Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
1.
FEBS Lett ; 596(10): 1252-1269, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34958679

RESUMO

In all vertebrates including mammals, the ergothioneine transporter ETT (obsolete name OCTN1; human gene symbol SLC22A4) is a powerful and highly specific transporter for the uptake of ergothioneine (ET). ETT is not expressed ubiquitously and only cells with high ETT cell-surface levels can accumulate ET to high concentration. Without ETT, there is no uptake because the plasma membrane is essentially impermeable to this hydrophilic zwitterion. Here, we review the substrate specificity and localization of ETT, which is prominently expressed in neutrophils, monocytes/macrophages, and developing erythrocytes. Most sites of strong expression are conserved across species, but there are also major differences. In particular, we critically analyze the evidence for the expression of ETT in the brain as well as recent data suggesting that the transporter SLC22A15 may also transport ET. We conclude that, to date, ETT remains the only well-defined biomarker for intracellular ET activity. In humans, the ability to take up, distribute, and retain ET depends principally on this transporter.


Assuntos
Ergotioneína , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Simportadores/fisiologia , Animais , Antioxidantes/metabolismo , Transporte Biológico , Ergotioneína/metabolismo , Humanos , Mamíferos , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Especificidade por Substrato , Simportadores/genética , Simportadores/metabolismo
2.
Hum Cell ; 35(1): 1-14, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606041

RESUMO

Lactate, as the product of glycolytic metabolism and the substrate of energy metabolism, is an intermediate link between cancer cell and tumor microenvironment metabolism. The exchange of lactate between the two cells via mono-carboxylate transporters (MCTs) is known as the lactate shuttle in cancer. Lactate shuttle is the core of cancer cell metabolic reprogramming between two cells such as aerobic cancer cells and hypoxic cancer cells, tumor cells and stromal cells, cancer cells and vascular endothelial cells. Cancer cells absorb lactate by mono-carboxylate transporter 1 (MCT1) and convert lactate to pyruvate via intracellular lactate dehydrogenase B (LDH-B) to maintain their growth and metabolism. Since lactate shuttle may play a critical role in energy metabolism of cancer cells, components related to lactate shuttle may be a crucial target for tumor antimetabolic therapy. In this review, we describe the lactate shuttle in terms of both substance exchange and regulatory mechanisms in cancer. Meanwhile, we summarize the difference of key proteins of lactate shuttle in common types of cancer.


Assuntos
Metabolismo Energético , Lactatos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/metabolismo , Células Endoteliais/metabolismo , Glicólise , Humanos , Isoenzimas/metabolismo , Isoenzimas/fisiologia , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/fisiologia , Terapia de Alvo Molecular , Transportadores de Ácidos Monocarboxílicos/fisiologia , Neoplasias/etiologia , Neoplasias/patologia , Neoplasias/terapia , Ácido Pirúvico/metabolismo , Células Estromais/metabolismo , Simportadores/metabolismo , Simportadores/fisiologia , Microambiente Tumoral
3.
Pathol Res Pract ; 229: 153735, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34922208

RESUMO

BACKGROUND: Sodium/iodide symporter (NIS) acts as a vital role in regulation of iodide uptake in thyroid cancer. However, the efficient approach to increase NIS expression and the mechanism of NIS-mediated iodide uptake in thyroid cancer remain unclear. METHODS: Small activating RNA (saRNA) was used to promote NIS expression. And the cell viability, apoptosis, and autophagy were detected using Cell count-kit 8 (CCK-8), Annexin V-FITC/PI double staining, and GFP-LC3 immunofluorescence assays, respectively. The protein levels of caspase 3, Bax, Bcl-2, ATG5, ATG12, LC3B Ⅱ to LC3B Ⅰ, Beclin 1, P62, AMPK, mTOR, P70S6K, actin, and phosphorylation of AMPK, mTOR, P70S6K were determined by western blotting. Moreover, a nude murine node with transplanted NC-dsRNA or NIS-482-transfected SW579 cells was used to examine the effect of NIS-mediated autophagy in vivo. And the levels of caspase 3 and ki67 were examined by immunohistochemical staining assay. RESULTS: saRNA mediated NIS mRNA and protein upregulated in SW579 cells. saRNA-mediated NIS expression inhibited cell proliferation, induced apoptosis and autophagy, and promoted iodide uptake in SW579 cells. Moreover, the effects of NIS on cells were enhanced by autophagy activator Rapamycin whereas reversed by autophagy inhibitor 3-Methyladenine (3-MA). For mechanism analysis, we found that NIS upregulation exerted the effects on cell proliferation, apoptosis, autophagy, and iodide uptake via regulating AMPK/mTOR pathway. We also demonstrated that saRNA-mediated NIS expression promoted iodide uptake in vivo. CONCLUSION: saRNA-mediated NIS expression acted as a critical role in increasing iodide uptake via AMPK/mTOR pathway in thyroid cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Radioisótopos do Iodo , Simportadores/genética , Simportadores/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Neoplasias da Glândula Tireoide/genética , Animais , Humanos , Radioisótopos do Iodo/farmacocinética , Camundongos , Transdução de Sinais , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas
4.
Yakugaku Zasshi ; 141(11): 1217-1222, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34719540

RESUMO

P-type ion pumps (P-type ATPases) are involved in various fundamental biological processes. For example, the gastric proton pump (H+,K+-ATPase) and sodium pump (Na+,K+-ATPase) are responsible for secretion of gastric acid and maintenance of cell membrane potential, respectively. In this review, we summarize three topics of our studies. The first topic is gastric H+,K+-ATPase associated with Cl--transporting proteins (Cl-/H+ exchanger ClC-5 and K+-Cl- cotransporter KCC4). In gastric parietal cells, we found that ClC-5 is predominantly expressed in intracellular tubulovesicles and that KCC4 is predominantly expressed in the apical membrane. Gastric acid (HCl) secretion may be accomplished by the two different complexes of H+,K+-ATPase and Cl--transporting protein. The second topic focuses on the Na+,K+-ATPase α1-isoform (α1NaK) associated with the volume-regulated anion channel (VRAC). In the cholesterol-enriched membrane microdomains of human cancer cells, we found that α1NaK has a receptor-like (non-pumping) function and that binding of low concentrations (nM level) of cardiac glycosides to α1NaK activates VRAC and exerts anti-cancer effects without affecting the pumping function of α1NaK. The third topic is the Na+,K+-ATPase α3-isoform (α3NaK) in human cancer cells. We found that α3NaK is abnormally expressed in the intracellular vesicles of attached cancer cells and that the plasma membrane translocation of α3NaK upon cell detachment contributes to the survival of metastatic cancer cells. Our results indicate that multiple functions of P-type ion pumps are generated by different membrane environments and their associated proteins.


Assuntos
Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/fisiologia , Microdomínios da Membrana/metabolismo , Transporte Biológico , Glicosídeos Cardíacos/metabolismo , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/fisiologia , Humanos , Isoenzimas , Neoplasias/metabolismo , Neoplasias/patologia , Células Parietais Gástricas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Simportadores/metabolismo , Simportadores/fisiologia , Cotransportadores de K e Cl-
5.
J Gene Med ; 23(9): e3364, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34010493

RESUMO

BACKGROUND: Somatic mutations of the TP53 gene occur frequently in pancreatic ductal adenocarcinoma (PDA). Solute carrier family 45 member A4 (SLC45A4) is a H+ -dependent sugar cotransporter. The role of SLC45A4 in PDA, especially in TP53 mutant PDA, remains poorly understood. METHODS: We explored the TCGA datasets to identify oncogenes in TP53 mutant PDA. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium], colony formation and 5-ethynyl-2'-deoxyuridine (Edu) assays were performed to investigate the function of SLC45A4 in vitro. Glucose consumption, lactate production and ATP production were detected to evaluate glucose utilization. Extracellular acidification rate and oxygen consumption rate assays were used to evaluate glycolysis and oxidative phosphorylation. The subcutaneous xenotransplantation models were conducted to explore the function of SLC45A4 in vivo. RNA-sequencing and gene set enrichment analysis were employed to explore the biological alteration caused by SLC45A4 knockdown. Western blotting was performed to evaluate the activation of glycolysis, as well as the AMPK pathway and autophagy. RESULTS: SLC45A4 was overexpressed in PDA for which the expression was significantly higher in TP53 mutant PDA than that in wild-type PDA tissues. Moreover, high level of SLC45A4 expression was tightly associated with poor clinical outcomes in PDA patients. Silencing SLC45A4 inhibited proliferation in TP53 mutant PDA cells. Knockdown of SLC45A4 reduced glucose uptake and ATP production, which led to activation of autophagy via AMPK/ULK1 pathway. Deleting SLC45A4 in TP53 mutant HPAF-II cells inhibited the growth of xenografts in nude mice. CONCLUSIONS: The present study found that SLC45A4 prevents autophagy via AMPK/ULK1 axis in TP53 mutant PDA, which may be a promising biomarker and therapeutic target in TP53 mutant PDA.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Carcinoma Ductal Pancreático/fisiopatologia , Glucose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas/fisiopatologia , Simportadores/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Glicólise , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Transdução de Sinais , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética
6.
Cereb Cortex ; 31(10): 4681-4698, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33987649

RESUMO

The decreased expression of the KCC2 membrane transporter in subicular neurons has been proposed to be a key epileptogenic event in temporal lobe epilepsy (TLE). Here, we have addressed this question in a reduced model in vitro and have studied the properties and mechanistic involvement of a major class of interneurons, that is, parvalbumin-expressing cells (PVs). When exposed to the KCC2 blocker VU0463271, mouse subicular slices generated hypersynchronous discharges that could be recorded electrophysiologically and visualized as clusters of co-active neurons with calcium imaging. The pharmacological profile of these events resembled interictal-like discharges in human epileptic tissue because of their dependence on GABAA and AMPA receptors. On average, PVs fired before pyramidal cells (PCs) and the area of co-active clusters was comparable to the individual axonal spread of PVs, suggesting their mechanistic involvement. Optogenetic experiments confirmed this hypothesis, as the flash-stimulation of PVs in the presence of VU0463271 initiated interictal-like discharges, whereas their optogenetic silencing suppressed network hyper-excitability. We conclude that reduced KCC2 activity in subicular networks in vitro is sufficient to induce interictal-like activity via altered GABAergic signaling from PVs without other epilepsy-related changes. This conclusion supports an epileptogenic role for impaired subicular KCC2 function during the progression of TLE.


Assuntos
Hipocampo/fisiopatologia , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Convulsões/fisiopatologia , Simportadores/fisiologia , Animais , Axônios/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Hipocampo/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Rede Nervosa/efeitos dos fármacos , Optogenética , Estimulação Luminosa , Células Piramidais/efeitos dos fármacos , Simportadores/antagonistas & inibidores , Cotransportadores de K e Cl-
7.
Pharmacol Res ; 168: 105592, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33813027

RESUMO

Abnormal glycolytic metabolism contributes to angiogenic sprouting involved in atherogenesis. We investigated the potential anti-angiogenic properties of specific 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) inhibitors in endothelial cells (ECs). ECs were treated with PFKFB3 inhibitors (named PA-1 and PA-2) and their effects on metabolic and functional characteristics of ECs were investigated. The anti-glycolytic compound 3-(pyridinyl)- 1-(4-pyridinyl)- 2-propen-1-one (3PO) was used as reference compound. PFKFB3 expression and activity (IC50 about 3-21 nM) was inhibited upon treatment with both compounds. Glucose uptake and lactate export were measured using commercial assays and showed a partial reduction up to 40%. PFKFB3 inhibition increased intracellular lactate accumulation, and reduced expression of monocarboxylate transporters-1 (MCT1) and MCT4. Furthermore, endothelial cell migration and proliferation assays demonstrated significant reduction upon treatment with both compounds. Matrix- metalloproteinase (MMP) activity, measured by gelatin zymography, and expression was significantly reduced (up to 25%). In addition, PA compounds downregulated the expression of VCAM-1, VE-cadherin, VEGFa, VEGFR2, TGF-ß, and IL-1ß, in inflamed ECs. Finally, PA-1 and PA-2 treatment impaired the formation of angiogenic sprouts measured by both morphogenesis and spheroid-based angiogenesis assays. Our data demonstrate that the anti-glycolytic PA compounds may affect several steps involved in angiogenesis. Targeting the key glycolytic enzyme PFKFB3 might represent an attractive therapeutic strategy to improve the efficacy of cancer treatments, or to be applied in other pathologies where angiogenesis is a detrimental factor.


Assuntos
Inibidores da Angiogênese/farmacologia , Fosfofrutoquinase-2/antagonistas & inibidores , Células Cultivadas , Humanos , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiologia , Proteínas Musculares/fisiologia , NAD/metabolismo , Neovascularização Patológica/tratamento farmacológico , Simportadores/fisiologia
8.
J Biol Chem ; 296: 100364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539918

RESUMO

The K+/Cl- cotransporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl- levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A γ-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally, which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture, we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization, or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture.


Assuntos
Neurônios/metabolismo , Simportadores/metabolismo , Animais , Apoptose , Cloretos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/efeitos dos fármacos , Neurônios/fisiologia , Potássio/metabolismo , Cultura Primária de Células , Receptores de GABA/metabolismo , Convulsões , Simportadores/fisiologia , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl-
9.
Biochem J ; 478(3): 463-486, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33544126

RESUMO

NaCT/SLC13A5 is a Na+-coupled transporter for citrate in hepatocytes, neurons, and testes. It is also called mINDY (mammalian ortholog of 'I'm Not Dead Yet' in Drosophila). Deletion of Slc13a5 in mice leads to an advantageous phenotype, protecting against diet-induced obesity, and diabetes. In contrast, loss-of-function mutations in SLC13A5 in humans cause a severe disease, EIEE25/DEE25 (early infantile epileptic encephalopathy-25/developmental epileptic encephalopathy-25). The difference between mice and humans in the consequences of the transporter deficiency is intriguing but probably explainable by the species-specific differences in the functional features of the transporter. Mouse Slc13a5 is a low-capacity transporter, whereas human SLC13A5 is a high-capacity transporter, thus leading to quantitative differences in citrate entry into cells via the transporter. These findings raise doubts as to the utility of mouse models to evaluate NaCT biology in humans. NaCT-mediated citrate entry in the liver impacts fatty acid and cholesterol synthesis, fatty acid oxidation, glycolysis, and gluconeogenesis; in neurons, this process is essential for the synthesis of the neurotransmitters glutamate, GABA, and acetylcholine. Thus, SLC13A5 deficiency protects against obesity and diabetes based on what the transporter does in hepatocytes, but leads to severe brain deficits based on what the transporter does in neurons. These beneficial versus detrimental effects of SLC13A5 deficiency are separable only by the blood-brain barrier. Can we harness the beneficial effects of SLC13A5 deficiency without the detrimental effects? In theory, this should be feasible with selective inhibitors of NaCT, which work only in the liver and do not get across the blood-brain barrier.


Assuntos
Simportadores/deficiência , Animais , Barreira Hematoencefálica , Osso e Ossos/metabolismo , Ácido Cítrico/metabolismo , Ciclo do Ácido Cítrico/genética , Esmalte Dentário/metabolismo , Diabetes Mellitus/metabolismo , Transportadores de Ácidos Dicarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Dicarboxílicos/deficiência , Transportadores de Ácidos Dicarboxílicos/fisiologia , Modelos Animais de Doenças , Proteínas de Drosophila/fisiologia , Fígado Gorduroso/metabolismo , Feminino , Células Germinativas/metabolismo , Hepatócitos/metabolismo , Humanos , Recém-Nascido , Transporte de Íons , Longevidade/genética , Masculino , Camundongos , Camundongos Knockout , Mutação , Neoplasias/metabolismo , Neurônios/metabolismo , Conformação Proteica , Espasmos Infantis/genética , Especificidade da Espécie , Simportadores/antagonistas & inibidores , Simportadores/genética , Simportadores/fisiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-33545502

RESUMO

Sodium taurocholate cotransporting polypeptide (NTCP) is an important hepatocyte transporter, while its physiological functions require further investigation. In our study, an integrated plasma and liver GC-MS- and LC-MS-based metabolomics strategy with an optimized two-step liquid-liquid extraction was utilized to explore the physiological functions of NTCP via a knockout (KO) mouse model. The present study found that NTCP deficiency resulted in obvious metabolic change in the plasma and liver of mice. Totally, 102 and 87 differential metabolites were discovered in the liver and plasma, respectively. Pathway analysis revealed that the metabolism of tyrosine, glycine, taurine, fatty acid and glycerophospholipid as well as the biosynthesis of tryptophan, pantothenate and CoA were significantly dysregulated in the Ntcp KO mice, indicating that NTCP is closely involved in these metabolic pathways. Moreover, L-tryptophan, cadaverine and D-pantothenic acid could serve as the diagnostic biomarker for NTCP deficiency. Our study provided deep insights into the physiological functions of NTCP, and the findings would hold the great potential to be used for the discovery of new therapeutic and diagnostic strategies for NTCP deficiency clinically.


Assuntos
Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma/fisiologia , Metabolômica/métodos , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Simportadores/genética , Simportadores/metabolismo , Simportadores/fisiologia
11.
Cell Biol Int ; 45(6): 1278-1287, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33559958

RESUMO

One hallmark of renal cell carcinoma (RCC) is metabolic reprogramming, which involves elevation of glycolysis and upregulation of lipid metabolism. However, the mechanism of metabolic reprogramming is incompletely understood. Monocarboxylate transporter 1 (MCT1) promotes transport for lactate and pyruvate, which are crucial for cell metabolism. The aim of present study was to investigate the function of MCT1 on RCC development and its mechanism on metabolic reprogramming. The results showed that MCT1 messenger RNA and protein levels significantly increased in cancer tissues of ccRCC compared to normal tissue. MCT1 was further found to mainly located in the cell membrane of RCC. The knockdown of MCT1 by RNAi significantly inhibited proliferation and migration of 786-O and ACHN cells. MCT1 also induced the expressions of proliferation marker Ki-67 and invasion marker SNAI1. Moreover, we also showed that acetate treatment could upregulate the expression of MCT1, but not other MCT isoforms. On the other hand, MCT1 was involved in acetate transport and intracellular histone acetylation. In summary, this study revealed that MCT1 is abnormally high in ccRCC and promotes cancer development. The regulatory effect of MCT1 on cell proliferation and invasion maybe mediated by acetate transport.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiologia , Simportadores/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Humanos
12.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491666

RESUMO

Reduced expression of the plasma membrane citrate transporter INDY (acronym I'm Not Dead, Yet) extends life span in lower organisms. Deletion of the mammalian Indy (mIndy) gene in rodents improves metabolism via mechanisms akin to caloric restriction, known to lower blood pressure (BP) by sympathoadrenal inhibition. We hypothesized that mIndy deletion attenuates sympathoadrenal support of BP. Continuous arterial BP and heart rate (HR) were reduced in mINDY-KO mice. Concomitantly, urinary catecholamine content was lower, and the decreases in BP and HR by mIndy deletion were attenuated after autonomic ganglionic blockade. Catecholamine biosynthesis pathways were reduced in mINDY-KO adrenals using unbiased microarray analysis. Citrate, the main mINDY substrate, increased catecholamine content in pheochromocytoma cells, while pharmacological inhibition of citrate uptake blunted the effect. Our data suggest that deletion of mIndy reduces sympathoadrenal support of BP and HR by attenuating catecholamine biosynthesis. Deletion of mIndy recapitulates beneficial cardiovascular and metabolic responses to caloric restriction, making it an attractive therapeutic target.


Assuntos
Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/fisiologia , Sistema Simpático-Suprarrenal/fisiologia , Simportadores/genética , Simportadores/fisiologia , Glândulas Suprarrenais/anatomia & histologia , Glândulas Suprarrenais/fisiologia , Animais , Restrição Calórica , Catecolaminas/biossíntese , Linhagem Celular , Células Cromafins/fisiologia , Transportadores de Ácidos Dicarboxílicos/deficiência , Expressão Gênica , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Longevidade/genética , Longevidade/fisiologia , Malatos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , Atividade Motora/genética , Atividade Motora/fisiologia , Piridinas/farmacologia , Simportadores/deficiência
13.
J Med Chem ; 64(1): 543-565, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33369415

RESUMO

Analogues of the natural product cyclosporine A (CsA) were developed and assessed as antivirals against infection of hepatitis B virus (HBV) and its satellite hepatitis D virus (HDV). An analogue termed 27A exhibits potent inhibition of HBV/HDV infection by specifically blocking viral engagement to its cellular receptor NTCP, while it lacks immunosuppressive activity found in natural CsA. Intraperitoneal injection or oral intake of 27A protects HDV-susceptible mouse model from HDV infection. 27A serves as a promising lead for the development of novel anti-HDV/HBV agents.


Assuntos
Antivirais/uso terapêutico , Ciclosporina/uso terapêutico , Hepatite B/tratamento farmacológico , Hepatite D/tratamento farmacológico , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Simportadores/fisiologia , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Ciclosporina/administração & dosagem , Ciclosporina/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Hepatite B/fisiopatologia , Hepatite D/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL
14.
J Neurosci Res ; 99(2): 561-572, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964457

RESUMO

Stroke severely impairs quality of life and has a high mortality rate. On the other hand, dietary docosahexaenoic acid (DHA) prevents neuronal damage. In this review, we describe the effects of dietary DHA on ischemic stroke-associated neuronal damage and its role in stroke prevention. Recent epidemiological studies have been conducted to analyze stroke prevention through DHA intake. The effects of dietary intake and supply of DHA to neuronal cells, DHA-mediated inhibition of neuronal damage, and its mechanism, including the effects of the DHA metabolite, neuroprotectin D1 (NPD1), were investigated. These studies revealed that DHA intake was associated with a reduced risk of stroke. Moreover, studies have shown that DHA intake may reduce stroke mortality rates. DHA, which is abundant in fish oil, passes through the blood-brain barrier to accumulate as a constituent of phospholipids in the cell membranes of neuronal cells and astrocytes. Astrocytes supply DHA to neuronal cells, and neuronal DHA, in turn, activates Akt and Raf-1 to prevent neuronal death or damage. Therefore, DHA indirectly prevents neuronal damage. Furthermore, NDP1 blocks neuronal apoptosis. DHA, together with NPD1, may block neuronal damage and prevent stroke. The inhibitory effect on neuronal damage is achieved through the antioxidant (via inducing the Nrf2/HO-1 system) and anti-inflammatory effects (via promoting JNK/AP-1 signaling) of DHA.


Assuntos
Dano Encefálico Crônico/prevenção & controle , Ácidos Docosa-Hexaenoicos/uso terapêutico , AVC Isquêmico/dietoterapia , Degeneração Neural/prevenção & controle , Acidente Vascular Cerebral/prevenção & controle , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Transporte Biológico , Barreira Hematoencefálica , Dano Encefálico Crônico/etiologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacocinética , Gorduras na Dieta/uso terapêutico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacocinética , Ácidos Docosa-Hexaenoicos/farmacologia , Proteínas de Ligação a Ácido Graxo/fisiologia , Óleos de Peixe/administração & dosagem , Óleos de Peixe/farmacocinética , Humanos , Incidência , AVC Isquêmico/complicações , AVC Isquêmico/epidemiologia , Lipídeos de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Simportadores/deficiência , Simportadores/fisiologia , Ácido alfa-Linolênico/farmacocinética
15.
Psychiatr Genet ; 31(1): 32-35, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290383

RESUMO

SLC13A5/NaCT is a sodium-coupled citrate transporter expressed in the plasma membrane of the liver, testis, and brain. In these tissues, SLC13A5 has important functions in the synthesis of fatty acids, cholesterol, and neurotransmitters. In recent years, patients homozygous for recessive mutations in SLC13A5, known as SLC13A5 deficiency [early infantile epileptic encephalopathy-25 (EIEE-25)], exhibit severe global developmental delay, early-onset intractable seizures, spasticity, and amelogenesis imperfecta affecting tooth development. Although the pathogenesis of SLC13A5 deficiency remains not clearly understood, cytoplasmic citrate deficits, decreased energy status in neurons, and citrate-zinc chelation are hypothesized to explain the neurological deficits. However, no study has examined the possibility of specific pharmacological drugs and/or lifestyle changes synergizing with heterozygosity of SLC13A5 deficiency to increase the risk of EIEE-25 clinical phenotype. Here, we report on a heterozygous SLC13A5-deficient patient who demonstrated evidence of pharmaco-synergistic heterozygosity upon administration of metformin, valproic acid, and starvation. The report illustrates the importance of careful consideration of the potential adverse effects of specific pharmacological treatments in patients with heterozygosity for disease-causing recessive mutations in SLC13A5.


Assuntos
Epilepsia/genética , Metformina/efeitos adversos , Simportadores/deficiência , Ácido Valproico/efeitos adversos , Adulto , Substituição de Aminoácidos , Amônia/sangue , Animais , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/uso terapêutico , Transtorno Autístico/genética , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Citratos/sangue , Transportadores de Ácidos Dicarboxílicos/fisiologia , Proteínas de Drosophila/fisiologia , Epilepsia/sangue , Epilepsia/induzido quimicamente , Epilepsia/etiologia , Feminino , Privação de Alimentos , Heterozigoto , Humanos , Lactatos/sangue , Longevidade/genética , Metformina/uso terapêutico , Camundongos , Mutação de Sentido Incorreto , Mutação Puntual , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/genética , Psicotrópicos/uso terapêutico , Piruvatos/sangue , Recidiva , Espasmos Infantis/genética , Espasmos Infantis/metabolismo , Simportadores/genética , Simportadores/fisiologia , Anormalidades Dentárias/genética , Ácido Valproico/uso terapêutico
16.
Sci Rep ; 10(1): 21772, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303817

RESUMO

Current treatment options against hepatitis B and D virus (HBV/HDV) infections have only limited curative effects. Identification of Na+/taurocholate co-transporting polypeptide (NTCP) as the high-affinity hepatic receptor for both viruses in 2012 enables target-based development of HBV/HDV cell-entry inhibitors. Many studies already identified appropriate NTCP inhibitors. However, most of them interfere with NTCP's physiological function as a hepatic bile acid transporter. To overcome this drawback, the present study aimed to find compounds that specifically block HBV/HDV binding to NTCP without affecting its transporter function. A novel assay was conceptualized to screen for both in parallel; virus binding to NTCP (measured via binding of a preS1-derived peptide of the large HBV/HDV envelope protein) and bile acid transport via NTCP. Hits were subsequently validated by in vitro HDV infection studies using NTCP-HepG2 cells. Derivatives of the birch-derived pentacyclic lupane-type triterpenoid betulin revealed clear NTCP inhibitory potency and selectivity for the virus receptor function of NTCP. Best performing compounds in both aspects were 2, 6, 19, and 25. In conclusion, betulin derivatives show clear structure-activity relationships for potent and selective inhibition of the HBV/HDV virus receptor function of NTCP without tackling its physiological bile acid transport function and therefore are promising drug candidates.


Assuntos
Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/antagonistas & inibidores , Simportadores/antagonistas & inibidores , Triterpenos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Células Hep G2 , Vírus da Hepatite B/metabolismo , Vírus Delta da Hepatite/metabolismo , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Receptores Virais , Relação Estrutura-Atividade , Simportadores/metabolismo , Simportadores/fisiologia
17.
Environ Sci Pollut Res Int ; 27(34): 42778-42790, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32748357

RESUMO

Hepatocellular carcinoma (HCC), a common type of human malignancies, leads to increasing incidence and fairly high mortality. An increasing number of studies have verified that long noncoding RNAs (lncRNAs) played key roles in the development of multiple human cancers. As a biomarker, SLC16A1-AS1 has been reported in non-small cell lung cancer (NSCLC) and oral squamous cell carcinoma (OSCC). Thus, we decided to investigate whether SLC16A1-AS1 exerts its biological function in HCC. In this study, we discovered that SLC16A1-AS1 was obviously downregulated in HCC tissues and cells. Overexpression of SLC16A1-AS1 inhibited HCC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) process as well as promoted cell apoptosis. Moreover, SLC16A1-AS1 was confirmed to enhance the radiosensitivity of HCC cells. Molecular mechanism exploration suggested that SLC16A1-AS1 served as a sponge for miR-301b-3p and CHD5 was the downstream target gene of miR-301b-3p in HCC cells. Rescue assays implied that CHD5 knockdown could recover the effects of SLC16A1-AS1 overexpression on HCC cellular processes. In brief, our study clarified that SLC16A1-AS1 acted as a tumor suppressor in HCC by targeting the miR-301b-3p/CHD5 axis, which may be a promising diagnostic biomarker and provide promising treatment for HCC patients.


Assuntos
Carcinoma Hepatocelular , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Hepáticas , Neoplasias Pulmonares , MicroRNAs , Transportadores de Ácidos Monocarboxílicos , Neoplasias Bucais , Simportadores , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , DNA Helicases , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , Transportadores de Ácidos Monocarboxílicos/fisiologia , Proteínas do Tecido Nervoso , Tolerância a Radiação/genética , Simportadores/fisiologia
18.
Cells ; 9(6)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570893

RESUMO

Hepatitis B virus (HBV), an enveloped partially double-stranded DNA virus, is a widespread human pathogen responsible for more than 250 million chronic infections worldwide. Current therapeutic strategies cannot eradicate HBV due to the persistence of the viral genome in a special DNA structure (covalently closed circular DNA, cccDNA). The identification of sodium taurocholate co-transporting polypeptide (NTCP) as an entry receptor for both HBV and its satellite virus hepatitis delta virus (HDV) has led to great advances in our understanding of the life cycle of HBV, including the early steps of infection in particular. However, the mechanisms of HBV internalization and the host factors involved in this uptake remain unclear. Improvements in our understanding of HBV entry would facilitate the design of new therapeutic approaches targeting this stage and preventing the de novo infection of naïve hepatocytes. In this review, we provide an overview of current knowledge about the process of HBV internalization into cells.


Assuntos
Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/patogenicidade , Internalização do Vírus , Endocitose , Heparina/análogos & derivados , Heparina/fisiologia , Hepatite B/fisiopatologia , Hepatite B/terapia , Hepatite B/virologia , Vírus da Hepatite B/genética , Hepatócitos/fisiologia , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/fisiologia , Proteoglicanas/fisiologia , Receptores Virais/fisiologia , Simportadores/fisiologia
19.
J Dairy Sci ; 103(7): 6679-6683, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32331895

RESUMO

Bovine peptide transporter 2 (bPepT2), which mediates the absorption of di- and tripeptides in the bovine mammary gland, was predicted to contain multiple putative N-glycosylation sites of asparagine residues. N-Linked glycosylation is proven to be essential for the folding, stability, localization, and substrate binding of nutrient transporters and could therefore potentially have an essential role in the function of bPepT2. This study investigated the effect of mutagenesis of N-glycosylation sites on the transport function of bPepT2 in Chinese hamster ovary (CHO) cells. The bPepT2 cDNA was cloned and sequenced. BioXM (http://202.195.246.60/BioXM/) and TMHMM (http://www.cbs.dtu.dk/services/TMHMM-2.0/) software were used to predict the AA composition and transmembrane domain of bPepT2, respectively. The AA sequence of bPepT2 was predicted to have 12 transmembrane domains, with a large extracellular loop between the ninth and tenth transmembrane domains. All 5 putative N-glycosylation sites in this loop were altered by site-directed mutagenesis, and the mutant construct was transfected into CHO cells for transport activity assay. Compared with the wild type, the bPepT2 mutant had significantly lower uptake activity of ß-alanyl-l-lysyl-Nε-7-amino-4-methyl-coumarin-3-acetic acid (ß-Ala-Lys-AMCA), a model dipeptide. Treatment with tunicamycin, an inhibitor of N-linked glycosylation, reduced the uptake of ß-Ala-Lys-AMCA in CHO cells relative to the control group. Kinetic studies indicated that the Michaelis constant of bPepT2 was not affected by the mutation (98.03 ± 8.30 and 88.33 ± 4.23 µM for the wild type and the mutant, respectively), but the maximum transport activity was significantly reduced (40.29 ± 8.30 and 13.02 ± 2.95 pmol/min per milligram of protein for the wild type and the mutant, respectively). In summary, this study demonstrated that N-glycosylation is critical for the function of bPepT2.


Assuntos
Bovinos/metabolismo , Simportadores/fisiologia , Animais , Células CHO , Bovinos/genética , Cricetulus , Glicosilação , Mutagênese Sítio-Dirigida , Transporte Proteico/efeitos dos fármacos , Simportadores/genética , Transfecção , Tunicamicina/farmacologia
20.
Front Immunol ; 11: 279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180770

RESUMO

Aerobic glycolysis is a recognized feature shared by tumors, leading to the accumulation of lactic acid in their local microenvironments. Like the tumors, the blastocysts, placenta, trophoblasts and decidual immune cells can also produce a large amount of lactic acid through aerobic glycolysis during the early pregnancy. Moreover, the placenta expresses the transporters of the lactic acid. While several studies have described the role of lactic acid in the tumor microenvironment, especially lactic acid's modulation of immune cells, the role of lactic acid produced during pregnancy is still unclear. In this paper, we reviewed the scientific evidence detailing the effects of lactic acid in the tumor microenvironment. Based on the influence of the lactic acid on immune cells and tumors, we proposed that lactic acid released in the unique uterine environment could have similar effects on the trophoblast cells and immune cells during the early pregnancy.


Assuntos
Ácido Láctico/metabolismo , Gravidez/metabolismo , Células Dendríticas/metabolismo , Feminino , Glicólise , Humanos , Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/fisiologia , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Gravidez/imunologia , Transdução de Sinais/fisiologia , Simportadores/fisiologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA