Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Exp Neurol ; 332: 113389, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32580014

RESUMO

Chronic cerebral hypoperfusion (CCH) promotes the development of Alzheimer's pathology. However, whether and how CCH impairs the synaptic vesicle trafficking is still unclear. In the present study, we found that the hippocampal glutamatergic vesicle trafficking was impaired as indicated by a significant shortened delayed response enhancement (DRE) phase in CA3-CA1 circuit and decreased synapsin I in CCH rats suffering from bilateral common carotid artery occlusion (2VO). Further study showed an upregulated miR-153 in the hippocampus of 2VO rats. In vitro, overexpression of miR-153 downregulated synapsin I by binding the 3'UTRs of SYN1 mRNAs, which was prevented by its antisense AMO-153 and miRNA-masking antisense oligodeoxynucleotides (SYN1-ODN). In vivo, the upregulation of miR-153 elicited similar reduced DRE phase and synapsin I deficiency as CCH. Furthermore, miR-153 knockdown rescued the downregulated synapsin I and shortened DRE phase in 2VO rats. Our results demonstrate that CCH impairs hippocampal glutamatergic vesicle trafficking by upregulating miR-153, which suppresses the expression of synapsin I at the post-transcriptional level. These results will provide important references for drug research and treatment of vascular dementia.


Assuntos
Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/fisiopatologia , Hipocampo/fisiopatologia , MicroRNAs/genética , Sinapsinas/genética , Vesículas Sinápticas , Regiões 3' não Traduzidas , Animais , Estenose das Carótidas/fisiopatologia , Regulação para Baixo , Glutamatos/metabolismo , Masculino , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Sinapsinas/biossíntese
2.
Theranostics ; 10(7): 3000-3021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194851

RESUMO

Rationale: Contactin-associated protein-like 4 (CNTNAP4) belongs to the neurexin superfamily and has critical functions in neurological development and synaptic function. Loss of CNTNAP4 in interneurons has been linked to autism, schizophrenia, and epilepsy. CNTNAP4 is also highly enriched in dopaminergic (DA) neurons in the substantia nigra (SN), however, few studies have investigated the role of CNTNAP4 in DA neurons, and whether CNTNAP4 deficiency in DA neurons contributes to Parkinson's disease (PD) remains unclear. Methods: Effects of CNTNAP4 knockdown or overexpression on the DA MN9D cell line were assessed via Western blotting, immunocytochemistry, and RNA sequencing. An in vivo animal model, including CNTNAP4 knockout mice and stereotaxic injections of adeno-associated viral short-hairpin RNA with the tyrosine-hydroxylase promotor to silence CNTNAP4 in the SN, as well as the resulting physiological/behavioral effects, were evaluated via behavioral tests, Western blotting, immunohistochemistry, and transmission electron microscopy. Enzyme-linked immunosorbent assays (ELISAs) were performed to examine the cerebrospinal fluid (CSF) and plasma CNTNAP4 concentrations in PD patients. Results: We demonstrated that CNTNAP4 knockdown induced mitophagy and increased α-synuclein expression in MN9D cells. CNTNAP4 knockdown in the SN induced PD-like increases in SN-specific α-synuclein expression, DA neuronal degeneration, and motor dysfunction in mice. In addition, CNTNAP4 knockdown in SN-DA neurons increased autophagosomes and reduced synaptic vesicles in the SN. Furthermore, CNTNAP4 knockout mice showed movement deficits, nigral DA degeneration, and increased autophagy, which were consistent with the SN-specific knockdown model. We also found that CSF and plasma CNTNAP4 expression was increased in PD patients; in particular, plasma CNTNAP4 was increased in male PD patients compared with controls or female PD patients. Conclusion: Our findings suggest that CNTNAP4 deficiency may initiate phenotypes relevant to PD, of which we elucidated some of the underlying mechanisms.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Proteínas de Membrana/deficiência , Proteínas do Tecido Nervoso/deficiência , Doença de Parkinson/sangue , Doença de Parkinson/líquido cefalorraquidiano , Transtornos Parkinsonianos/metabolismo , Animais , Linhagem Celular , Neurônios Dopaminérgicos/química , Neurônios Dopaminérgicos/ultraestrutura , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Potencial da Membrana Mitocondrial , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitofagia , Proteínas do Tecido Nervoso/sangue , Proteínas do Tecido Nervoso/líquido cefalorraquidiano , Proteínas do Tecido Nervoso/fisiologia , Transtornos Parkinsonianos/patologia , Fenótipo , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Técnicas Estereotáxicas , Substância Negra/metabolismo , Substância Negra/patologia , Sinapsinas/biossíntese , Sinapsinas/genética , Transcriptoma , alfa-Sinucleína/biossíntese , alfa-Sinucleína/genética
3.
Neurotox Res ; 37(1): 227-237, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654382

RESUMO

The synthetic peptide p-BTX-I is based on the native peptide (formed by glutamic acid, valine and tryptophan) isolated from Bothrops atrox venom. We have previously demonstrated its neuroprotective and neurotrophic properties in PC12 cells treated with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Now, we have investigated the neuroprotective effects and mechanisms of p-BTX-I against the toxicity of acrolein in PC12 cells. Studies have demonstrated that acrolein might play an important role in the etiology of Alzheimer's disease (AD), which is characterized by neuronal and synaptic loss. Our results showed that not only acrolein reduced cell differentiation and cell viability, but also altered the expression of markers of synaptic communication (synapsin I), energy metabolism (AMPK-α, Sirt I and glucose uptake), and cytoskeleton (ß-III-tubulin). Treatment with p-BTX-I increased the percentage of differentiation in cells treated with acrolein and significantly attenuated cell viability loss, besides counteracting the negative effects of acrolein on synapsin I, AMPK-α, Sirt I, glucose uptake, and ß-III-tubulin. Additionally, p-BTX-I alone increased the expression of apolipoprotein E (apoE) gene, associated with the proteolytic degradation of ß-amyloid peptide aggregates, a hallmark of AD. Taken together, these findings demonstrate that p-BTX-I protects against acrolein-induced neurotoxicity and might be a tool for the development of novel drugs for the treatment of neurodegenerative diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/biossíntese , Acroleína/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sirtuína 1/biossíntese , Sinapsinas/biossíntese , Tubulina (Proteína)/biossíntese , Acroleína/toxicidade , Animais , Apolipoproteínas E/biossíntese , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células PC12 , Peptídeos/farmacologia , Ratos
4.
Sci Rep ; 9(1): 15430, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659209

RESUMO

Synapsins are a family of phosphoproteins fundamental to the regulation of neurotransmitter release. They are typically neuron-specific, although recent evidence pointed to their expression in non-neuronal cells where they play a role in exocytosis and vesicle trafficking. In this work, we characterized synapsin transcripts in the invertebrate mollusk Octopus vulgaris and present evidence of their expression not only in the brain but also in male and female reproductive organs. We identified three synapsin isoforms phylogenetically correlated to that of other invertebrates and with a modular structure characteristic of mammalian synapsins with a central, highly conserved C domain, important for the protein functions, and less conserved A, B and E domains. Our molecular modeling analysis further provided a solid background for predicting synapsin functional binding to ATP, actin filaments and secretory vesicles. Interestingly, we found that synapsin expression in ovary and testis increased during sexual maturation in cells with a known secretory role, potentially matching the occurrence of a secretion process. This might indicate that its secretory role has evolved across animals according to cell activity in spite of cell identity. We believe that this study may yield insights into the convergent evolution of ubiquitously expressed proteins between vertebrates and invertebrates.


Assuntos
Regulação da Expressão Gênica/fisiologia , Octopodiformes/metabolismo , Maturidade Sexual/fisiologia , Sinapsinas/biossíntese , Animais , Feminino , Masculino , Octopodiformes/genética , Especificidade de Órgãos/fisiologia , Domínios Proteicos , Isoformas de Proteínas
5.
Exp Neurol ; 290: 74-84, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28062175

RESUMO

Perinatal asphyxia-induced brain injury is often associated with irreversible neurological complications such as intellectual disability and cerebral palsy but available therapies are limited. Novel neuroprotective therapies as well as approaches stimulating neural plasticity mechanism that can compensate for cell death after hypoxia-ischemia (HI) are urgently needed. We previously reported that single i.c.v. injection of complement-derived peptide C3a 1h after HI induction prevented HI-induced cognitive impairment when mice were tested as adults. Here, we tested the effects of intranasal treatment with C3a on HI-induced cognitive deficit. Using the object recognition test, we found that intranasal C3a treated mice were protected from HI-induced impairment of memory function assessed 6weeks after HI induction. C3a treatment ameliorated HI-induced reactive gliosis in the hippocampus, while it did not affect the extent of hippocampal tissue loss, neuronal cell density, expression of the pan-synaptic marker synapsin I or the expression of growth associated protein 43. In conclusion, our results reveal that brief pharmacological treatment with C3a using a clinically feasible non-invasive mode of administration ameliorates HI-induced cognitive impairment. Intranasal administration is a plausible route to deliver C3a into the brain of asphyxiated infants at high risk of developing hypoxic-ischemic encephalopathy.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/psicologia , Complemento C3a/uso terapêutico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/psicologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Complemento C3a/administração & dosagem , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteína GAP-43/biossíntese , Proteína GAP-43/genética , Gliose/prevenção & controle , Hipocampo/patologia , Hipóxia-Isquemia Encefálica/etiologia , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Reconhecimento Psicológico/efeitos dos fármacos , Sinapsinas/biossíntese
6.
PLoS Genet ; 12(10): e1006378, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27768692

RESUMO

Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Olfato/genética , Sinapses/genética , Sinapsinas/genética , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , AMP Cíclico , Dopamina/genética , Dopamina/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Larva/genética , Larva/fisiologia , Corpos Pedunculados/crescimento & desenvolvimento , Corpos Pedunculados/metabolismo , Neurônios/metabolismo , Odorantes , Biossíntese de Proteínas/genética , Proteína Quinase C/biossíntese , Proteína Quinase C/genética , Olfato/fisiologia , Sinapses/enzimologia , Sinapses/metabolismo , Sinapsinas/biossíntese
7.
J Neurochem ; 139(4): 610-623, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27507246

RESUMO

The trans-activating response of DNA/RNA-binding protein (TDP)-43 pathology is associated with many neurodegenerative diseases via unknown mechanisms. Here, we use a transgenic mouse model over-expressing human wild-type neuronal TDP-43 to study the effects of TDP-43 pathology on glutamate metabolism and synaptic function. We found that neuronal TDP-43 over-expression affects synaptic protein expression, including Synapsin I, and alters surrounding astrocytic function. TDP-43 over-expression is associated with an increase in glutamate and γ-amino butyric acid and reduction of glutamine and aspartate levels, indicating impairment of presynaptic terminal. TDP-43 also decreases tricarboxylic acid cycle metabolism and induces oxidative stress via lactate accumulation. Neuronal TDP-43 does not alter microglia activity or significantly changes systemic and brain inflammatory markers compared to control. We previously demonstrated that brain-penetrant tyrosine kinase inhibitors (TKIs), nilotinib and bosutinib, reduce TDP-43-induced cell death in transgenic mice. Here, we show that TKIs reverse the effects of TDP-43 on synaptic proteins, increase astrocytic function and restore glutamate and neurotransmitter balance in TDP-43 mice. Nilotinib, but not bosutinib, reverses mitochondrial impairment and oxidative metabolism. Taken together, these data suggest that TKIs can attenuate TDP-43 toxicity and improve synaptic and astrocytic function, independent of microglial or other inflammatory effects. In conclusion, our data demonstrate novel mechanisms of the effects of neuronal TDP-43 over-expression on synaptic protein expression and alteration of astrocytic function.


Assuntos
Astrócitos/fisiologia , Proteínas de Ligação a DNA/biossíntese , Homeostase/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Sinapsinas/biossíntese , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Homeostase/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapsinas/genética
8.
J Neurosci ; 36(16): 4624-34, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27098703

RESUMO

Growing evidence indicates that sphingosine-1-P (S1P) upregulates glutamate secretion in hippocampal neurons. However, the molecular mechanisms through which S1P enhances excitatory activity remain largely undefined. The aim of this study was to identify presynaptic targets of S1P action controlling exocytosis. Confocal analysis of rat hippocampal neurons showed that S1P applied at nanomolar concentration alters the distribution of Synapsin I (SynI), a presynaptic phosphoprotein that controls the availability of synaptic vesicles for exocytosis. S1P induced SynI relocation to extrasynaptic regions of mature neurons, as well as SynI dispersion from synaptic vesicle clusters present at axonal growth cones of developing neurons. S1P-induced SynI relocation occurred in a Ca(2+)-independent but ERK-dependent manner, likely through the activation of S1P3 receptors, as it was prevented by the S1P3 receptor selective antagonist CAY1044 and in neurons in which S1P3 receptor was silenced. Our recent evidence indicates that microvesicles (MVs) released by microglia enhance the metabolism of endogenous sphingolipids in neurons and stimulate excitatory transmission. We therefore investigated whether MVs affect SynI distribution and whether endogenous S1P could be involved in the process. Analysis of SynI immunoreactivity showed that exposure to microglial MVs induces SynI mobilization at presynaptic sites and growth cones, whereas the use of inhibitors of sphingolipid cascade identified S1P as the sphingolipid mediating SynI redistribution. Our data represent the first demonstration that S1P induces SynI mobilization from synapses, thereby indicating the phosphoprotein as a novel target through which S1P controls exocytosis. SIGNIFICANCE STATEMENT: Growing evidence indicates that the bioactive lipid sphingosine and its metabolite sphingosine-1-P (S1P) stimulate excitatory transmission. While it has been recently clarified that sphingosine influences directly the exocytotic machinery by activating the synaptic vesicle protein VAMP2 to form SNARE fusion complexes, the molecular mechanism by which S1P promotes neurotransmission remained largely undefined. In this study, we identify Synapsin I, a presynaptic phosphoprotein involved in the control of availability of synaptic vesicles for exocytosis, as the key target of S1P action. In addition, we provide evidence that S1P can be produced at mature axon terminals as well as at immature growth cones in response to microglia-derived signals, which may be important to stabilize nascent synapses and to restore or potentiate transmission.


Assuntos
Lisofosfolipídeos/fisiologia , Terminações Pré-Sinápticas/metabolismo , Esfingosina/análogos & derivados , Sinapses/metabolismo , Sinapsinas/biossíntese , Animais , Células Cultivadas , Feminino , Hipocampo/química , Hipocampo/citologia , Hipocampo/metabolismo , Lisofosfolipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terminações Pré-Sinápticas/química , Ratos , Ratos Sprague-Dawley , Esfingosina/análise , Esfingosina/fisiologia , Sinapses/química , Sinapsinas/análise
9.
Sci Rep ; 5: 15444, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26487282

RESUMO

Increasing evidence suggests that recurrent Herpes Simplex Virus type 1 (HSV-1) infection spreading to the CNS is a risk factor for Alzheimer's Disease (AD) but the underlying mechanisms have not been fully elucidated yet. Here we demonstrate that in cultured mouse cortical neurons HSV-1 induced Ca(2+)-dependent activation of glycogen synthase kinase (GSK)-3. This event was critical for the HSV-1-dependent phosphorylation of amyloid precursor protein (APP) at Thr668 and the following intraneuronal accumulation of amyloid-ß protein (Aß). HSV-1-infected neurons also exhibited: i) significantly reduced expression of the presynaptic proteins synapsin-1 and synaptophysin; ii) depressed synaptic transmission. These effects depended on GSK-3 activation and intraneuronal accumulation of Aß. In fact, either the selective GSK-3 inhibitor, SB216763, or a specific antibody recognizing Aß (4G8) significantly counteracted the effects induced by HSV-1 at the synaptic level. Moreover, in neurons derived from APP KO mice and infected with HSV-1 Aß accumulation was not found and synaptic protein expression was only slightly reduced when compared to wild-type infected neurons. These data further support our contention that HSV-1 infections spreading to the CNS may contribute to AD phenotype.


Assuntos
Doença de Alzheimer/virologia , Peptídeos beta-Amiloides/metabolismo , Quinase 3 da Glicogênio Sintase/biossíntese , Sinapsinas/biossíntese , Sinaptofisina/biossíntese , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/patologia , Córtex Cerebral/virologia , Regulação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/genética , Herpesvirus Humano 1/patogenicidade , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , Fatores de Risco , Sinapsinas/genética , Transmissão Sináptica/genética , Sinaptofisina/genética
10.
FASEB J ; 29(9): 3713-25, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26018677

RESUMO

Deficiency in the methyl donors vitamin B12 and folate during pregnancy and postnatal life impairs proper brain development. We studied the consequences of this combined deficiency on cerebellum plasticity in offspring from rat mothers subjected to deficient diet during gestation and lactation and in rat neuroprogenitor cells expressing cerebellum markers. The major proteomic change in cerebellum of 21-d-old deprived females was a 2.2-fold lower expression of synapsins, which was confirmed in neuroprogenitors cultivated in the deficient condition. A pathway analysis suggested that these proteomic changes were related to estrogen receptor α (ER-α)/Src tyrosine kinase. The influence of impaired ER-α pathway was confirmed by abnormal negative geotaxis test at d 19-20 and decreased phsophorylation of synapsins in deprived females treated by ER-α antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride (MPP). This effect was consistent with 2-fold decreased expression and methylation of ER-α and subsequent decreased ER-α/PPAR-γ coactivator 1 α (PGC-1α) interaction in deficiency condition. The impaired ER-α pathway led to decreased expression of synapsins through 2-fold decreased EGR-1/Zif-268 transcription factor and to 1.7-fold reduced Src-dependent phosphorylation of synapsins. The treatment of neuroprogenitors with either MPP or PP1 (4-(4'-phenoxyanilino)-6,7-dimethoxyquinazoline, 6,7-dimethoxy-N-(4-phenoxyphenyl)-4-quinazolinamine, SKI-1, Src-l1) Src inhibitor produced similar effects. In conclusion, the deficiency during pregnancy and lactation impairs the expression of synapsins through a deregulation of ER-α pathway.


Assuntos
Encéfalo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Deficiência de Ácido Fólico , Regulação da Expressão Gênica no Desenvolvimento , Lactação , Sinapsinas/biossíntese , Deficiência de Vitamina B 12 , Animais , Encéfalo/embriologia , Encéfalo/patologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , PPAR gama/metabolismo , Gravidez , Ratos
11.
Cell Rep ; 11(2): 234-48, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25843720

RESUMO

Synapsin III (SynIII) is a phosphoprotein that is highly expressed at early stages of neuronal development. Whereas in vitro evidence suggests a role for SynIII in neuronal differentiation, in vivo evidence is lacking. Here, we demonstrate that in vivo downregulation of SynIII expression affects neuronal migration and orientation. By contrast, SynIII overexpression affects neuronal migration, but not orientation. We identify a cyclin-dependent kinase-5 (CDK5) phosphorylation site on SynIII and use phosphomutant rescue experiments to demonstrate its role in SynIII function. Finally, we show that SynIII phosphorylation at the CDK5 site is induced by activation of the semaphorin-3A (Sema3A) pathway, which is implicated in migration and orientation of cortical pyramidal neurons (PNs) and is known to activate CDK5. Thus, fine-tuning of SynIII expression and phosphorylation by CDK5 activation through Sema3A activity is essential for proper neuronal migration and orientation.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Quinase 5 Dependente de Ciclina/genética , Semaforina-3A/biossíntese , Sinapsinas/genética , Animais , Proteína C-Reativa/genética , Células COS , Movimento Celular/genética , Chlorocebus aethiops , Quinase 5 Dependente de Ciclina/biossíntese , Dendritos/genética , Dendritos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/genética , Fosforilação , Cultura Primária de Células , Células Piramidais/citologia , Células Piramidais/metabolismo , Ratos , Semaforina-3A/genética , Transdução de Sinais , Sinapsinas/biossíntese
12.
Artigo em Inglês | MEDLINE | ID: mdl-25729353

RESUMO

Although many potential neuroplasticity based therapies have been developed in the lab, few have translated into established clinical treatments for human neurologic or neuropsychiatric diseases. Animal models, especially of the visual system, have shaped our understanding of neuroplasticity by characterizing the mechanisms that promote neural changes and defining timing of the sensitive period. The lack of knowledge about development of synaptic plasticity mechanisms in human cortex, and about alignment of synaptic age between animals and humans, has limited translation of neuroplasticity therapies. In this study, we quantified expression of a set of highly conserved pre- and post-synaptic proteins (Synapsin, Synaptophysin, PSD-95, Gephyrin) and found that synaptic development in human primary visual cortex (V1) continues into late childhood. Indeed, this is many years longer than suggested by neuroanatomical studies and points to a prolonged sensitive period for plasticity in human sensory cortex. In addition, during childhood we found waves of inter-individual variability that are different for the four proteins and include a stage during early development (<1 year) when only Gephyrin has high inter-individual variability. We also found that pre- and post-synaptic protein balances develop quickly, suggesting that maturation of certain synaptic functions happens within the 1 year or 2 of life. A multidimensional analysis (principle component analysis) showed that most of the variance was captured by the sum of the four synaptic proteins. We used that sum to compare development of human and rat visual cortex and identified a simple linear equation that provides robust alignment of synaptic age between humans and rats. Alignment of synaptic ages is important for age-appropriate targeting and effective translation of neuroplasticity therapies from the lab to the clinic.


Assuntos
Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Proteínas de Transporte/biossíntese , Criança , Pré-Escolar , Proteína 4 Homóloga a Disks-Large , Feminino , Humanos , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Masculino , Proteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Análise de Componente Principal , Ratos , Sinapsinas/biossíntese , Sinaptofisina/biossíntese , Adulto Jovem
13.
Neurochem Res ; 40(3): 524-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576091

RESUMO

Synapsins as a family of presynaptic terminal phosphoprotein participates in neuronal development, but their role in the synaptic plasticity of visual cortex is unclear. In this study, the impact of monocular deprivation (MD) on dynamic changes of isoform-specific protein expression and site 1 phosphorylation of synapsins in visual cortex of the postnatal mice were observed by using the technique of Western blot analysis. The results showed that the total (T-) protein levels of synapsins including the isoform of Ia/b, IIa/b and IIIa were about 21-26% of adult level in visual cortex of mice at postnatal 7 days (P7), and then the T-synapsin Ia/b and IIb could quickly reach adult level at P35. However, the T-synapsin IIa and IIIa increased more slowly (71-74% at P35), and then kept increasing in the visual cortex of mice at P60. Unlike to the changes of T-synapsins, the level of phosphorylated (P-) synapsin Ia/b (not IIa/b and IIIa) at site 1 increased with development to the highest level at P21, and then decreased rapidly to a low level in visual cortex of mice at P35-60. In addition, we found that the levels of P-synapsin Ia/b increased significantly in left visual cortex of P28 and P35 (not P21 and P42) mice with 1-week MD of right eye; and no significant changes of T-synapsins were observed in both left and right sides of visual cortex in P21-42 mice with MD treatment. These results suggested that the isoform-specific protein expression and site-1 phosphorylation of synapsins might play a different role in the synaptic plasticity of visual cortex, and MD delays the dynamic changes of phosphorylated synapsin Ia/b at site-1 in contralateral visual cortex of juvenile mice.


Assuntos
Lateralidade Funcional/fisiologia , Sinapsinas/biossíntese , Visão Monocular/fisiologia , Córtex Visual/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Privação Sensorial/fisiologia
14.
J Chem Neuroanat ; 63: 1-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445382

RESUMO

OBJECTIVE: This study was to explore the molecular mechanisms underpinning the synergetic effect between ß-amyloid (Aß) and α-synuclein (α-syn) on synapses dysfunction during the development of neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). METHODS: The primary cultured hippocampal neurons prepared from the fetal tissue of mice were divided into six groups and treated with DMSO, Aß(42-1), α-syn, Aß(1-42), α-syn plus Aß(42-1) and α-syn plus Aß(1-42), respectively. After incubation for 24 h, the synapsin I content was calculated by immunofluorescence and the synaptic vesicle recycling was monitored by FM1-43 staining. Furthermore, the expression of cysteine string protein-α (CSPα) detected by western blot was also conducted. RESULTS: Either Aß(1-42) or α-syn alone could induce a significant synapses dysfunction through reducing the content of synapsin I, inhibiting the synaptic vesicle recycling as well as down-regulating the expression of CSPα compared with the controls (P<0.05). However, simultaneous intervention with both α-syn and Aß(1-42) aggravated these effects in cultured hippocampal neurons compared with the treatment with α-syn (synapsin I content: P<0.001; synaptic vesicle recycling: P=0.007; CSPα expression: P<0.001) or Aß(1-42) (synapsin I number: P<0.001; synaptic vesicle recycling: P=0.007 CSPα expression: P<0.001) alone. CONCLUSION: There was synergistic effect between Aß and α-syn on synapses dysfunction through reducing the synapsin I content, inhibiting the synaptic vesicle recycling and down-regulating the expression of CSPα in several neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Neurônios/efeitos dos fármacos , Sinapses/efeitos dos fármacos , alfa-Sinucleína/toxicidade , Animais , Western Blotting , Células Cultivadas , Imunofluorescência , Proteínas de Choque Térmico HSP40/biossíntese , Proteínas de Choque Térmico HSP40/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/efeitos dos fármacos , Camundongos , Doenças Neurodegenerativas/fisiopatologia , Sinapsinas/biossíntese , Sinapsinas/efeitos dos fármacos , Vesículas Sinápticas/efeitos dos fármacos
15.
Int J Neurosci ; 124(2): 117-24, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23848990

RESUMO

OBJECTIVE: To observe the effect of pregnenolone (PREG) intervention on the cholinergic system function and the synaptic protein 1 (SYP1) expression in different brain regions of aged rats. METHOD: Twenty-four-month-old male Sprague Dawley rats intraperitoneally injected every other day for one month were divided into blank control group, solvent control group, PREG (0.5 mg/kg) intervention group and PREG (2.0 mg/kg) intervention group. The rats were sacrificed 2 d after the intervention and the corresponding regions of brain tissue were separated and cryopreserved. Western blot analysis was used to detect the expression level of choline acetyltransferase (ChAT), SYP1, serum PREG and the activity of ChAT and acetylcholinesterase (AChE) in different brain regions. In addition, the semiquantitative changes in the expression level of ChAT and SYP1 in frontal lobe and hippocampus were tested by immunohistochemistry. RESULT: Western blot and immunohistochemistry analysis showed that PREG (2.0 mg/kg) administration led to a significant increase of ChAT and SYP1 expressions in frontal lobe, temporal lobe, and hippocampus regions (p < 0.05). The result of enzyme-linked immunosorbent assay showed that PREG (2.0 mg/kg) administration significantly increased ChAT activity and serum PREG levels and caused a decrease in AChE activity (p < 0.05); while PREG (0.5 mg/kg) only elevated levels of serum PREG. CONCLUSION: PREG significantly improved the synaptic plasticity of memory-related brain areas of aged rats, significantly increased brain cholinergic activity and thus helps to improve learning and memory in aged rats.


Assuntos
Envelhecimento/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Pregnenolona/farmacologia , Sinapsinas/biossíntese , Acetilcolinesterase/biossíntese , Envelhecimento/metabolismo , Animais , Colina O-Acetiltransferase/biossíntese , Neurônios Colinérgicos/metabolismo , Relação Dose-Resposta a Droga , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Pregnenolona/sangue , Ratos , Lobo Temporal/metabolismo
16.
J Psychopharmacol ; 27(10): 930-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23863923

RESUMO

The putative antidepressant captodiamine is a 5-HT2c receptor antagonist and agonist at sigma-1 and D3 dopamine receptors, exerts an anti-immobility action in the forced swim paradigm, and enhances dopamine turnover in the frontal cortex. Captodiamine has also been found to ameliorate stress-induced anhedonia, reduce the associated elevations of hypothalamic corticotrophin-releasing factor (CRF) and restore the reductions in hypothalamic BDNF expression. Here we demonstrate chronic administration of captodiamine to have no significant effect on hypothalamic CRF expression through sigma-1 receptor agonism; however, both sigma-1 receptor agonism or 5-HT2c receptor antagonism were necessary to enhance BDNF expression. Regulation of BDNF expression by captodiamine was associated with increased phosphorylation of transcription factor CREB and mediated through sigma-1 receptor agonism but blocked by 5-HT2c receptor antagonism. The existence of two separate signalling pathways was confirmed by immunolocalisation of each receptor to distinct cell populations in the paraventricular nucleus of the hypothalamus. Increased BDNF induced by captodiamine was also associated with enhanced expression of synapsin, but not PSD-95, suggesting induction of long-term structural plasticity between hypothalamic synapses. These unique features of captodiamine may contribute to its ability to ameliorate stress-induced anhedonia as the hypothalamus plays a prominent role in regulating HPA axis activity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Etilaminas/farmacologia , Hipotálamo/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Receptores sigma/agonistas , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Sulfetos/farmacologia , Animais , Antidepressivos/agonistas , Antidepressivos/antagonistas & inibidores , Antidepressivos/farmacologia , Proteína de Ligação a CREB/metabolismo , Carbazóis/farmacologia , Hormônio Liberador da Corticotropina/biossíntese , Proteína 4 Homóloga a Disks-Large , Interações Medicamentosas , Regulação da Expressão Gênica/efeitos dos fármacos , Guanilato Quinases/biossíntese , Hipotálamo/efeitos dos fármacos , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Fosforilação/efeitos dos fármacos , Ritanserina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sinapsinas/biossíntese , Receptor Sigma-1
17.
Artigo em Inglês | MEDLINE | ID: mdl-23754984

RESUMO

Two theories have influenced our understanding of cortical development: the integrated network theory, where synaptic development is coordinated across areas; and the cascade theory, where the cortex develops in a wave-like manner from sensory to non-sensory areas. These different views on cortical development raise challenges for current studies aimed at comparing detailed maturation of the connectome among cortical areas. We have taken a different approach to compare synaptic development in rat visual, somatosensory, and frontal cortex by measuring expression of pre-synaptic (synapsin and synaptophysin) proteins that regulate vesicle cycling, and post-synaptic density (PSD-95 and Gephyrin) proteins that anchor excitatory or inhibitory (E-I) receptors. We also compared development of the balances between the pairs of pre- or post-synaptic proteins, and the overall pre- to post-synaptic balance, to address functional maturation and emergence of the E-I balance. We found that development of the individual proteins and the post-synaptic index overlapped among the three cortical areas, but the pre-synaptic index matured later in frontal cortex. Finally, we applied a neuroinformatics approach using principal component analysis and found that three components captured development of the synaptic proteins. The first component accounted for 64% of the variance in protein expression and reflected total protein expression, which overlapped among the three cortical areas. The second component was gephyrin and the E-I balance, it emerged as sequential waves starting in somatosensory, then frontal, and finally visual cortex. The third component was the balance between pre- and post-synaptic proteins, and this followed a different developmental trajectory in somatosensory cortex. Together, these results give the most support to an integrated network of synaptic development, but also highlight more complex patterns of development that vary in timing and end point among the cortical areas.


Assuntos
Lobo Frontal/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Córtex Somatossensorial/metabolismo , Sinapses/metabolismo , Córtex Visual/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Transporte/biossíntese , Proteína 4 Homóloga a Disks-Large , Lobo Frontal/crescimento & desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas de Membrana/biossíntese , Ratos , Ratos Long-Evans , Córtex Somatossensorial/crescimento & desenvolvimento , Sinapsinas/biossíntese , Sinaptofisina/biossíntese , Córtex Visual/crescimento & desenvolvimento
18.
Brain Res ; 1486: 53-61, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23022567

RESUMO

Stroke is a leading cause of morbidity and mortality worldwide. Recovery of motor function after stroke can be modified by post-injury experience, but most of surviving patients exhibit persistence of the motor dysfunctions even after rehabilitative therapy. In this study we investigated if skilled and unskilled training induce different motor recovery and brain plasticity after experimental focal ischemia. We tested this hypothesis by evaluating the motor skill relearning and the immunocontent of Synapsin-I, PSD-95 and GFAP (pre and post-synaptic elements, as well as surrounding astroglia) in sensorimotor cortex of both hemispheres 6 weeks after endothelin-1-induced focal brain ischemia in rats. Synapsin-I and PSD-95 levels were increased by skilled training in ischemic sensorimotor cortex. The content of GFAP was augmented as a result of focal brain ischemia in ischemic sensorimotor cortex and that was not modified by rehabilitation training. Unexpectedly, animals remained permanently impaired at the end of motor/functional evaluations. Significant modifications in protein expression were not observed in undamaged sensorimotor cortex. We conclude that skilled motor activity can positively affect brain plasticity after focal ischemia despite of no functional improvement in conditions here tested.


Assuntos
Isquemia Encefálica/reabilitação , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatologia , Masculino , Córtex Motor/metabolismo , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Sinapsinas/biossíntese , Sinapsinas/fisiologia
19.
Stem Cell Rev Rep ; 8(4): 1129-37, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23054963

RESUMO

microRNAs (miRNAs) are important modulators in regulating gene expression at the post-transcriptional level and are therefore emerging as strong mediators in neural fate determination. Here, by use of the model of human embryonic stem cell (hESC)-derived neurogenesis, miRNAs involved in the differentiation from neural stem cells (hNSC) to neurons were profiled and identified. hNSC were differentiated into the neural lineage, out of which the neuronal subset was enriched through cell sorting based on select combinatorial biomarkers: CD15-/CD29(Low)/CD24(High). This relatively pure and viable subpopulation expressed the neuronal marker ß III-tubulin. The miRNA array demonstrated that a number of miRNAs were simultaneously induced or suppressed in neurons, as compared to hNSC. Real-time PCR further validated the decrease in levels of miR214, but increase in brain-specific miR7 and miR9 in the derived neurons. For functional studies, hNSC were stably transduced with lentiviral vectors carrying specific constructs to downregulate miR214 or to upregulate miR7. Manipulation of either miR214 or miR7 did not affect the expression of ß III-tubulin or neurofilament, however miR7 overexpression gave rise to enhanced synapsin expression in the derived neurons. This indicated that miR7 might play an important role in neurite outgrowth and synapse formation. In conclusion, our data demonstrate that miRNAs function as important modulators in neural lineage determination. These studies shed light on strategies to optimize in vitro differentiation efficiencies to mature neurons for use in drug discovery studies and potential future clinical applications.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , MicroRNAs/biossíntese , Células-Tronco Neurais/metabolismo , Regulação para Cima , Animais , Antígenos CD/biossíntese , Linhagem Celular , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Humanos , Camundongos , Células-Tronco Neurais/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Sinapsinas/biossíntese , Tubulina (Proteína)/biossíntese
20.
PLoS One ; 7(2): e32298, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384207

RESUMO

We have investigated the effects of a spinal cord injury on the brain and spinal cord, and whether exercise provided before the injury could organize a protective reaction across the neuroaxis. Animals were exposed to 21 days of voluntary exercise, followed by a full spinal transection (T7-T9) and sacrificed two days later. Here we show that the effects of spinal cord injury go beyond the spinal cord itself and influence the molecular substrates of synaptic plasticity and learning in the brain. The injury reduced BDNF levels in the hippocampus in conjunction with the activated forms of p-synapsin I, p-CREB and p-CaMK II, while exercise prior to injury prevented these reductions. Similar effects of the injury were observed in the lumbar enlargement region of the spinal cord, where exercise prevented the reductions in BDNF, and p-CREB. Furthermore, the response of the hippocampus to the spinal lesion appeared to be coordinated to that of the spinal cord, as evidenced by corresponding injury-related changes in BDNF levels in the brain and spinal cord. These results provide an indication for the increased vulnerability of brain centers after spinal cord injury. These findings also imply that the level of chronic activity prior to a spinal cord injury could determine the level of sensory-motor and cognitive recovery following the injury. In particular, exercise prior to the injury onset appears to foster protective mechanisms in the brain and spinal cord.


Assuntos
Encéfalo/fisiologia , Regulação da Expressão Gênica , Condicionamento Físico Animal , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiologia , Análise de Variância , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Hipocampo/metabolismo , Aprendizagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Plasticidade Neuronal , Sinapses/patologia , Sinapsinas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA