Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838704

RESUMO

Elicitors are stressors that activate secondary pathways that lead to the increased production of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture significantly increased the concentration of photosynthetic pigments and total phenolic contents. The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs (silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g-1 FW) and chlorophyll b (33.6 µg g-1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor, following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA (100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure times of 120-144 h proved to be the most promising in the accretion of valuable bioactive molecules. The study opens new insights into the use of these elicitors, individually or in combination, by using different concentrations and compositions.


Assuntos
Nanopartículas Metálicas , Silybum marianum , Silybum marianum/metabolismo , Clorofila A/metabolismo , Lignina/metabolismo , Prata/metabolismo , Hidroponia , Flavonoides/química , Acetatos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fenóis/metabolismo
2.
J Biomol Struct Dyn ; 41(20): 11101-11121, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36546728

RESUMO

Medicinal plants possess therapeutic potential for reducing reactive oxygen species (ROS)-mediated cellular damage. Hydroxytyrosol is one of the most potent antioxidants that served as control in the current study, including other synthetic antioxidants to computationally identify the antioxidant properties of Silymarin. The sequences of the receptors IκB kinase (IKK), Kelch-like ECH-associated protein 1 (Keap-1) and mitochondrial transcription factor A (Tfam) were retrieved from UniProtKB and homology modeling was performed using Swiss-Model server. Thereof the molecular docking and dynamic simulation studies were performed using Schrödinger's software version 11.5. From the current study, it was reported that on comparison of the binding energy of silymarin, hydroxytyrosol, α-tocopherol, ascorbic acid, butylated hydroxy anisole (BHA) and butylated hydroxytoluene (BHT), Silymarin exhibited better affinities with IKK receptor followed by Hydroxytyrosol suggesting it as the best or comparable of all other known antioxidants that could potentially suppress inflammation and other diseases. Also, Silymarin exhibited poorest binding affinity with Tfam promoting mitochondrial biogenesis, thereby scavenging ROS. However, with Keap-1, Silymarin is ranked 4th in the list, whereas hydroxytyrosol exhibited highest binding affinity to release oxidative stress. The stability of docked complexes made us conclude that Silymarin has comparable antioxidant properties to hydroxytyrosol, better anti-inflammatory potential and mitochondrial biogenesis enhancing properties to ultimately reduce oxidative stress. Now it can be tested further for in vitro or in vivo studies as potential drug against oxidative insult.Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , Silimarina , Antioxidantes/farmacologia , Antioxidantes/química , Silimarina/farmacologia , Silimarina/química , Silimarina/uso terapêutico , Silybum marianum/química , Silybum marianum/metabolismo , Espécies Reativas de Oxigênio , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia
3.
Molecules ; 27(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36014565

RESUMO

Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70-80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, ß-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.


Assuntos
Silimarina , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Flavonoides/metabolismo , Frutas , Silybum marianum/metabolismo , Silimarina/farmacologia , Silimarina/uso terapêutico
4.
Steroids ; 183: 109032, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35381271

RESUMO

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Assuntos
Silybum marianum , alfa-Tocoferol , Animais , Antioxidantes/farmacologia , Flavonoides , Humanos , Hidroxicolesteróis , Camundongos , Silybum marianum/metabolismo , Mioblastos/metabolismo , Óleos de Plantas , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/farmacologia
5.
J Equine Vet Sci ; 113: 103937, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35318098

RESUMO

Milk thistle (Silybum marianum) provides several possible benefits for horses, namely anti-inflammatory, antioxidant effects, hepatoprotective, and neuroprotective effects. Silybin exerts also pronounced effects on energy metabolism, that could be useful for sport horses. The aim of this study is to evaluate the effect of milk thistle seed cakes (in the form of a granulated mixture with barley) on blood biochemical parameters (total protein, albumin, bilirubin, urea, creatinine, ALT, AST, ALP, GGT, LDH, the total cholesterol, HDL-cholesterol, LDL-cholesterol, TAG, BHB, NEFA, creatine kinase, lactate, glucose, glutathione peroxidase, total antioxidant capacity, cortisol, calcium, and phosphorus) to monitor the differences between the experimental (milk thistle in feed) and control horses after exposure of the monitored horses to heavy physical exercise (combined driving) total number of horses was 12 Czech Warmblood breed horses. The digestibility of silymarin (and its individual flavonolignans) and basic nutrients are also monitored in this study. Statistically significant differences (P < .05) were found mainly in plasma cortisol and NEFA levels. The results of this study confirmed the results of our previous studies. These results suggest that the feeding of milk thistle seed cakes has a possible positive effect on horse health and energy metabolism.


Assuntos
Produtos Biológicos , Silimarina , Animais , Antioxidantes/farmacologia , Produtos Biológicos/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Flavonoides/metabolismo , Cavalos , Hidrocortisona/metabolismo , Silybum marianum/metabolismo , Esforço Físico , Sementes/metabolismo , Silimarina/farmacologia
6.
Biomarkers ; 27(5): 461-469, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35315713

RESUMO

CONTEXT: Increased aerobic metabolism during exercise is a potential source of oxidative stress and the use of herbal medicines as a dietary supplement rich in antioxidants is an interesting and controversial concept that have been considered during the past decades. Objective: The purpose of the present study was to investigate the effects of Silybum marianum (SM) on exercise-induced oxidative stress in half marathon athletes. MATERIALS AND METHODS: Phytochemical Analysis in aqueous extract of SM leaves and seeds were determined. Forty healthy male athletes were divided into four groups (n = 10): control group(G1), G2 supplemented with 100 mg of SM leaves/kg/day, G3 supplemented with 100 mg of SM seeds/kg/day, and G4 supplemented with 100 mg of SM leaves + seeds/kg/day. The effects of SM on malondialdehyde (MDA) and antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH)] were assessed. RESULTS: Aqueous extract of SM leaves have good DPPH free radical scavenging activity and the highest content of total polyphenols. A significant increase of serum SOD, CAT, and GSH levels and reduction in the levels of MDA in the serum of athletes supplemented with aqueous extract of seeds and leaves of SM was detected. CONCLUSION: SM supplement offered protection against exercise-induced oxidative stress.


Assuntos
Antioxidantes , Silybum marianum , Antioxidantes/metabolismo , Atletas , Biomarcadores/metabolismo , Suplementos Nutricionais , Flavonoides , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos , Masculino , Corrida de Maratona , Silybum marianum/química , Silybum marianum/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
7.
Appl Microbiol Biotechnol ; 106(7): 2393-2401, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35344093

RESUMO

The glucose oligosaccharide-derived cyclodextrins (CDs) are used for improving bioactive compound production in plant cell cultures because, in addition to their elicitation activity, CDs promote product removal from cells. However, despite these advantages, the industrial application of CDs is hampered by their high market price. A strategy to overcome this constraint was recently tested, in which reusable CD polymers coated with magnetic Fe3O4 nanoparticles were harnessed in Vitis vinifera cell cultures to produce t-resveratrol (t-R). In this study, we applied hydroxypropyl-ß-CDs (HPCD) and HPCDs coated with magnetic nanoparticles (HPCD-EPI-MN) in methyl jasmonate (MJ)-treated transgenic Silybum marianum cultures ectopically expressing either a stilbene synthase gene (STS) or a chalcone synthase gene (CHS), and compared their effects on the yields of t-R and naringenin (Ng), respectively. HPCD-EPI-MN at 15 g/L stimulated the accumulation of metabolites in the culture medium of the corresponding transgenic cell lines, with up to 4 mg/L of t-R and 3 mg/L of Ng released after 3 days. Similar amounts were produced in cultures treated with HPCD. Concentrations higher than 15 g/L of HPCD-EPI-MN and prolonged incubation periods negatively affected cell growth and viability in both transgenic cell lines. Reutilization of HPCD-EPI-MN was possible in three elicitation cycles (72 h each), after which the polymer retained 25-30% of its initial efficiency, indicating good stability and reusability. Due to their capacity to adsorb metabolites and their recyclability, the application of magnetic CD polymers may reduce the costs of establishing efficient secondary metabolite production systems on a commercial scale. KEY POINTS: • Long-term transgenic S. marianum suspensions stably produce transgene products • t-R and Ng accumulated extracellularly in cultures elicited with HPCD and HPCD-EPI-MN • The recyclability of HPCD-EPI-MN for metabolite production was proven.


Assuntos
Ciclodextrinas , Nanopartículas de Magnetita , Antioxidantes/metabolismo , Ciclodextrinas/metabolismo , Flavonoides/metabolismo , Silybum marianum/genética , Silybum marianum/metabolismo , Polímeros/metabolismo , Resveratrol/metabolismo
8.
Comput Biol Med ; 142: 105223, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35033877

RESUMO

Silymarin is used as a hepatoprotective agent since ancient times which could be via its potent anti-oxidant effect. However, the mode of silymarin for the hepatoprotective effect has not been established with the targets involved in hepatic cirrhosis. The present study investigated the multiple interactions of the flavonolignans from Silybum marianum with targets involved in hepatic cirrhosis using a series of system biology approaches. Chemo-informative tools and databases i.e. DIGEP-Pred and DisGeNET were used to predict the targets of flavonolignans and proteins involved in liver cirrhosis respectively. Further, STRING was used to enrich the protein-protein interaction for the flavonolignans-modulated targets. Similarly, molecular docking was performed using AutoDock Vina. Additionally, molecular dynamics simulation and MM-PBSA calculations were carried out for the lead-hit complexes by GROMACS. Thirteen flavonolignans were identified from S. marianum, in which silymonin exhibited the highest drug-likeness score i.e. 1.09. Similarly, CTNNB1 was found to be regulated by the 12 different flavonolignans and was majorly expressed within the compound(s)-protein(s)-pathway(s) network. Further, silymonin had the highest binding affinity; binding energy -9.2 kcal/mol with the CTNNB1 and formed very stable hydrogen bond interactions with Arg332, Ser336, Lys371, and Arg475 throughout 100 ns molecular dynamic production run. The binding free energy of CTNNB1-silymonin complex was found to be -15.83 ± 2.71 kcal/mol. The hepatoprotective property of S. marianum may be due to the presence of silymonin and silychristin; this could majorly modulate CTNNB1, HMOX1, and CASP8 in combination with other flavonolignans. Our findings further suggest designing the in-vitro and in-vivo studies to validate the interaction of flavonolignans with identified targets to strengthen present findings of S. marianum as a hepatoprotective..


Assuntos
Silimarina , Biologia , Silybum marianum/química , Silybum marianum/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais , Silimarina/química , Silimarina/metabolismo , Silimarina/farmacologia
9.
Vet Med Sci ; 8(1): 289-301, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599793

RESUMO

One of the most valuable medicinal plants is milk thistle (Silybum marianum) or martighal. An annual or biennial plant of the Asteraceae family and English name Milk thistle, a Matte green colour and prickly plant with a standing stem that can be thick, simple, or slightly branched (ramified). Its seeds contain about 70%-80% of the flavonolignans of silymarin and about 20%-30% of polymeric and oxidized polyphenolic compounds (such as tannins). Traditionally, the plant has been used to increase milk secretion, relieve menstrual cramps, lessen depression, decrease gallstones, and jaundice as well as improve functions of the liver, spleen, and kidney. This review reviews studies on the effects of adding milk thistle to quail diet. Consumption (0.5% and 1%) of milk thistle powder in the diet of Japanese quail significantly increased feed intake, body weight, and improved carcass components. Blood constituents including total protein and albumin were improved along with decreased HDL, ALT, and AST. The use of milk thistle levels (0.5% and 1.5%) significantly improved the antioxidant total of plasma. Consumption of silymarin in quail diet increased the number of white blood cells, calcium, vitamin D3, and albumin. Silymarin also decreased the relative weights of bursa of Fabricius and spleen. This review indicates that milk thistle can improve growth performance, feed conversion ratio, and immune system in quail.


Assuntos
Silybum marianum , Silimarina , Animais , Animais de Laboratório/metabolismo , Antioxidantes/metabolismo , Coturnix , Silybum marianum/metabolismo , Silimarina/metabolismo , Silimarina/farmacologia
10.
Biotechnol Bioeng ; 119(3): 946-962, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34928495

RESUMO

Phenylpropanoids are a group of plant natural products with medicinal importance derived from aromatic amino acids. Here, we report the production of two representative phenylpropanoids-coniferyl alcohol (CA) and dihydroquercetin (DHQ)-from glycerol by engineered Escherichia coli. First, an E. coli strain capable of producing 187.7 mg/L of CA from glycerol was constructed by the introduction of hpaBC from E. coli and OMT1, 4CL4, and CCR1 from Arabidopsis thaliana to the p-coumaric acid producer. Next, an E. coli strain capable of producing 239.4 mg/L of DHQ from glycerol was constructed by the introduction of F3H, TT7, and CPR from A. thaliana to the naringenin producer, followed by engineering the signal peptide of a cytochrome P450 TT7. Furthermore, to demonstrate the production of flavonolignans, a group of heterodimeric phenylpropanoids, from glycerol, ascorbate peroxidase 1 from Silybum marianum was employed and engineered to produce 0.04 µg/L of silybin and 1.29 µg/L of isosilybin from glycerol by stepwise culture. Finally, a single strain harboring all the 16 necessary genes was constructed, resulting in 0.12 µg/L of isosilybin production directly from glycerol. The strategies described here will be useful for the production of pharmaceutically important yet complex natural products.


Assuntos
Escherichia coli , Glicerol , Antioxidantes/metabolismo , Escherichia coli/genética , Glicerol/metabolismo , Engenharia Metabólica , Silybum marianum/química , Silybum marianum/metabolismo , Silibina/metabolismo
11.
Biotechnol Appl Biochem ; 69(2): 848-861, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33797804

RESUMO

Taxifolin (dihydroquercetin) and its derivatives are medicinally important flavanonols with a wide distribution in plants. These compounds have been isolated from various plants, such as milk thistle, onions, french maritime, and tamarind. In general, they are commercially generated in semisynthetic forms. Taxifolin and related compounds are biosynthesized via the phenylpropanoid pathway, and most of the biosynthetic steps have been functionally characterized. The knowledge gained through the detailed investigation of their biosynthesis has provided the foundation for the reconstruction of biosynthetic pathways. Plant- and microbial-based platforms are utilized for the expression of such pathways for generating taxifolin-related compounds, either by whole-cell biotransformation or through reconfiguration of the genetic circuits. In this review, we summarize recent advances in the biotechnological production of taxifolin and its derivatives.


Assuntos
Quercetina , Silybum marianum , Antioxidantes/química , Flavonoides , Silybum marianum/genética , Silybum marianum/metabolismo , Quercetina/análogos & derivados , Quercetina/química
12.
PLoS One ; 16(12): e0260545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914725

RESUMO

Cellular senescence causes irreversible growth arrest of cells. Prolonged accumulation of senescent cells in tissues leads to increased detrimental effects due to senescence associated secretory phenotype (SASP). Recent findings suggest that elimination of senescent cells has a beneficial effect on organismal aging and lifespan. In this study, using a validated replicative senescent human dermal fibroblasts (HDFs) model, we showed that elimination of senescent cells is possible through the activation of an apoptotic mechanism. We have shown in this replicative senescence model, that cell senescence is associated with DNA damage and cell cycle arrest (p21, p53 markers). We have shown that Silybum marianum flower extract (SMFE) is a safe and selective senolytic agent targeting only senescent cells. The elimination of the cells is induced through the activation of apoptotic pathway confirmed by annexin V/propidium iodide and caspase-3/PARP staining. Moreover, SMFE suppresses the expression of SASP factors such as IL-6 and MMP-1 in senescent HDFs. In a co-culture model of senescent and young fibroblasts, we demonstrated that senescent cells impaired the proliferative capacities of young cells. Interestingly, when the co-culture is treated with SMFE, the cell proliferation rate of young cells is increased due to the decrease of the senescent burden. Moreover, we demonstrated in vitro that senescent fibroblasts trigger senescent process in normal keratinocytes through a paracrine effect. Indeed, the conditioned medium of senescent HDFs treated with SMFE reduced the level of senescence-associated beta-galactosidase (SA-ß-Gal), p16INK4A and SASP factors in keratinocytes compared with CM of senescent HDFs. These results indicate that SMFE can prevent premature aging due to senescence and even reprograms aged skin. Indeed, thanks to its senolytic and senomorphic properties SMFE is a candidate for anti-senescence strategies.


Assuntos
Senescência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Silybum marianum/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Derme/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Flores/química , Flores/metabolismo , Humanos , Silybum marianum/metabolismo , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos
13.
Gene ; 790: 145700, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33964378

RESUMO

The aim of this study was to investigate secondary metabolite production in Silybum marianum L. cell suspension cultures obtained from seeds treated with gamma rays (200 and 600 Gy) and 0.05% colchicine. The effects of these treatments on callus induction, growth, viability, and silymarin production were studied, along with the changes in the transcriptome and DNA sequence of chalcone synthase (CHS) genes. The effect of gamma radiation (200 and 600 Gy) on silymarin production in S. marianum dry seeds was also studied using HPLC-UV. All three treatments induced high callus biomass production from leaf segments. The viability of the cell suspension cultures was over 90%. The flavonolignan content measured in the extracellular culture medium of the S. marianum cell suspension was highest after treatment with 600 Gy, followed by 0.05% colchicine, and finally, 200 Gy, after a growth period of 12 days. In general, an increased expression of CHS1, CHS2, and CHS3 genes, accompanied by an increase of silymarin content, was observed in response to all the studied treatments, although the effect was greatest on CHS2 expression. Bioinformatics analysis confirmed that the three CHS2 clones exhibited the highest genetic variation, both in relation to each other and to the CHS1 and CHS3 clones. Based on the results, S. marianum plants obtained from seeds previously exposed to 600 and 200 Gy as well as colchicine constitute a renewable resource with the potential to obtain large amounts of silymarin.


Assuntos
Colchicina/farmacologia , Raios gama , Regulação da Expressão Gênica de Plantas , Silybum marianum/metabolismo , Silimarina/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/efeitos da radiação , Vias Biossintéticas , Biologia Computacional , Silybum marianum/efeitos dos fármacos , Silybum marianum/genética , Silybum marianum/efeitos da radiação , Moduladores de Tubulina/farmacologia
14.
Molecules ; 26(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546424

RESUMO

Silybum marianum (L.) Gaertn is a rich source of antioxidants and anti-inflammatory flavonolignans with great potential for use in pharmaceutical and cosmetic products. Its biotechnological production using in vitro culture system has been proposed. Chitosan is a well-known elicitor that strongly affects both secondary metabolites and biomass production by plants. The effect of chitosan on S. marianum cell suspension is not known yet. In the present study, suspension cultures of S. marianum were exploited for their in vitro potential to produce bioactive flavonolignans in the presence of chitosan. Established cell suspension cultures were maintained on the same hormonal media supplemented with 0.5 mg/L BAP (6-benzylaminopurine) and 1.0 mg/L NAA (α-naphthalene acetic acid) under photoperiod 16/8 h (light/dark) and exposed to various treatments of chitosan (ranging from 0.5 to 50.0 mg/L). The highest biomass production was observed for cell suspension treated with 5.0 mg/L chitosan, resulting in 123.3 ± 1.7 g/L fresh weight (FW) and 17.7 ± 0.5 g/L dry weight (DW) productions. All chitosan treatments resulted in an overall increase in the accumulation of total flavonoids (5.0 ± 0.1 mg/g DW for 5.0 mg/L chitosan), total phenolic compounds (11.0 ± 0.2 mg/g DW for 0.5 mg/L chitosan) and silymarin (9.9 ± 0.5 mg/g DW for 0.5 mg/L chitosan). In particular, higher accumulation levels of silybin B (6.3 ± 0.2 mg/g DW), silybin A (1.2 ± 0.1 mg/g DW) and silydianin (1.0 ± 0.0 mg/g DW) were recorded for 0.5 mg/L chitosan. The corresponding extracts displayed enhanced antioxidant and anti-inflammatory capacities: in particular, high ABTS antioxidant activity (741.5 ± 4.4 µM Trolox C equivalent antioxidant capacity) was recorded in extracts obtained in presence of 0.5 mg/L of chitosan, whereas highest inhibitions of cyclooxygenase 2 (COX-2, 30.5 ± 1.3 %), secretory phospholipase A2 (sPLA2, 33.9 ± 1.3 %) and 15-lipoxygenase (15-LOX-2, 31.6 ± 1.2 %) enzymes involved in inflammation process were measured in extracts obtained in the presence of 5.0 mg/L of chitosan. Taken together, these results highlight the high potential of the chitosan elicitation in the S. marianum cell suspension for enhanced production of antioxidant and anti-inflammatory silymarin-rich extracts.


Assuntos
Anti-Inflamatórios , Antioxidantes , Quitosana , Lignanas , Células Vegetais/metabolismo , Silybum marianum/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Quitosana/química , Quitosana/metabolismo , Quitosana/farmacologia , Humanos , Lignanas/biossíntese , Lignanas/química , Lignanas/farmacologia , Silybum marianum/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ovinos
15.
Int J Mol Sci ; 21(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630801

RESUMO

Mature fruits (i.e., achenes) of milk thistle (Silybum marianum (L.) Gaertn., Asteraceae) accumulate high amounts of silymarin (SILM), a complex mixture of bioactive flavonolignans deriving from taxifolin. Their biological activities in relation with human health promotion and disease prevention are well described. However, the conditions of their biosynthesis in planta are still obscure. To fill this gap, fruit development stages were first precisely defined to study the accumulation kinetics of SILM constituents during fruit ripening. The accumulation profiles of the SILM components during fruit maturation were determined using the LC-MS analysis of these defined developmental phases. The kinetics of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS) and peroxidase (POX) activities suggest in situ biosynthesis of SILM from l-Phenylalanine during fruit maturation rather than a transport of precursors to the achene. In particular, in contrast to laccase activity, POX activity was associated with the accumulation of silymarin, thus indicating a possible preferential involvement of peroxidase(s) in the oxidative coupling step leading to flavonolignans. Reference genes have been identified, selected and validated to allow accurate gene expression profiling of candidate biosynthetic genes (PAL, CAD, CHS, F3H, F3'H and POX) related to SILM accumulation. Gene expression profiles were correlated with SILM accumulation kinetic and preferential location in pericarp during S. marianum fruit maturation, reaching maximum biosynthesis when desiccation occurs, thus reinforcing the hypothesis of an in situ biosynthesis. This observation led us to consider the involvement of abscisic acid (ABA), a key phytohormone in the control of fruit ripening process. ABA accumulation timing and location during milk thistle fruit ripening appeared in line with a potential regulation of the SLIM accumulation. A possible transcriptional regulation of SILM biosynthesis by ABA was supported by the presence of ABA-responsive cis-acting elements in the promoter regions of the SILM biosynthetic genes studied. These results pave the way for a better understanding of the biosynthetic regulation of SILM during the maturation of S. marianum fruit and offer important insights to better control the production of these medicinally important compounds.


Assuntos
Silybum marianum/genética , Silimarina/biossíntese , Silimarina/genética , Antioxidantes/metabolismo , Produtos Biológicos/metabolismo , Flavonoides/metabolismo , Frutas/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Metabolômica/métodos , Silybum marianum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Silibina/metabolismo
16.
Mol Biol Rep ; 47(7): 5451-5459, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32638317

RESUMO

Increased use of vancomycin for treating infections, and the associated risk of causing nephrotoxicity lead to the present study. The antioxidant and anti-apoptotic potential of Silybum marianum is used along with vancomycin to reduce adverse effects on the kidney. Vero cells (monkey kidney cells) and mice were used to test S. marianum extract on vancomycin induced nephrotoxicity. Vero cells were treated with different concentrations of vancomycin and S. marianum for 24 h for determination of cytotoxic potential and mRNA levels of apoptotic genes p53 , p21, and cyt-c were measured. For in-vivo studies mice were divided into five groups; G1 control (untreated), G2 vehicle (olive oil), G3 vancomycin treated (300 mg/kg body weight), G4 (S. marianum; 400 mg/kg bodyweight and vancomycin 300 mg/kg bodyweight simultaneously) and G5 (S. marianum 400 mg/kg bodyweight and vancomycin 300 mg/kg bodyweight treatment started after day 4 of S. marianum treatment). After 10 days histopathological analysis of mice kidneys was performed, serum urea and creatinine were analysed and mRNA expression of p53 , p21, and cyt-c was evaluated. Expression of p53, p21, and cyt-c in Vero cells was elevated in response to vancomycin treatment, whereas after S. marianum administration expression of these genes reduced. Vancomycin showed apoptosis in cells at the concentration of 6 mg/ml (LC50). Urea and creatinine levels in mice were increased in response to vancomycin administration and kidney histology showed an abnormality in functional units. The apoptotic cells were very visible in kidney structure in vancomycin treated group. These symptoms were however relieved in groups where treatment of S. marianum extract was given. mRNA expression of p53 , p21, and cyt-c also reduced in S. marianum treated groups of mice. S. marianum extract has protective effects against renal damage from vancomycin induced oxidative stress and relieves symptoms may be by downregulating apoptotic genes.


Assuntos
Rim/efeitos dos fármacos , Silybum marianum/metabolismo , Vancomicina/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Chlorocebus aethiops , Flavonoides/farmacologia , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Proteína Oncogênica p21(ras)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Insuficiência Renal/patologia , Proteína Supressora de Tumor p53/metabolismo , Vancomicina/farmacologia , Células Vero
17.
Mater Sci Eng C Mater Biol Appl ; 112: 110889, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409047

RESUMO

The purpose of current study was green synthesis of silver nanoparticles (AgNPs) from seeds and wild Silybum plants in comparison with their respective extracts followed by characterization and biological potency. The biologically synthesized AgNPs were subjected to characterization using techniques like XRD, FTIR, TEM, HPLC and SPE. Highly crystalline and stable NPs were obtained using Silybum wild plant (NP1) and seeds (NP3) with size range between 18.12 and 13.20 nm respectively. The synthesized NPs and their respective extracts revealed a vast range of biological applications showing antibacterial, antioxidant, anti-inflammatory, cytotoxic and anti-aging potencies. The highest antioxidant activity (478.23 ± 1.9 µM, 176.91 ± 1.3 µM, 83.5 ± 1.6% µgAAE/mg, 156.32 ± 0.6 µgAAE/mg) for ABTS, FRAP, FRSA, TRP respectively was shown by seed extract (NP4) followed by highest value of (117.35 ± 0.9 µgAAE/mg) for TAC by wild extract (NP2). The highest antifungal activity (13 mm ± 0.76) against Candida albicans was shown by NP3 while antibacterial activity of (6 mm against Klebsiella pneumonia) was shown by NP3 and NP4. The highest anti-inflammatory activity (38.56 ± 1.29 against COX1) was shown by NP2. Similarly, the high value of (48.89 ± 1.34 against Pentosidine-Like AGEs) was shown by NP4. Also, the high anti-diabetic activity (38.74 ± 1.09 against α-amylase) was shown by NP4. The extracts and the synthesized NPs have shown activity against hepato-cellular carcinoma (HepG2) human cells. The HPLC analysis revealed that the highest value of silymarin component (silybin B 2289 mg/g DW) was found for NP4. Silydianin is responsible for capping. Among the green synthesized AgNPs and the extracts used, the effect of NP4 was most promising for further use.


Assuntos
Nanopartículas Metálicas/química , Extratos Vegetais/química , Prata/química , Silybum marianum/química , Amilases/antagonistas & inibidores , Amilases/metabolismo , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antidiuréticos/química , Antidiuréticos/metabolismo , Antioxidantes/química , Candida albicans/efeitos dos fármacos , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Química Verde , Células Hep G2 , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Silybum marianum/metabolismo , Sementes/química , Sementes/metabolismo
18.
J Pharm Biomed Anal ; 178: 112972, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31727359

RESUMO

Silybum marianum (milk thistle) is a medicinal plant used for producing the hepatoprotective remedy silymarin. Its main bioactive constituents, including silybin and related flavonolignans, can be metabolized directly by phase II conjugation reactions. This study was designed to identify UDP-glucuronosyltransferases (UGTs) involved in the glucuronidation of six silymarin flavonolignans, namely silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin. UHPLC-MS analyses showed that all of the tested compounds, both individually and in silymarin, were glucuronidated by human liver microsomes, and that glucuronidation was the main metabolic transformation in human hepatocytes. Further, each compound was glucuronidated by multiple recombinant human UGT enzymes. UGTs 1A1, 1A3, 1A8 and 1A9 were able to conjugate all of the tested flavonolignans, and some of them were also metabolized by UGTs 1A6, 1A7, 1A10, 2B7 and 2B15. In contrast, no glucuronides were produced by UGTs 1A4, 2B4, 2B10 and 2B17. With silymarin, we found that UGT1A1 and, to a lesser extent UGT1A9, were primarily responsible for the glucuronidation of the flavonolignan constituents. It is concluded that the metabolism of silymarin flavonolignans may involve multiple UGT enzymes, of which UGT1A1 appears to play the major role in the glucuronidation. These results may be relevant for future research on the metabolism of flavonolignans in humans.


Assuntos
Flavonolignanos/metabolismo , Glucuronosiltransferase/metabolismo , Silimarina/metabolismo , Adulto , Células Cultivadas , Glucuronídeos/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Silybum marianum/metabolismo , Silibina/metabolismo , Silimarina/análogos & derivados
19.
Environ Sci Pollut Res Int ; 26(21): 21371-21380, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31124070

RESUMO

Cadmium is an important widely distributed heavy metal in the environment due to its several industrial uses, while milk thistle is an important herb and is a source of several antioxidant particularly silymarin which is a pharmacological active substance present in seeds of milk thistle plant (Silybum marianum). The current study investigated pathological effects of cadmium (Cd) and their amelioration with silymarin (SL) and milk thistle (MT) quails. A total of 144 quails were equally divided into 9 groups and given different combinations of cadmium chloride (150 and 300 mg/kg feed), SL (250 mg/kg), and MT (10 g/kg) feed. Parameters studied were clinical signs, mortality, organ weights, testes weight and volume, and gross and microscopic pathology. Results of this study indicated an increased mortality and reduced body weight in cadmium-treated quails. Quails were dull, depressed compared with control. Swollen hemorrhagic liver along with atrophied testes were also observed in these groups. No active spermatozoa were observed in lumen of seminiferous tubules of Cd-treated birds presenting arrest of spermatogenesis. Supplementing MT and SL ameliorated mortality, organ weights, spermatogenesis, and histopathological lesions. It may be concluded that MT and SL proved beneficial in cadmium-induced toxicities in Japanese quails.


Assuntos
Antioxidantes/metabolismo , Cádmio/toxicidade , Coturnix/fisiologia , Substâncias Perigosas/toxicidade , Silybum marianum/metabolismo , Silimarina/metabolismo , Animais , Masculino , Tamanho do Órgão/efeitos dos fármacos , Sementes/efeitos dos fármacos , Túbulos Seminíferos/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testes de Toxicidade
20.
Molecules ; 24(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934786

RESUMO

Silybum marianum (L.) Gaertn. is a well-known medicinal herb, primarily used in liver protection. Light strongly affects several physiological processes along with secondary metabolites biosynthesis in plants. Herein, S. marianum was exploited for in vitro potential under different light regimes in the presence of melatonin. The optimal callogenic response occurred in the combination of 1.0 mg/L α-naphthalene acetic acid and 0.5 mg/L 6-benzylaminopurine under photoperiod. Continuous light associated with melatonin treatment increased total flavonoid content (TFC), total phenolic content (TPC) and antioxidant potential, followed by photoperiod and dark treatments. The increased level of melatonin has a synergistic effect on biomass accumulation under continuous light and photoperiod, while an adverse effect was observed under dark conditions. More detailed phytochemical analysis showed maximum total silymarin content (11.92 mg/g dry weight (DW)) when placed under continuous light + 1.0 mg/L melatonin. Individually, the level of silybins (A and B), silydianin, isolsilychristin and silychristin was found highest under continuous light. Anti-inflammatory activities were also studied and highest percent inhibition was recorded against 15-lipoxygenase (15-LOX) for cultures cultivated under continuous light (42.33%). The current study helps us to better understand the influence of melatonin and different light regimes on silymarin production as well as antioxidant and anti-inflammatory activities in S. marianum callus extracts.


Assuntos
Anti-Inflamatórios/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Luz , Melatonina/farmacologia , Silybum marianum/química , Silybum marianum/metabolismo , Silimarina/biossíntese , Anti-Inflamatórios/química , Antioxidantes/química , Antioxidantes/farmacologia , Biomassa , Metabolismo Secundário/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA