Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Brain ; 14(1): 143, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530877

RESUMO

Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson's disease. Here, we study the basic neurobiology of VPS35 and Parkinson's disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.


Assuntos
Endossomos/fisiologia , Ácido Glutâmico/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Mutação de Sentido Incorreto , Doença de Parkinson/genética , Mutação Puntual , Proteínas de Transporte Vesicular/genética , Animais , Células Cultivadas , Dendritos/metabolismo , Mutação com Ganho de Função , Técnicas de Introdução de Genes , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores de AMPA/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446559

RESUMO

Perturbation of lung homeostasis is frequently associated with progressive and fatal respiratory diseases, such as pulmonary fibrosis. Leucine-rich repeat kinase 2 (LRRK2) is highly expressed in healthy lungs, but its functions in lung homeostasis and diseases remain elusive. Herein, we showed that LRRK2 expression was clearly reduced in mammalian fibrotic lungs, and LRRK2-deficient mice exhibited aggravated bleomycin-induced pulmonary fibrosis. Furthermore, we demonstrated that in bleomycin-treated mice, LRRK2 expression was dramatically decreased in alveolar type II epithelial (AT2) cells, and its deficiency resulted in profound dysfunction of AT2 cells, characterized by impaired autophagy and accelerated cellular senescence. Additionally, LRRK2-deficient AT2 cells showed a higher capacity of recruiting profibrotic macrophages via the CCL2/CCR2 signaling, leading to extensive macrophage-associated profibrotic responses and progressive pulmonary fibrosis. Taken together, our study demonstrates that LRRK2 plays a crucial role in preventing AT2 cell dysfunction and orchestrating the innate immune responses to protect against pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/imunologia , Bleomicina/toxicidade , Fibrose Pulmonar Idiopática/prevenção & controle , Imunidade Inata , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Pulmão/imunologia , Macrófagos/imunologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Autofagia , Homeostase , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
3.
Dis Model Mech ; 14(6)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34114604

RESUMO

Parkinson's disease (PD) is a fatal neurodegenerative disorder that is primarily caused by the degeneration and loss of dopaminergic neurons of the substantia nigra in the ventral midbrain. Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of late-onset PD identified to date, with G2019S being the most frequent LRRK2 mutation, which is responsible for up to 1-2% of sporadic PD and up to 6% of familial PD cases. As no treatment is available for this devastating disease, developing new therapeutic strategies is of foremost importance. Cellular models are commonly used for testing novel potential neuroprotective compounds. However, current cellular PD models either lack physiological relevance to dopaminergic neurons or are too complex and costly for scaling up the production process and for screening purposes. In order to combine biological relevance and throughput, we have developed a PD model in Lund human mesencephalic (LUHMES) cell-derived dopaminergic neurons by overexpressing wild-type (WT) and G2019S LRRK2 proteins. We show that these cells can differentiate into dopaminergic-like neurons and that expression of mutant LRRK2 causes a range of different phenotypes, including reduced nuclear eccentricity, altered mitochondrial and lysosomal morphologies, and increased dopaminergic cell death. This model could be used to elucidate G2019S LRRK2-mediated dopaminergic neural dysfunction and to identify novel molecular targets for disease intervention. In addition, our model could be applied to high-throughput and phenotypic screenings for the identification of novel PD therapeutics.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Modelos Biológicos , Doença de Parkinson/metabolismo , Códon , Neurônios Dopaminérgicos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
4.
Neurobiol Aging ; 96: 148-154, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33007689

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a protein kinase whose activity plays an important role in neurodegenerative diseases. Although mutations in LRRK2 gene are the most common cause of monogenic Parkinson's disease, it has been reported that LRRK2 may promote Tau phosphorylation, increasing its aggregation. Thus, the modulation of LRRK2 activity by small molecules able to inhibit this kinase activity could be an innovative therapeutic strategy for different tauopathies. We examined the therapeutic effects of a new benzothiazole-based LRRK2 inhibitor, known as JZ1.40, in a mouse model of tauopathy. Mice were injected in the right hippocampus with an adeno-associated vector expressing human-TAUP301L and treated daily with JZ1.40 (10 mg/kg, i.p) or vehicle for three weeks. JZ1.40 reaches the brain and modulates RAB10 and Tau phosphorylation at the epitopes modified by LRRK2. Moreover, JZ1.40 treatment ameliorates the cognitive impairment induced by TAUP301L overexpression, which correlates with prevention of granular cell layer degeneration by improving synaptic plasticity. These data show that JZ1.40 is neuroprotective in vivo, which is translated into cognition enhancement.


Assuntos
Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Fármacos Neuroprotetores , Tauopatias/tratamento farmacológico , Tauopatias/prevenção & controle , Proteínas tau/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Mutação , Plasticidade Neuronal/efeitos dos fármacos , Fosforilação/genética , Tauopatias/metabolismo , Tauopatias/psicologia , Proteínas rab de Ligação ao GTP/metabolismo
5.
J Parkinsons Dis ; 10(4): 1271-1291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33044192

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant familial Parkinson's disease (PD), with pathogenic mutations enhancing LRRK2 kinase activity. There is a growing body of evidence indicating that LRRK2 contributes to neuronal damage and pathology both in familial and sporadic PD, making it of particular interest for understanding the molecular pathways that underlie PD. Although LRRK2 has been extensively studied to date, our understanding of the seemingly diverse functions of LRRK2 throughout the cell remains incomplete. In this review, we discuss the functions of LRRK2 within the endolysosomal pathway. Endocytosis, vesicle trafficking pathways, and lysosomal degradation are commonly disrupted in many neurodegenerative diseases, including PD. Additionally, many PD-linked gene products function in these intersecting pathways, suggesting an important role for the endolysosomal system in maintaining protein homeostasis and neuronal health in PD. LRRK2 activity can regulate synaptic vesicle endocytosis, lysosomal function, Golgi network maintenance and sorting, vesicular trafficking and autophagy, with alterations in LRRK2 kinase activity serving to disrupt or regulate these pathways depending on the distinct cell type or model system. LRRK2 is critically regulated by at least two proteins in the endolysosomal pathway, Rab29 and VPS35, which may serve as master regulators of LRRK2 kinase activity. Investigating the function and regulation of LRRK2 in the endolysosomal pathway in diverse PD models, especially in vivo models, will provide critical insight into the cellular and molecular pathophysiological mechanisms driving PD and whether LRRK2 represents a viable drug target for disease-modification in familial and sporadic PD.


Assuntos
Endocitose/fisiologia , Endossomos/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Lisossomos/fisiologia , Doença de Parkinson , Transdução de Sinais/fisiologia , Rede trans-Golgi/fisiologia , Animais , Endossomos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Rede trans-Golgi/metabolismo
6.
Sci Rep ; 10(1): 17293, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057100

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for the treatment of Parkinson's disease (PD) and LRRK2 kinase inhibitors are currently being tested in early phase clinical trials. In order to ensure the highest chance of success, a biomarker-guided entry into clinical trials is key. LRRK2 phosphorylation, and phosphorylation of the LRRK2 substrate Rab10, have been proposed as target engagement biomarkers for LRRK2 kinase inhibition. However, a pharmacodynamic biomarker to demonstrate that a biological response has occurred is lacking. We previously discovered that the LRRK2 G2019S mutation causes mitochondrial DNA (mtDNA) damage and is LRRK2 kinase activity-dependent. Here, we have explored the possibility that measurement of mtDNA damage is a "surrogate" for LRRK2 kinase activity and consequently of kinase inhibitor activity. Mitochondrial DNA damage was robustly increased in PD patient-derived immune cells with LRRK2 G2019S mutations as compared with controls. Following treatment with multiple classes of LRRK2 kinase inhibitors, a full reversal of mtDNA damage to healthy control levels was observed and correlated with measures of LRRK2 dephosphorylation. Taken together, assessment of mtDNA damage levels may be a sensitive measure of altered kinase activity and provide an extended profile of LRRK2 kinase modulation in clinical studies.


Assuntos
Dano ao DNA , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Mitocôndrias/genética , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Biomarcadores , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Linfócitos , Terapia de Alvo Molecular , Mutação , Doença de Parkinson/diagnóstico , Doença de Parkinson/enzimologia , Fosforilação/efeitos dos fármacos
7.
Molecules ; 25(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32916992

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is involved in lipid metabolism; however, the role of LRRK2 in lipid metabolism to affect non-alcoholic fatty liver disease (NAFLD) is still unclear. In the mouse model of NAFLD induced by a high-fat diet, we observed that LRRK2 was decreased in livers. In HepG2 cells, exposure to palmitic acid (PA) down-regulated LRRK2. Overexpression and knockdown of LRRK2 in HepG2 cells were performed to further investigate the roles of LRRK2 in lipid metabolism. Our results showed that ß-oxidation in HepG2 cells was promoted by LRRK2 overexpression, whereas LRRK2 knockdown inhibited ß-oxidation. The critical enzyme of ß-oxidation, carnitine palmitoyltransferase 1A (CPT1A), was positively regulated by LRRK2. Our data suggested that the regulation of CPT1A by LRRK2 may be via the activation of AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor α (PPARα). The overexpression of LRRK2 reduced the concentration of a pro-inflammatory cytokine, tumor necrosis factor α (TNFα), induced by PA. The increase in ß-oxidation may promote lipid catabolism to suppress inflammation induced by PA. These results indicated that LRRK2 participated in the regulation of ß-oxidation and suggested that the decreased LRRK2 may promote inflammation by suppressing ß-oxidation in the liver.


Assuntos
Carnitina O-Palmitoiltransferase/fisiologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Oxigênio/metabolismo , Animais , Núcleo Celular/metabolismo , Citocinas/metabolismo , Dieta Hiperlipídica , Células Hep G2 , Humanos , Inflamação , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , PPAR alfa/metabolismo , Ácido Palmítico/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
8.
FASEB J ; 34(11): 14217-14233, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926469

RESUMO

Gain of function LRRK2-G2019S is the most frequent mutation found in familial and sporadic Parkinson's disease. It is expected therefore that understanding the cellular function of LRRK2 will provide insight on the pathological mechanism not only of inherited Parkinson's, but also of sporadic Parkinson's, the more common form. Here, we show that constitutive LRRK2 activity controls nascent protein synthesis in rodent neurons. Specifically, pharmacological inhibition of LRRK2, Lrrk2 knockdown or Lrrk2 knockout, all lead to increased translation. In the rotenone model for sporadic Parkinson's, LRRK2 activity increases, dopaminergic neuron translation decreases, and the neurites atrophy. All are prevented by LRRK2 inhibitors. Moreover, in striatum and substantia nigra of rotenone treated rats, phosphorylation changes are observed on eIF2α-S52(↑), eIF2s2-S2(↓), and eEF2-T57(↑) in directions that signify protein synthesis arrest. Significantly, translation is reduced by 40% in fibroblasts from Parkinson's patients (G2019S and sporadic cases alike) and this is reversed upon LRRK2 inhibitor treatment. In cells from multiple system atrophy patients, translation is unchanged suggesting that repression of translation is specific to Parkinson's disease. These findings indicate that repression of translation is a proximal function of LRRK2 in Parkinson's pathology.


Assuntos
Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Neurônios/patologia , Doença de Parkinson/patologia , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , Animais , Estudos de Casos e Controles , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos
9.
Cells ; 9(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365906

RESUMO

The lack of effective disease-modifying strategies is the major unmet clinical need in Parkinson´s disease. Several experimental approaches have attempted to validate cellular targets and processes. Of these, autophagy has received considerable attention in the last 20 years due to its involvement in the clearance of pathologic protein aggregates and maintenance of neuronal homeostasis. However, this strategy mainly addresses a very late stage of the disease, when neuropathology and neurodegeneration have likely "tipped over the edge" and disease modification is extremely difficult. Very recently, autophagy has been demonstrated to modulate synaptic activity, a process distinct from its catabolic function. Abnormalities in synaptic transmission are an early event in neurodegeneration with Leucine-Rich Repeat Kinase 2 (LRRK2) and alpha-synuclein strongly implicated. In this review, we analyzed these processes separately and then discussed the unification of these biomolecular fields with the aim of reconstructing a potential "molecular timeline" of disease onset and progression. We postulate that the elucidation of these pathogenic mechanisms will form a critical basis for the design of novel, effective disease-modifying therapies that could be applied early in the disease process.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Autofagia/fisiologia , Progressão da Doença , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Degeneração Neural/patologia , Neurônios/metabolismo , Doença de Parkinson/fisiopatologia , Sinapses/metabolismo , alfa-Sinucleína/fisiologia
10.
Neurobiol Aging ; 91: 45-55, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32247534

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) is a common gene implicated in Parkinson's disease and many inflammatory processes. Thus, we assessed the role of LRRK2 in the context of endotoxin (lipopolysaccharide, LPS)-induced inflammation of the substantia nigra together with the environmental toxicant, paraquat, that has been implicated in PD. Here we found that LRRK2 ablation prevented the loss of dopaminergic neurons and behavioral deficits (motor) induced by LPS priming followed by paraquat exposure. The LRRK2 ablation also provoked a phenotypic shift in LPS-primed microglia cells. The LRRK2 deficiency reduced their "activated" morphology and upregulation of the inflammatory phagocytic regulator, WAVE2 (critical for actin remodeling), while the chemokine receptor, CX3CR1, was elevated in isolated CD11b+ myeloid cells. Furthermore, LRRK2 knockout attenuated the signs of oxidative stress and morphological changes induced in primary microglia by LPS treatment. However, induced WAVE2 expression together with LPS exposure in microglia overcame the inhibitory effects of LRRK2 knockout, suggesting WAVE2 may be acting downstream of LRRK2. Neither WAVE2 nor did LRRK2 knockout influence LPS-induced cytokine elevations in the microglia. We are the first to show the importance of LRRK2 in neurodegenerative and inflammatory processes in this multi-hit toxin model of PD. These data are consistent with the proposition that LRRK2 and WAVE2 are useful therapeutic targets for PD or other conditions with a prominent neuroinflammatory component.


Assuntos
Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Microglia/patologia , Degeneração Neural/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fenótipo , Animais , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Inflamação/genética , Camundongos Knockout , Terapia de Alvo Molecular , Estresse Oxidativo/genética , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Regulação para Cima/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/genética , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
11.
Curr Opin Cell Biol ; 63: 102-113, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036294

RESUMO

Autosomal dominant missense mutations that hyperactivate the leucine-rich repeat protein kinase-2 (LRRK2) are a common cause of inherited Parkinson's disease and therapeutic efficacy of LRRK2 inhibitors is being tested in clinical trials. In this review, we discuss the nuts and bolts of our current understanding of how the LRRK2 is misregulated by mutations and how pathway activity is affected by LRRK2 binding to membrane, microtubule filaments, and 14-3-3, as well as by upstream components such as Rab29 and VPS35. We discuss recent work that points toward a subset of Rab proteins comprising key physiological substrates that bind new sets of effectors, such as RILPL1/2, JIP3 and JIP4 after phosphorylation by LRRK2. We explore what is known about how LRRK2 regulates ciliogenesis, the endosomal-lysosomal system, immune responses and interplay with alpha-synuclein and tau and how this might be linked to Parkinson's' disease.


Assuntos
Fenômenos Fisiológicos Celulares , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Animais , Fenômenos Fisiológicos Celulares/genética , Endossomos/genética , Endossomos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Mutação , Doença de Parkinson/metabolismo
12.
Biochem Soc Trans ; 47(6): 1581-1595, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31769472

RESUMO

Mutations in the leucine-rich-repeat kinase 2 (LRRK2) gene are associated with familial and sporadic cases of Parkinson's disease but are also found in immune-related disorders such as inflammatory bowel disease, tuberculosis and leprosy. LRRK2 is highly expressed in immune cells and has been functionally linked to pathways pertinent to immune cell function, such as cytokine release, autophagy and phagocytosis. Here, we examine the current understanding of the role of LRRK2 kinase activity in pathway regulation in immune cells, drawing upon data from multiple diseases associated with LRRK2 to highlight the pleiotropic effects of LRRK2 in different cell types. We discuss the role of the bona fide LRRK2 substrate, Rab GTPases, in LRRK2 pathway regulation as well as downstream events in the autophagy and inflammatory pathways.


Assuntos
Sistema Imunitário/fisiologia , Inflamação/fisiopatologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Animais , Humanos , Inflamação/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação
13.
ACS Infect Dis ; 5(6): 809-815, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30915830

RESUMO

In the field of Parkinson's disease (PD) research, leucine-rich repeat kinase 2 (LRRK2) remains one of the most enigmatic kinases. LRRK2 pathogenic mutations result in increased kinase activity, making LRRK2 an attractive therapeutic target for PD. For over 10 years, the identification of a bona fide substrate and a physiological function for LRRK2 has been elusive, and only recently, Rab GTPases were identified as substrates for LRRK2 kinase activity. Additionally, LRRK2 gene expression data shows that LRRK2 is expressed at low levels in neurons and at high levels in cells of the immune system. These findings shifted research efforts from neuronal toxicity of LRRK2 mutations to the function of LRRK2 in both vesicle trafficking and the immune system, which has resulted in novel insights into the role of LRRK2 during infection and immunity. In this Perspective, we summarize the latest findings highlighting LRRK2 as a central regulator of vesicular trafficking, infection, immunity, and inflammation, speculating how LRRK2 function could influence neuronal pathology in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Neurônios/patologia , Doença de Parkinson/enzimologia , Humanos , Inflamação , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Mutação , Neurônios/imunologia , Doença de Parkinson/tratamento farmacológico , Fosforilação , Transporte Proteico
14.
Acta Neuropathol ; 137(6): 961-980, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927072

RESUMO

Progressive aggregation of the protein alpha-synuclein (α-syn) and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) are key histopathological hallmarks of Parkinson's disease (PD). Accruing evidence suggests that α-syn pathology can propagate through neuronal circuits in the brain, contributing to the progressive nature of the disease. Thus, it is therapeutically pertinent to identify modifiers of α-syn transmission and aggregation as potential targets to slow down disease progression. A growing number of genetic mutations and risk factors has been identified in studies of familial and sporadic forms of PD. However, how these genes affect α-syn aggregation and pathological transmission, and whether they can be targeted for therapeutic interventions, remains unclear. We performed a targeted genetic screen of risk genes associated with PD and parkinsonism for modifiers of α-syn aggregation, using an α-syn preformed-fibril (PFF) induction assay. We found that decreased expression of Lrrk2 and Gba modulated α-syn aggregation in mouse primary neurons. Conversely, α-syn aggregation increased in primary neurons from mice expressing the PD-linked LRRK2 G2019S mutation. In vivo, using LRRK2 G2019S transgenic mice, we observed acceleration of α-syn aggregation and degeneration of dopaminergic neurons in the SNpc, exacerbated degeneration-associated neuroinflammation and behavioral deficits. To validate our findings in a human context, we established a novel human α-syn transmission model using induced pluripotent stem cell (iPS)-derived neurons (iNs), where human α-syn PFFs triggered aggregation of endogenous α-syn in a time-dependent manner. In PD subject-derived iNs, the G2019S mutation enhanced α-syn aggregation, whereas loss of LRRK2 decreased aggregation. Collectively, these findings establish a strong interaction between the PD risk gene LRRK2 and α-syn transmission across mouse and human models. Since clinical trials of LRRK2 inhibitors in PD are currently underway, our findings raise the possibility that these may be effective in PD broadly, beyond cases caused by LRRK2 mutations.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Mutação de Sentido Incorreto , Neurônios/metabolismo , Doença de Parkinson/genética , Agregação Patológica de Proteínas/etiologia , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Comportamento Exploratório , Glucosilceramidase/genética , Hipocampo/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/patologia , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/patologia , Cultura Primária de Células , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Interferência de RNA , Proteínas Recombinantes/metabolismo , Teste de Desempenho do Rota-Rod
15.
PLoS Biol ; 16(12): e2006265, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571694

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson disease. Genetics and neuropathology link Parkinson disease with the microtubule-binding protein tau, but the mechanism of action of LRRK2 mutations and the molecular connection between tau and Parkinson disease are unclear. Here, we investigate the interaction of LRRK and tau in Drosophila and mouse models of tauopathy. We find that either increasing or decreasing the level of fly Lrrk enhances tau neurotoxicity, which is further exacerbated by expressing Lrrk with dominantly acting Parkinson disease-associated mutations. At the cellular level, altering Lrrk expression promotes tau neurotoxicity via excess stabilization of filamentous actin (F-actin) and subsequent mislocalization of the critical mitochondrial fission protein dynamin-1-like protein (Drp1). Biochemically, monomeric LRRK2 exhibits actin-severing activity, which is reduced as increasing concentrations of wild-type LRRK2, or expression of mutant forms of LRRK2 promote oligomerization of the protein. Overall, our findings provide a potential mechanistic basis for a dominant negative mechanism in LRRK2-mediated Parkinson disease, suggest a common molecular pathway with other familial forms of Parkinson disease linked to abnormalities of mitochondrial dynamics and quality control, and raise the possibility of new therapeutic approaches to Parkinson disease and related disorders.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Tauopatias/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Camundongos Transgênicos , Dinâmica Mitocondrial/fisiologia , Mutação , Neurônios/metabolismo , Doença de Parkinson/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas tau/metabolismo
16.
Brain Res ; 1701: 75-84, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30055128

RESUMO

LRRK2, the gene encoding the multidomain kinase Leucine-Rich Repeat Kinase 2 (LRRK2), has been linked to familial and sporadic forms of Parkinson's disease (PD), as well as cancer, leprosy and Crohn's disease, establishing it as a target for discovery therapeutics. LRRK2 has been associated with a range of cellular processes, however its physiological and pathological functions remain unclear. The most prevalent LRRK2 mutations in PD have been shown to affect macroautophagy in various cellular models while a role in autophagy signalling has been recapitulated in vivo. Dysregulation of autophagy has been implicated in PD pathology, and this raises the possibility that differential autophagic activity is relevant to disease progression in PD patients carrying LRRK2 mutations. To examine the relevance of LRRK2 to the regulation of macroautophagy in a disease setting we examined the levels of autophagic markers in the basal ganglia of G2019S LRRK2 PD post-mortem tissue, in comparison to pathology-matched idiopathic PD (iPD), using immunoblotting (IB). Significantly lower levels of p62 and LAMP1 were observed in G2019S LRRK2 PD compared to iPD cases. Similarly, an increase in ULK1 was observed in iPD but was not reflected in G2019S LRRK2 PD cases. Furthermore, examination of p62 by immunohistochemistry (IH) recapitulated a distinct signature for G2019S PD. IH of LAMP1, LC3 and ULK1 broadly correlated with the IB results. Our data from a small but pathologically well-characterized cases highlights a divergence of G2019S PD carriers in terms of autophagic response in alpha-synuclein pathology affected brain regions compared to iPD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Corpos de Lewy/metabolismo , Doença de Parkinson/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autofagia/fisiologia , Encéfalo/fisiopatologia , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Corpos de Lewy/patologia , Proteínas de Membrana Lisossomal/análise , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/análise , Proteínas de Ligação a RNA/metabolismo , alfa-Sinucleína/metabolismo
17.
Biochem Biophys Res Commun ; 497(4): 1104-1109, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29499195

RESUMO

As a protein with complex domain structure and roles in kinase, GTPase and scaffolding, LRRK2 is believed to be an important orchestration node leading to several cascades of signal transduction rather than one specific pathway. LRRK2 variants were found to be associated with Parkinson's disease, Crohn's disease and leprosy. Here we disrupt LRRK2 in zebrafish and found hyperactivity rather than hypoactivity in adult zebrafish mutants. By RNA-seq we found genes involved in infectious disease and immunological disease were notably affected. Functional studies also revealed a weakened antibacterial response in LRRK2 mutant. This mutant can be further explored for revealing molecular mechanisms and modeling of LRRK2 related diseases.


Assuntos
Hipercinese/etiologia , Imunidade/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas de Peixe-Zebra/genética , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Comportamento Animal , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Atividade Motora/genética , Mutagênese Sítio-Dirigida , Análise de Sequência de RNA , Peixe-Zebra , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/fisiologia
18.
Proc Natl Acad Sci U S A ; 115(7): 1635-1640, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29386392

RESUMO

Mutations in LRRK2 are known to be the most common genetic cause of sporadic and familial Parkinson's disease (PD). Multiple lines of LRRK2 transgenic or knockin mice have been developed, yet none exhibit substantial dopamine (DA)-neuron degeneration. Here we develop human tyrosine hydroxylase (TH) promoter-controlled tetracycline-sensitive LRRK2 G2019S (GS) and LRRK2 G2019S kinase-dead (GS/DA) transgenic mice and show that LRRK2 GS expression leads to an age- and kinase-dependent cell-autonomous neurodegeneration of DA and norepinephrine (NE) neurons. Accompanying the loss of DA neurons are DA-dependent behavioral deficits and α-synuclein pathology that are also LRRK2 GS kinase-dependent. Transmission EM reveals that that there is an LRRK2 GS kinase-dependent significant reduction in synaptic vesicle number and a greater abundance of clathrin-coated vesicles in DA neurons. These transgenic mice indicate that LRRK2-induced DA and NE neurodegeneration is kinase-dependent and can occur in a cell-autonomous manner. Moreover, these mice provide a substantial advance in animal model development for LRRK2-associated PD and an important platform to investigate molecular mechanisms for how DA neurons degenerate as a result of expression of mutant LRRK2.


Assuntos
Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Doenças Neurodegenerativas/patologia , Norepinefrina/metabolismo , Fatores Etários , Animais , Comportamento Animal , Neurônios Dopaminérgicos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Mutação , Doenças Neurodegenerativas/metabolismo , alfa-Sinucleína/metabolismo
19.
Neuron ; 96(4): 796-807.e6, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29056298

RESUMO

LRRK2 mutations are the most common genetic cause of Parkinson's disease, but LRRK2's normal physiological role in the brain is unclear. Here, we show that inactivation of LRRK2 and its functional homolog LRRK1 results in earlier mortality and age-dependent, selective neurodegeneration. Loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and of noradrenergic neurons in the locus coeruleus is accompanied with increases in apoptosis, whereas the cerebral cortex and cerebellum are unaffected. Furthermore, selective age-dependent neurodegeneration is only present in LRRK-/-, not LRRK1-/- or LRRK2-/- brains, and it is accompanied by increases in α-synuclein and impairment of the autophagy-lysosomal pathway. Quantitative electron microscopy (EM) analysis revealed age-dependent increases of autophagic vacuoles in the SNpc of LRRK-/- mice before the onset of DA neuron loss. These findings revealed an essential role of LRRK in the survival of DA neurons and in the regulation of the autophagy-lysosomal pathway in the aging brain.


Assuntos
Envelhecimento/patologia , Autofagia/fisiologia , Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Degeneração Neural/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Neurônios Adrenérgicos/patologia , Envelhecimento/fisiologia , Animais , Autofagia/genética , Cerebelo/patologia , Córtex Cerebral/patologia , Feminino , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Locus Cerúleo/patologia , Masculino , Camundongos , Camundongos Knockout , Mutação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Substância Negra/patologia , Substância Negra/ultraestrutura , Vacúolos/patologia , alfa-Sinucleína/biossíntese
20.
J Exp Med ; 214(10): 3051-3066, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28821568

RESUMO

Although genetic polymorphisms in the LRRK2 gene are associated with a variety of diseases, the physiological function of LRRK2 remains poorly understood. In this study, we report a crucial role for LRRK2 in the activation of the NLRC4 inflammasome during host defense against Salmonella enteric serovar Typhimurium infection. LRRK2 deficiency reduced caspase-1 activation and IL-1ß secretion in response to NLRC4 inflammasome activators in macrophages. Lrrk2-/- mice exhibited impaired clearance of pathogens after acute S. Typhimurium infection. Mechanistically, LRRK2 formed a complex with NLRC4 in the macrophages, and the formation of the LRRK2-NLRC4 complex led to the phosphorylation of NLRC4 at Ser533. Importantly, the kinase activity of LRRK2 is required for optimal NLRC4 inflammasome activation. Collectively, our study reveals an important role for LRRK2 in the host defense by promoting NLRC4 inflammasome activation.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Inflamassomos/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Animais , Caspase 1/fisiologia , Inflamassomos/fisiologia , Interleucina-1beta/fisiologia , Macrófagos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA