bind to pro-apoptotic proteases, keeping them inactive and preventing cell death. The atypical ubiquitin ligase BIRC6 is the only essential IAP, additionally functioning as a suppressor of autophagy. We performed a structure-function analysis of BIRC6 in complex with caspase-9, HTRA2, SMAC, and LC3B, which are critical apoptosis and autophagy proteins. Cryo-electron microscopy structures showed that BIRC6 forms a megadalton crescent shape that arcs around a spacious cavity containing receptor sites for client proteins. Multivalent binding of SMAC obstructs client binding, impeding ubiquitination of both autophagy and apoptotic substrates. On the basis of these data, we discuss how the BIRC6/SMAC complex can act as a stress-induced hub to regulate apoptosis and autophagy drivers.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proteínas Inibidoras de Apoptose , Proteínas Mitocondriais , Humanos , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia , Microscopia Crioeletrônica , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquitinação , Multimerização Proteica , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(17): e2203172119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452308

RESUMO

The human high-temperature requirement A2 (HtrA2) protein is a trimeric protease that cleaves misfolded proteins to protect cells from stresses caused by toxic, proteinaceous aggregates, and the aberrant function of HtrA2 is closely related to the onset of neurodegenerative disorders. Our methyl-transverse relaxation optimized spectroscopy (TROSY)­based NMR studies using small-peptide ligands have previously revealed a stepwise activation mechanism involving multiple distinct conformational states. However, very little is known about how HtrA2 binds to protein substrates and if the distinct conformational states observed in previous peptide studies might be involved in the processing of protein clients. Herein, we use solution-based NMR spectroscopy to investigate the interaction between the N-terminal Src homology 3 domain from downstream of receptor kinase (drk) with an added C-terminal HtrA2-binding motif (drkN SH3-PDZbm) that exhibits marginal folding stability and serves as a mimic of a physiological protein substrate. We show that drkN SH3-PDZbm binds to HtrA2 via a two-pronged interaction, involving both its C-terminal PDZ-domain binding motif and a central hydrophobic region, with binding occurring preferentially via an unfolded ensemble of substrate molecules. Multivalent interactions between several clients and a single HtrA2 trimer significantly stimulate the catalytic activity of HtrA2, suggesting that binding avidity plays an important role in regulating substrate processing. Our results provide a thermodynamic, kinetic, and structural description of the interaction of HtrA2 with protein substrates and highlight the importance of a trimeric architecture for function as a stress-protective protease that mitigates aggregation.


Assuntos
Proteínas Mitocondriais , Peptídeo Hidrolases , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Humanos , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/metabolismo , Temperatura
4.
Biochem Biophys Res Commun ; 594: 63-68, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35074587

RESUMO

High temperature requirement protease A2 (HtrA2) is a mitochondrial serine protease that demonstrates multifaceted roles including protein quality control and proapoptotic properties in humans, making it a potential therapeutic target. Current literature suggests involvement of flexible regulatory loops in governing the allosteric propagation within the trimeric HtrA2 ensemble. Here, we have identified three important residues - R147, P148 (L3 loop) and F131 (LD loop) surrounding the catalytic-site that play crucial roles in stabilizing HtrA2 active conformation during its multimodal activation. Although mutagenesis of these residues does not affect the structural integrity, it renders the protease inactive by affecting the regulatory inter-subunit PDZ-protease crosstalk. This is further emphasized by the inactivity observed during N-terminal mediated activation of the HtrA2 loop mutants via BIR2 domain of the antiapoptotic protein XIAP. Overall, our results demonstrate the importance of L3 loop dynamics in mediating the inter-molecular allostery via R147-P148 residues. Understanding the on-off switch that regulates HtrA2 activation might help in designing HtrA2 modulators for therapeutic applications.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Sítio Alostérico , Domínio Catalítico , Simulação por Computador , Sequência Conservada , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Simulação de Dinâmica Molecular , Mutação , Conformação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina Endopeptidases/metabolismo , Serina Proteases/metabolismo , Espectrometria de Fluorescência , Temperatura
5.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446566

RESUMO

The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mitocôndrias/metabolismo , Mutação , Domínios PDZ , Doença de Parkinson/patologia , Regiões Promotoras Genéticas , Animais , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Camundongos , Mitocôndrias/genética , Modelos Moleculares , Doença de Parkinson/etiologia , Conformação Proteica , Proteólise , Relação Estrutura-Atividade
6.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692127

RESUMO

Human High temperature requirement A2 (HtrA2) is a mitochondrial protease chaperone that plays an important role in cellular proteostasis and in regulating cell-signaling events, with aberrant HtrA2 function leading to neurodegeneration and parkinsonian phenotypes. Structural studies of the enzyme have established a trimeric architecture, comprising three identical protomers in which the active sites of each protease domain are sequestered to form a catalytically inactive complex. The mechanism by which enzyme function is regulated is not well understood. Using methyl transverse relaxation optimized spectroscopy (TROSY)-based solution NMR in concert with biochemical assays, a functional HtrA2 oligomerization/binding cycle has been established. In the absence of substrates, HtrA2 exchanges between a heretofore unobserved hexameric conformation and the canonical trimeric structure, with the hexamer showing much weaker affinity toward substrates. Both structures are substrate inaccessible, explaining their low basal activity in the absence of the binding of activator peptide. The binding of the activator peptide to each of the protomers of the trimer occurs with positive cooperativity and induces intrasubunit domain reorientations to expose the catalytic center, leading to increased proteolytic activity. Our data paint a picture of HtrA2 as a finely tuned, stress-protective enzyme whose activity can be modulated both by oligomerization and domain reorientation, with basal levels of catalysis kept low to avoid proteolysis of nontarget proteins.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Proteínas Mitocondriais/química , Sítios de Ligação , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteólise , Relação Estrutura-Atividade , Termodinâmica
7.
Int J Biol Macromol ; 180: 97-111, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716130

RESUMO

HtrA2, a proapoptotic mitochondrial serine protease, promotes cellular protection against oxidative damage. Literature reports show positive correlation between loss of HtrA2 protease activity and Parkinson's Disease (PD) susceptibility. Homozygous loss-of-function mutations in murine-HtrA2, and when they rarely occur in humans result in severe neurodegeneration and infantile death. Here, we report a novel heterozygous pathogenic HTRA2 variant, c.725C > T (p.T242M) in Indian PD patients. Although, this mutation exhibits no significant conformational changes compared to the wild-type, functional studies with HtrA2-T242M transfected neurons reveal common features of PD pathogenesis such as dysfunction, altered morphology and mitochondrial membrane depolarization. Despite exhibiting two-fold decrease in enzyme activity, observation of excessive cell-death due to over-expression of the mutant has been correlated with it being constitutively active. This interesting behavioral anomaly has been attributed to the loss of phosphorylation-mediated regulatory checkpoint at the T242M mutation site that is otherwise controlled by glycogen synthase kinase-3ß (GSK-3ß). This study, with seamless amalgamation of biophysical and biomedical research unravels a mechanistic pathway of HtrA2 regulation and delineates its biological role in PD. Therefore, this investigation will not only prove beneficial toward devising therapeutic strategies against HtrA2-associated diseases mediated by GSK-3ß but also suggest new avenues for treatment of Parkinsonian phenotype.


Assuntos
Apoptose/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mutação com Perda de Função , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fenótipo , Adulto , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Heterozigoto , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Parkinson/epidemiologia , Fosforilação/genética , Polimorfismo de Nucleotídeo Único , Estrutura Secundária de Proteína , Transfecção , Adulto Jovem
8.
Biochem J ; 478(6): 1241-1259, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33650635

RESUMO

HtrA2 (high-temperature requirement A2) and GRIM-19 (gene associated with retinoic and interferon-induced mortality 19 protein) are involved in various biological functions with their deregulation leading to multiple diseases. Although it is known that the interaction between GRIM-19 with HtrA2 promotes the pro-apoptotic activity of the latter, the mechanistic details remained elusive till date. Moreover, designing allosteric modulators of HtrA2 remains obscure due to lack of adequate information on the mode of interaction with its natural substrates cum binding partners. Therefore, in this study, we have unfolded the interaction between HtrA2 and GRIM-19 so as to understand its subsequent functional repercussions. Using in silico analyses and biochemical assays, we identified the region in GRIM-19 that is involved in protein-protein interaction with HtrA2. Furthermore, we have presented a comprehensive illustration of HtrA2's cleavage site specificity. Quantitative analysis using enzyme kinetics underscored the role of GRIM-19 in significant allosteric activation of HtrA2. Overall, this is an extensive study that not only defines HtrA2-GRIM-19 interaction, but also creates a framework for developing strategies toward allosteric regulation of HtrA2 for future therapeutic interventions.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismo , Domínios PDZ , Regulação Alostérica , Sítios de Ligação , Humanos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
9.
Biochem Biophys Res Commun ; 533(3): 607-612, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32988583

RESUMO

Human high temperature requirement protease A2 (HtrA2) is a trimeric PDZ bearing proapoptotic serine protease, which is involved in various cellular processes and pathologies. Research in the last decade strongly advocates its role as a potential therapeutic target and therefore warrants the need to minutely investigate its mechanism of action, regulation, interactions with other proteins and its binding specificities. In this particular study, we adopted an in silico approach to predict novel interacting partners and/or substrates of HtrA2 by building a peptide library using a binding pattern search. This library was used to look for novel ligand proteins in the human proteome. Thereafter, the putative interaction was validated using biochemical and cell-based studies. In a first, here we report that HtrA2 shows robust interactions with DUSP9 (Dual specificity phosphatase 9) in GST-pulldown and Co-Immunoprecipitation (Co-IP) experiments and cleaves it in vitro. Besides, we also provided a detailed characterization of the interaction interface. Moreover, this study in general provides an efficient, fast and practical method of candidate ligand library screening for exploring the binding properties of HtrA2.


Assuntos
Fosfatases de Especificidade Dupla/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Sítios de Ligação , Simulação por Computador , Fosfatases de Especificidade Dupla/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Humanos , Fosfatases da Proteína Quinase Ativada por Mitógeno/química , Modelos Moleculares , Proteoma
10.
ACS Chem Biol ; 15(9): 2346-2354, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786264

RESUMO

The high temperature requirement A (HTRA) family of serine proteases mediates protein quality control. These proteins process misfolded proteins in several diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). While their structures and activation mechanisms have been studied, the precise details of the regulation of their activity under physiological conditions have not been completely elucidated, partly due to the lack of suitable chemical probes. In the present study, we developed novel activity-based probes (ABPs) targeting the HTRAs and demonstrated their utility in the monitoring and quantification of changes in enzyme activity in live cells. Using our probes, we found the activity of HTRA1 to be highly elevated in an AD-like cell-based model. We also observed the active HTRA2 in live cells by using a mitochondrion-targeted probe. We believe that our probes can serve as a useful tool to study the role of human HTRAs in neurodegenerative diseases.


Assuntos
Fluoresceínas/química , Corantes Fluorescentes/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Sondas Moleculares/química , Organofosfonatos/química , Linhagem Celular Tumoral , Serina Peptidase 1 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Oligopeptídeos/química
11.
Biosci Rep ; 38(5)2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30068699

RESUMO

Serine protease high temperature requirement protease A2 (HtrA2) is involved in apoptosis and protein quality control. However, one of its murine inactive mutants (S276C aka mnd2) is associated with motor neuron degeneration 2. Similarly, this conserved mutation in human HtrA2 (hHtrA2) also renders the protease inactive, implicating pathogenicity. However, the structural determinants for its inactivation have not yet been elucidated. Here, using multidisciplinary approach, we studied the structural basis of inactivity associated with this mutation in hHtrA2. Characterization of secondary and tertiary structural properties, protein stability, oligomeric properties, and enzyme activity for both wild-type and mutant has been performed using biophysical and functional enzymology studies. The structural comparison at atomic resolution has been carried out using X-ray crystallography. While enzyme kinetics showed inactivity, spectroscopic probes did not identify any significant secondary structural changes in the mutant. X-ray crystallographic analysis of the mutant protein at 2 Å resolution highlighted the significance of a water molecule that plays important role in mediating intermolecular interactions for maintaining the functional ensemble of the protease. Overall, the crystallographic data along with biophysical and enzymology studies helped decipher the structural basis of inactivity of hHtrA2S276C, which might pave way toward further investigating its correlation with aberration of normal cellular functions, hence pathogenicity.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mutação , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Difusão Dinâmica da Luz , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Simulação de Dinâmica Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Serina/genética , Água/química
12.
J Mol Recognit ; 31(6): e2698, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29266444

RESUMO

The human HtrA family of serine proteases (HtrA1, HtrA2, HtrA3, and HtrA4) are the key enzymes associated with pregnancy and closely related to the development and progression of many pathological events. Previously, it was found that halogen substitution at the indole moiety of peptide Trp-1 residue can form a geometrically satisfactory halogen bond with the Drosophila discs large, zona occludens-1 (PDZ) domain of HtrA proteases. Here, we attempt to systematically investigate the effect of substitution with 4 halogen types and 2 indole positions on the binding affinity and specificity of peptide ligands to the 4 HtrA PDZ domains. The complex structures, interaction energies, halogen-bonding strength, and binding affinity of domain-peptide systems were modeled, analyzed, and measured via computational modeling and fluorescence-based assay. It is revealed that there is a compromise between the local rearrangement of halogen bond involving different halogen atoms and the global optimization of domain-peptide interaction; the substitution position is fundamentally important for peptide-binding affinity, while the halogen type can effectively shift peptide selectivity between the 4 domains. The HtrA1-PDZ and HtrA4-PDZ as well as HtrA2-PDZ and HtrA3-PDZ respond similarly to different halogen substitutions of peptide; -Br substitution at R2-position and -I substitution at R4-position are most effective in improving peptide selectivity for HtrA1-PDZ/HtrA4-PDZ and HtrA2-PDZ/HtrA3-PDZ, respectively; -F substitution would not address substantial effect on peptide selectivity for all the 4 domains. Consequently, the binding affinities of a native peptide ligand DSRIWWV-COOH as well as its 4 R2-halogenated counterparts were determined as 1.9, 1.4, 0.5, 0.27, and 0.92 µM, which are basically consistent with computational analysis. This study would help to rationally design selective peptide inhibitors of HtrA family members by using different halogen substitutions.


Assuntos
Peptídeos/genética , Cristalografia por Raios X , Feminino , Halogênios/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Indóis/química , Ligantes , Domínios PDZ/genética , Peptídeos/química , Gravidez , Ligação Proteica , Teoria Quântica , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Proteases/química , Serina Proteases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA