Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Behav Brain Res ; 465: 114965, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38522595

RESUMO

Brain areas important for social perception, social reward, and social behavior - collectively referred to as the social-decision-making network (SDN) - appear to be highly conserved across taxa. These brain areas facilitate a variety of social behaviors such as conspecific approach/avoidance, aggression, mating, parental care, and recognition. Although the SDN has been investigated across taxa, little is known about its functioning in reptiles. Research on the snake SDN may provide important new insights, as snakes have a keen social perceptual system and express a relatively reduced repertoire of social behaviors. Here, we present the results of an experiment in which ball pythons (Python regius) interacted with a same-sex conspecific for one hour and neural activation was investigated through Fos immunoreactivity. Compared to controls, snakes that interacted socially had higher Fos counts in brain areas implicated in social behavior across taxa, such as the medial amygdala, preoptic area, nucleus accumbens, and basolateral amygdala. Additionally, we found differential Fos immunoreactivity in the ventral amygdala, which facilitates communication between social brain areas. In many of these areas, Fos counts differed by sex, which may be due to increased competition between males. Fos counts did not differ in early sensory (i.e., vomeronasal) processing structures. As ball python social systems lack parental care, cooperation, or long-term group living, these results provide valuable insight into the basal functions of the vertebrate social decision-making network.


Assuntos
Encéfalo , Proteínas Proto-Oncogênicas c-fos , Masculino , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Encéfalo/metabolismo , Área Pré-Óptica/metabolismo , Núcleo Accumbens/metabolismo , Serpentes/metabolismo
3.
Toxins (Basel) ; 15(5)2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37235384

RESUMO

We conducted a comparative analysis to unveil the divergence among venoms from a subset of Old World habu snakes (Protobothrops) in terms of venomic profiles and toxicological and enzymatic activities. A total of 14 protein families were identified in the venoms from these habu snakes, and 11 of them were shared among these venoms. The venoms of five adult habu snakes were overwhelmingly dominated by SVMP (32.56 ± 13.94%), PLA2 (22.93 ± 9.26%), and SVSP (16.27 ± 4.79%), with a total abundance of over 65%, while the subadult P. mangshanensis had an extremely low abundance of PLA2 (1.23%) but a high abundance of CTL (51.47%), followed by SVMP (22.06%) and SVSP (10.90%). Apparent interspecific variations in lethality and enzymatic activities were also explored in habu snake venoms, but no variations in myotoxicity were found. Except for SVSP, the resemblance of the relatives within Protobothrops in other venom traits was estimated to deviate from Brownian motion evolution based on phylogenetic signals. A comparative analysis further validated that the degree of covariation between phylogeny and venom variation is evolutionarily labile and varies among clades of closely related snakes. Our findings indicate a high level of interspecific variation in the venom proteomes of habu snakes, both in the presence or absence and the relative abundance of venom protein families, and that these venoms might have evolved under a combination of adaptive and neutral mechanisms.


Assuntos
Trimeresurus , Animais , Filogenia , Trimeresurus/metabolismo , Serpentes/metabolismo , Venenos de Serpentes , Fosfolipases A2/análise , Proteoma/metabolismo
4.
Int J Biol Macromol ; 238: 124357, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37028634

RESUMO

Animal venoms and their chemical compounds have aroused both empirical and scientific attention for ages. However, there has been a significant increase in scientific investigations in recent decades, allowing the production of various formulations that are helping in the development of many important tools for biotechnological, diagnostic, or therapeutic use, both in human and animal health, as well as in plants. Venoms are composed of biomolecules and inorganic compounds that may have physiological and pharmacological activities that are not related to their principal actions (prey immobilization, digestion, and defense). Snake venom toxins, mainly enzymatic and non-enzymatic proteins, and peptides have been identified as potential prototypes for new drugs and/or models for the development of pharmacologically active structural domains for the treatment of cancer, cardiovascular diseases, neurodegenerative and autoimmune diseases, pain, and infectious-parasitic diseases. This minireview aims to provide an overview of the biotechnological potential of animal venoms, with a focus on snakes, and to introduce the reader to the fascinating world of Applied Toxinology, where animal biodiversity can be used to develop therapeutic and diagnostic applications for humans.


Assuntos
Neoplasias , Venenos de Serpentes , Animais , Humanos , Venenos de Serpentes/química , Serpentes/metabolismo , Proteínas/química , Peptídeos/farmacologia , Neoplasias/tratamento farmacológico
5.
Eur J Neurosci ; 56(6): 4788-4802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971965

RESUMO

We examined the behavioural responses and Fos expression pattern of rats that were exposed to snake threats from shed snakeskin and a live snake. We differentiated the behavioural responses and the pattern of Fos expression in response to the odour cues and mild threat from a live snake. Animals exposed to the snake odour alone or to the confined snake showed a great deal of risk assessment. Conversely, the intensification of odour during exposure to the live snake decreased the threat ambiguity, and the animals froze for a significantly longer period. Our Fos analysis showed that a pathway formed by the posteroventral part of the medial amygdalar nucleus to the central part of the ventromedial hypothalamic nucleus appeared to be solely responsive to odour cues. In addition, we showed increased Fos expression in a parallel circuit comprising the lateral amygdalar nucleus, ventral subiculum, lateral septum, and juxtadorsomedial region of the lateral hypothalamic area that is responsive to both the odour and mild threat from a live snake. This path is likely to process the environmental boundaries of the threat to be avoided. Both paths merge into the dorsal premammillary nucleus and periaqueductal grey sites, which all increase Fos expression in response to the snake threats and are likely to organize the defensive responses. Moreover, we found that the snake threat mobilized the Edinger-Westphal and supraoculomotor nuclei, which are involved in stress adaptation and attentional mechanisms.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Comportamento Animal , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento Animal/fisiologia , Medo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Serpentes/metabolismo
6.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35723968

RESUMO

Opossums in the tribe Didelphini are resistant to pit viper venoms and are hypothesized to be coevolving with venomous snakes. Specifically, a protein involved in blood clotting (von Willebrand factor [vWF] which is targeted by snake venom C-type lectins [CTLs]) has been found to undergo rapid adaptive evolution in Didelphini. Several unique amino acid changes in vWF could explain their resistance; however, experimental evidence that these changes disrupt binding to venom CTLs was lacking. Furthermore, without explicit testing of ancestral phenotypes to reveal the mode of evolution, the assertion that this system represents an example of coevolution rather than noncoevolutionary adaptation remains unsupported. Using expressed vWF proteins and purified venom CTLs, we quantified binding affinity for vWF proteins from all resistant taxa, their venom-sensitive relatives, and their ancestors. We show that CTL-resistant vWF is present in opossums outside clade Didelphini and likely across a wider swath of opossums (family Didelphidae) than previously thought. Ancestral reconstruction and in vitro testing of vWF phenotypes in a clade of rapidly evolving opossums reveal a pattern consistent with trench warfare coevolution between opossums and their venomous snake prey.


Assuntos
Venenos de Crotalídeos , Crotalinae , Animais , Venenos de Crotalídeos/genética , Gambás/metabolismo , Venenos de Serpentes/metabolismo , Serpentes/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
7.
Mol Biol Evol ; 39(4)2022 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-35413123

RESUMO

Understanding the joint roles of protein sequence variation and differential expression during adaptive evolution is a fundamental, yet largely unrealized goal of evolutionary biology. Here, we use phylogenetic path analysis to analyze a comprehensive venom-gland transcriptome dataset spanning three genera of pitvipers to identify the functional genetic basis of a key adaptation (venom complexity) linked to diet breadth (DB). The analysis of gene-family-specific patterns reveals that, for genes encoding two of the most important venom proteins (snake venom metalloproteases and snake venom serine proteases), there are direct, positive relationships between sequence diversity (SD), expression diversity (ED), and increased DB. Further analysis of gene-family diversification for these proteins showed no constraint on how individual lineages achieved toxin gene SD in terms of the patterns of paralog diversification. In contrast, another major venom protein family (PLA2s) showed no relationship between venom molecular diversity and DB. Additional analyses suggest that other molecular mechanisms-such as higher absolute levels of expression-are responsible for diet adaptation involving these venom proteins. Broadly, our findings argue that functional diversity generated through sequence and expression variations jointly determine adaptation in the key components of pitviper venoms, which mediate complex molecular interactions between the snakes and their prey.


Assuntos
Venenos de Serpentes , Serpentes , Adaptação Fisiológica/genética , Animais , Dieta , Filogenia , Venenos de Serpentes/genética , Serpentes/metabolismo
8.
Environ Toxicol Chem ; 41(3): 758-770, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35112731

RESUMO

Mercury (Hg) and radiocesium (137 Cs) are well-known environmental contaminants with the potential to impact the health of humans and wildlife. Snakes have several characteristics conducive to studying environmental contamination but have rarely been included in the monitoring of polluted sites. We investigated the bioaccumulation of Hg and 137 Cs and associations with sublethal effects (standard metabolic rate [SMR] and hemoparasite infections) in Florida green watersnakes (Nerodia floridana). We captured 78 snakes from three former nuclear cooling reservoirs on the US Department of Energy's Savannah River Site in South Carolina (USA). For captured snakes, we (1) determined whole-body 137 Cs, (2) quantified total Hg (THg) using snake tail clips, (3) conducted hemoparasite counts, and (4) measured the SMR. We used multiple regression models to determine associations among snake body size, capture location, sex, tail THg, whole-body 137 Cs, Hepatozoon spp. prevalence and parasitemia, and SMR. Average whole-body 137 Cs (0.23 ± 0.08 Becquerels [Bq]/g; range: 0.00-1.02 Bq/g) was correlated with snake body size and differed significantly by capture site (Pond B: 0.67 ± 0.05 Bq/g; Par Pond: 0.10 ± 0.02 Bq/g; Pond 2: 0.03 ± 0.02 Bq/g). Tail THg (0.33 ± 0.03 mg/kg dry wt; range: 0.16-2.10 mg/kg) was significantly correlated with snake body size but did not differ by capture site. We found no clear relationship between SMR and contaminant burdens. However, models indicated that the prevalence of Hepatozoon spp. in snakes was inversely related to increasing whole-body 137 Cs burdens. Our results indicate the bioaccumulation of Hg and 137 Cs in N. floridana and further demonstrate the utility of aquatic snakes as bioindicators. Our results also suggest a decrease in Hepatozoon spp. prevalence related to increased burdens of 137 Cs. Although the results are intriguing, further research is needed to understand the dynamics between 137 Cs and Hepatozoon spp. infections in semiaquatic snakes. Environ Toxicol Chem 2022;41:758-770. © 2022 SETAC.


Assuntos
Mercúrio , Animais , Biomarcadores Ambientais , Monitoramento Ambiental , Florida , Humanos , Mercúrio/análise , Rios , Serpentes/metabolismo
9.
Brain Behav Evol ; 97(3-4): 167-183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35220307

RESUMO

An animal's ability to respond optimally to changing environmental conditions is paramount to successfully reproducing and thus maximizing fitness. Studies on photoperiod-induced changes in neural thyroid hormone metabolism have conclusively linked environmental cues to the neuroendocrine reproductive axis of birds and mammals. Whether this conserved mechanism also transduces changes in environmental temperature, however, has not been fully addressed. We investigated whether the hormone melatonin mediates the effects of low-temperature dormancy on thyroid hormone metabolism within the hypothalamus of red-sided garter snakes (Thamnophis sirtalis parietalis). To address this question, we used immunohistochemistry to assess changes in thyroid-stimulating hormone (TSH) in the infundibulum of the pituitary and deiodinase 3 (Dio3) and gonadotropin-releasing hormone (GnRH) in the hypothalamus. We also asked if changes in TSH, Dio3, and/or GnRH immunoreactivity are associated with changes in male courtship behavior. In contrast to our predictions, 6 weeks of dormancy at 4°C significantly decreased the number of TSH-labeled cells in the infundibulum. It is possible that the observed decrease in TSH is related to the release of snakes from temperature refractoriness, but this idea needs further testing. Treatment of snakes with the melatonin precursor 5-hydroxytryptophan during dormancy at 4°C both reversed the temperature-induced change in TSH immunoreactivity and disrupted the temporal pattern of male courtship behavior. These results suggest that TSH cells within the infundibulum are both modulated by temperature and sensitive to changes in melatonin. As predicted, male snakes hibernated at an elevated temperature of 12°C for 6 weeks and treated with vehicle showed no change in TSH-, Dio3-, or GnRH-immunoreactive cell number. Treatment of snakes with the melatonin receptor antagonist luzindole was not sufficient in rescuing the effects of dormancy at 12°C on TSH immunoreactivity or courtship behavior. However, luzindole-treated snakes showed a significant increase in GnRH-immunoreactive cell number, suggesting that melatonin exerts an inhibitory effect on GnRH in garter snakes. In summary, our results provide critical insights into the mechanisms that mediate the effects of temperature on reproductive physiology and behavior.


Assuntos
Colubridae , Melatonina , Animais , Colubridae/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Mamíferos/metabolismo , Melatonina/fisiologia , Comportamento Sexual Animal/fisiologia , Serpentes/metabolismo , Temperatura , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Tireotropina/metabolismo , Tireotropina/farmacologia
10.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163532

RESUMO

Since the beginning of the HIV epidemic, lasting more than 30 years, the main goal of scientists was to develop effective methods for the prevention and treatment of HIV infection. Modern medicines have reduced the death rate from AIDS by 80%. However, they still have side effects and are very expensive, dictating the need to search for new drugs. Earlier, it was shown that phospholipases A2 (PLA2s) from bee and snake venoms block HIV replication, the effect being independent on catalytic PLA2 activity. However, the antiviral activity of human PLA2s against Lentiviruses depended on catalytic function and was mediated through the destruction of the viral membrane. To clarify the role of phospholipolytic activity in antiviral effects, we analyzed the anti-HIV activity of several snake PLA2s and found that the mechanisms of their antiviral activity were similar to that of mammalian PLA2. Our results indicate that snake PLA2s are capable of inhibiting syncytium formation between chronically HIV-infected cells and healthy CD4-positive cells and block HIV binding to cells. However, only dimeric PLA2s had pronounced virucidal and anti-HIV activity, which depended on their catalytic activity. The ability of snake PLA2s to inactivate the virus may provide an additional barrier to HIV infection. Thus, snake PLA2s might be considered as candidates for lead molecules in anti-HIV drug development.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/citologia , Células Gigantes/citologia , HIV-1/fisiologia , Fosfolipases A2/farmacologia , Venenos de Serpentes/enzimologia , Serpentes/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Células Cultivadas , Células Gigantes/efeitos dos fármacos , Células Gigantes/virologia , HIV-1/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Proteínas de Répteis/farmacologia , Serpentes/classificação , Ativação Viral/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
11.
Protoplasma ; 259(4): 981-998, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34697661

RESUMO

The development of scales and the sequence of epidermal layers during snake embryogenesis has been studied by immunofluorescence for the localization of cell adhesion, adherens, and communicating cell junctional proteins. At about 2nd/3rd of embryonic development in snakes the epidermis forms symmetric bumps at the beginning of scale formation, and they rapidly become asymmetric and elongate forming outer and inner surfaces of the very overlapped scales seen at hatching. The dermis separates a superficial loose from a deeper dense part; the latter is joined to segmental muscles and nerves, likely acting on scale orientation during snake movements. N-cam is present in the differentiating epidermis and mesenchyme of forming scales while L-cam is only/mainly detected in the periderm and epidermis. Mesenchymal N-cam is associated with the epidermis of the elongating dorsal scale surface and with the beta-differentiation that occurs in the overlapping outer surface of scales. Beta-catenin and Connexin-43 show a similar distribution, and they are mainly present in the periderm and differentiating suprabasal keratinocytes likely forming an intense connectivity during epidermal differentiation. Beta-catenin also shows nuclear localization in differentiating cells of the shedding and beta-layers at late stages of scale morphogenesis, before hatching. The study suggests that intensification of adhesion and gap junctions allows synchronization of the differentiation of suprabasal cells to produce the ordered sequence of epidermal layers of snake scales, starting from the shedding complex and the beta-layer.


Assuntos
Epiderme , beta Catenina , Animais , Adesão Celular , Diferenciação Celular , Células Epidérmicas , Epiderme/metabolismo , Serpentes/metabolismo , beta Catenina/metabolismo
12.
Toxins (Basel) ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36668821

RESUMO

Snakebite envenoming is a life threatening neglected tropical disease that represents a considerable public health concern in the tropics. Viperid snakes of the genus Bothrops are among those of greatest medical importance in Latin America, and they frequently cause severe systemic haemotoxicity and local tissue destructive effects in human victims. Although snakebite antivenoms can be effective therapeutics, their efficacy is undermined by venom toxin variation among snake species. In this study we investigated the extent of paraspecific venom cross-reactivity exhibited by three distinct anti-Bothrops antivenoms (Soro antibotrópico-crotálico, BothroFav and PoliVal-ICP) against seven different Bothrops pit viper venoms from across Latin America. We applied a range of in vitro assays to assess the immunological binding and recognition of venom toxins by the antivenoms and their inhibitory activities against specific venom functionalities. Our findings demonstrated that, despite some variations, the monovalent antivenom BothroFav and the polyvalent antivenoms Soro antibotrópico-crotálico and PoliVap-ICP exhibited extensive immunological recognition of the distinct toxins found in the different Bothrops venoms, with Soro antibotrópico-crotálico generally outperformed by the other two products. In vitro functional assays revealed outcomes largely consistent with the immunological binding data, with PoliVap-ICP and BothroFav exhibiting the greatest inhibitory potencies against procoagulant and fibrinogen-depleting venom activities, though Soro antibotrópico-crotálico exhibited potent inhibition of venom metalloproteinase activities. Overall, our findings demonstrate broad levels of antivenom paraspecificity, with in vitro immunological binding and functional inhibition often highly comparable between venoms used to manufacture the antivenoms and those from related species, even in the case of the monovalent antivenom BothroFav. Our findings suggest that the current clinical utility of these antivenoms could possibly be expanded to other parts of Latin America that currently suffer from a lack of specific snakebite therapies.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Animais , Humanos , Antivenenos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Crotalídeos/metabolismo , Bothrops/metabolismo , Serpentes/metabolismo , Venenos de Víboras
13.
Mol Biol Evol ; 38(12): 5225-5240, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34562092

RESUMO

Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV-violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.


Assuntos
Visão de Cores , Opsinas , Animais , Água Doce , Opsinas/genética , Opsinas/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/genética , Serpentes/genética , Serpentes/metabolismo
14.
Biomolecules ; 11(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34439773

RESUMO

Respiratory infections are a leading cause of global morbidity and mortality and are of significant concern for individuals with chronic inflammatory lung diseases. There is an urgent need for novel antimicrobials. Antimicrobial peptides (AMPs) are naturally occurring innate immune response peptides with therapeutic potential. However, therapeutic development has been hindered by issues with stability and cytotoxicity. Availing of direct drug delivery to the affected site, for example the lung, can reduce unwanted systemic side effects and lower the required dose. As cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) lungs typically exhibit elevated protease levels, the aim of this study was to assess their impact on snake-derived AMPs. Peptide cleavage was determined using SDS-PAGE and antimicrobial and anti-inflammatory activities of neutrophil elastase (NE)-incubated peptides were assessed using a radial diffusion assay (RDA) and an in vitro LPS-induced inflammation model, respectively. Although the snake-derived AMPs were found to be susceptible to cleavage by lung proteases including NE, several retained their function following NE-incubation. This facilitated the design of novel truncated derivatives that retained functionality following NE incubation. Snake-derived AMPs are tractable candidate treatments for use in environments that feature elevated NE levels, such as the CF airways.


Assuntos
Elastase de Leucócito/metabolismo , Pulmão/enzimologia , Peptídeo Hidrolases/química , Proteínas Citotóxicas Formadoras de Poros/química , Serpentes/metabolismo , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Fibrose Cística/terapia , Humanos , Imunidade Inata/efeitos dos fármacos , Inflamação , Concentração Inibidora 50 , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/citologia , Monócitos/citologia , Peptídeos/química , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/metabolismo , Doença Pulmonar Obstrutiva Crônica/terapia , Células THP-1
15.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33866357

RESUMO

MOTIVATION: Next-generation sequencing has become exceedingly common and has transformed our ability to explore nonmodel systems. In particular, transcriptomics has facilitated the study of venom and evolution of toxins in venomous lineages; however, many challenges remain. Primarily, annotation of toxins in the transcriptome is a laborious and time-consuming task. Current annotation software often fails to predict the correct coding sequence and overestimates the number of toxins present in the transcriptome. Here, we present ToxCodAn, a python script designed to perform precise annotation of snake venom gland transcriptomes. We test ToxCodAn with a set of previously curated transcriptomes and compare the results to other annotators. In addition, we provide a guide for venom gland transcriptomics to facilitate future research and use Bothrops alternatus as a case study for ToxCodAn and our guide. RESULTS: Our analysis reveals that ToxCodAn provides precise annotation of toxins present in the transcriptome of venom glands of snakes. Comparison with other annotators demonstrates that ToxCodAn has better performance with regard to run time ($>20x$ faster), coding sequence prediction ($>3x$ more accurate) and the number of toxins predicted (generating $>4x$ less false positives). In this sense, ToxCodAn is a valuable resource for toxin annotation. The ToxCodAn framework can be expanded in the future to work with other venomous lineages and detect novel toxins.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Venenos de Serpentes/genética , Serpentes/genética , Toxinas Biológicas/genética , Animais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Filogenia , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Serpentes/classificação , Serpentes/metabolismo , Especificidade da Espécie , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
16.
Toxins (Basel) ; 12(10)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023159

RESUMO

Venomous snakes are important subjects of study in evolution, ecology, and biomedicine. Many venomous snakes have alpha-neurotoxins (α-neurotoxins) in their venom. These toxins bind the alpha-1 nicotinic acetylcholine receptor (nAChR) at the neuromuscular junction, causing paralysis and asphyxia. Several venomous snakes and their predators have evolved resistance to α-neurotoxins. The resistance is conferred by steric hindrance from N-glycosylated asparagines at amino acids 187 or 189, by an arginine at position 187 that has been hypothesized to either electrostatically repulse positively charged neurotoxins or sterically interfere with α-neurotoxin binding, or proline replacements at positions 194 or 197 of the nAChR ligand-binding domain to inhibit α-neurotoxin binding through structural changes in the receptor. Here, we analyzed this domain in 148 vertebrate species, and assessed its amino acid sequences for resistance-associated mutations. Of these sequences, 89 were sequenced de novo. We find widespread convergent evolution of the N-glycosylation form of resistance in several taxa including venomous snakes and their lizard prey, but not in the snake-eating birds studied. We also document new lineages with the arginine form of inhibition. Using an in vivo assay in four species, we provide further evidence that N-glycosylation mutations reduce the toxicity of cobra venom. The nAChR is of crucial importance for normal neuromuscular function and is highly conserved throughout the vertebrates as a result. Our research shows that the evolution of α-neurotoxins in snakes may well have prompted arms races and mutations to this ancient receptor across a wide range of sympatric vertebrates. These findings underscore the inter-connectedness of the biosphere and the ripple effects that one adaption can have across global ecosystems.


Assuntos
Resistência a Medicamentos , Evolução Molecular , Junção Neuromuscular/efeitos dos fármacos , Neurotoxinas/toxicidade , Antagonistas Nicotínicos/toxicidade , Receptores Nicotínicos/efeitos dos fármacos , Mordeduras de Serpentes/metabolismo , Venenos de Serpentes/toxicidade , Serpentes/metabolismo , Animais , Sítios de Ligação , Resistência a Medicamentos/genética , Glicosilação , Mutação , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Neurotoxinas/metabolismo , Antagonistas Nicotínicos/metabolismo , Filogenia , Ligação Proteica , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Mordeduras de Serpentes/fisiopatologia , Venenos de Serpentes/metabolismo , Especificidade da Espécie
17.
Toxins (Basel) ; 12(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911777

RESUMO

Little is known about the detailed clinical description, pathophysiology, and efficacy of treatments for ocular envenoming (venom ophthalmia) caused by venom of the spitting elapid and other snakes, as well as ocular complications caused by snake venom injection. In this paper, we review clinical information of case reports regarding venom ophthalmia and snake venom injection with associated ocular injuries in Asia, Africa, and the United States. We also review the literature of snake venom such as their compositions, properties, and toxic effects. Based on the available clinical information and animal studies, we further discuss possible mechanisms of venom ophthalmia derived from two different routes (Duvernoy's gland in the mouth and nuchal gland in the dorsal neck) and the pathophysiology of snake venom injection induced ocular complications, including corneal edema, corneal erosion, cataract, ocular inflammation, retinal hemorrhage, acute angle closure glaucoma, as well as ptosis, diplopia, and photophobia. Finally, we discuss the appropriate first aid and novel strategies for treating venom ophthalmia and snake envenoming.


Assuntos
Endoftalmite/etiologia , Olho/metabolismo , Mordeduras de Serpentes/complicações , Venenos de Serpentes/metabolismo , Serpentes/metabolismo , Aerossóis , Animais , Antivenenos/uso terapêutico , Endoftalmite/tratamento farmacológico , Endoftalmite/metabolismo , Endoftalmite/fisiopatologia , Olho/efeitos dos fármacos , Olho/fisiopatologia , Humanos , Prognóstico , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/metabolismo , Mordeduras de Serpentes/fisiopatologia
18.
Zoology (Jena) ; 141: 125812, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32634705

RESUMO

Snakes are a useful model for ecological studies because they are gape-limited predators that may undergo ontogenetic changes in diet. We analyzed carbon and nitrogen stable isotope ratios to estimate percent contributions of different prey to snake biomass, trophic positions and isotopic niche width of juveniles and adults of the snake Thamnodynastes hypoconia. We also estimated the isotopic niche overlap between the two age categories. During eight intervals over a two-year period, we collected samples of whole blood and scales at a site in southern Brazil. Isotopic ratios of carbon and nitrogen did not differ between juveniles and adults for either tissue type, nor did mean trophic positions of juveniles and adults differ. The percent contribution of prey categories to snake biomass differed to a limited extent between the two years, with Hylidae being the most important anuran group assimilated during the first year and Leptodactylidae during the second year, for both ages. The isotopic niche occupied by adult snakes was slightly larger than that of juveniles when the analysis was based on data from whole blood samples, as expected because snakes are gape-limited. We found a reverse pattern when the analysis was based on scales, which may indicate that adult snakes have a smaller niche over the long term as they become selective foragers in certain prey. Isotopic overlap between juveniles and adults occurred during the two years, but it was bigger during the second year. We infer that, despite differences in gape size, juvenile and adult snakes in the study area exploit similar prey, with the degree of trophic similarity varying interannually.


Assuntos
Isótopos de Carbono , Ecossistema , Isótopos de Nitrogênio , Serpentes/metabolismo , Animais , Brasil , Dieta , Comportamento Alimentar
19.
Mol Biol Evol ; 37(12): 3563-3575, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32722789

RESUMO

Novel phenotypes are commonly associated with gene duplications and neofunctionalization, less documented are the cases of phenotypic maintenance through the recruitment of novel genes. Proteolysis is the primary toxic character of many snake venoms, and ADAM metalloproteinases, named snake venom metalloproteinases (SVMPs), are largely recognized as the major effectors of this phenotype. However, by investigating original transcriptomes from 58 species of advanced snakes (Caenophidia) across their phylogeny, we discovered that a different enzyme, matrix metalloproteinase (MMP), is actually the dominant venom component in three tribes (Tachymenini, Xenodontini, and Conophiini) of rear-fanged snakes (Dipsadidae). Proteomic and functional analyses of these venoms further indicate that MMPs are likely playing an "SVMP-like" function in the proteolytic phenotype. A detailed look into the venom-specific sequences revealed a new highly expressed MMP subtype, named snake venom MMP (svMMP), which originated independently on at least three occasions from an endogenous MMP-9. We further show that by losing ancillary noncatalytic domains present in its ancestors, svMMPs followed an evolutionary path toward a simplified structure during their expansion in the genomes, thus paralleling what has been proposed for the evolution of their Viperidae counterparts, the SVMPs. Moreover, we inferred an inverse relationship between the expression of svMMPs and SVMPs along the evolutionary history of Xenodontinae, pointing out that one type of enzyme may be substituting for the other, whereas the general (metallo)proteolytic phenotype is maintained. These results provide rare evidence on how relevant phenotypic traits can be optimized via natural selection on nonhomologous genes, yielding alternate biochemical components.


Assuntos
Evolução Molecular , Metaloproteinases da Matriz/metabolismo , Venenos de Serpentes/enzimologia , Serpentes/metabolismo , Animais , Metaloproteinases da Matriz/genética , Fenótipo , Proteólise , Venenos de Serpentes/genética , Serpentes/genética , Transcriptoma
20.
Biochem Pharmacol ; 181: 114135, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32628928

RESUMO

Snake envenomation is still a serious threat to many countries in the world. The only mainstay treatment depends on the administration of animal derived immunoglobulin based antivenom. Significant limitations to these antivenoms are a challenge in the treatment of snake envenomation. Many alternate approaches have been explored to overcome the limitations of antivenom. Exploring alternate approaches like use of bioactive components from plant sources, use of peptide and small molecule inhibitors are some aspects taken towards improving the current limitations of antivenom therapy. However, all these alternate approaches also have many drawbacks which should be improved by more in vitro and in vivo experiments. Here, we review some of the limitations of current antivenom therapy and developments as well as drawbacks of these alternate treatment strategies.


Assuntos
Anticorpos Neutralizantes/imunologia , Antivenenos/imunologia , Mordeduras de Serpentes/imunologia , Venenos de Serpentes/imunologia , Serpentes/imunologia , Toxinas Biológicas/imunologia , Animais , Antivenenos/uso terapêutico , Humanos , Peptídeos/imunologia , Peptídeos/uso terapêutico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/antagonistas & inibidores , Serpentes/metabolismo , Toxinas Biológicas/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA