Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 396
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731930

RESUMO

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Assuntos
Regulação da Expressão Gênica de Plantas , Manihot , Proteínas de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Etilenos/metabolismo
2.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710564

RESUMO

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Assuntos
Amilopectina , Amilose , Sintase do Amido , Triticum , Triticum/metabolismo , Triticum/química , Triticum/genética , Amilopectina/química , Amilopectina/biossíntese , Amilose/química , Amilose/biossíntese , Sintase do Amido/genética , Sintase do Amido/metabolismo , Sintase do Amido/química , Amido/química , Amido/biossíntese , Amido/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Brief Funct Genomics ; 23(3): 193-213, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38751352

RESUMO

Starch is a significant ingredient of the seed endosperm with commercial importance in food and industry. Crop varieties with glutinous (waxy) grain characteristics, i.e. starch with high amylopectin and low amylose, hold longstanding cultural importance in some world regions and unique properties for industrial manufacture. The waxy character in many crop species is regulated by a single gene known as GBSSI (or waxy), which encodes the enzyme Granule Bound Starch Synthase1 with null or reduced activity. Several allelic variants of the waxy gene that contribute to varying levels of amylose content have been reported in different crop plants. Phylogenetic analysis of protein sequences and the genomic DNA encoding GBSSI of major cereals and recently sequenced millets and pseudo-cereals have shown that GBSSI orthologs form distinct clusters, each representing a separate crop lineage. With the rapidly increasing demand for waxy starch in food and non-food applications, conventional crop breeding techniques and modern crop improvement technologies such as gene silencing and genome editing have been deployed to develop new waxy crop cultivars. The advances in research on waxy alleles across different crops have unveiled new possibilities for modifying the synthesis of amylose and amylopectin starch, leading to the potential creation of customized crops in the future. This article presents molecular lines of evidence on the emergence of waxy genes in various crops, including their genesis and evolution, molecular structure, comparative analysis and breeding innovations.


Assuntos
Produtos Agrícolas , Sintase do Amido , Produtos Agrícolas/genética , Sintase do Amido/genética , Sintase do Amido/metabolismo , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amilose/metabolismo , Amilose/genética , Amilopectina/metabolismo , Amilopectina/genética , Filogenia , Amido/metabolismo , Amido/genética , Amido/biossíntese
4.
Plant Mol Biol ; 114(3): 50, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656412

RESUMO

Amylose biosynthesis is strictly associated with granule-bound starch synthase I (GBSSI) encoded by the Waxy gene. Mutagenesis of single bases in the Waxy gene, which induced by CRISPR/Cas9 genome editing, caused absence of intact GBSSI protein in grain of the edited line. The amylose and amylopectin contents of waxy mutants were zero and 31.73%, while those in the wild type were 33.50% and 39.00%, respectively. The absence of GBSSI protein led to increase in soluble sugar content to 37.30% compared with only 10.0% in the wild type. Sucrose and ß-glucan, were 39.16% and 35.40% higher in waxy mutants than in the wild type, respectively. Transcriptome analysis identified differences between the wild type and waxy mutants that could partly explain the reduction in amylose and amylopectin contents and the increase in soluble sugar, sucrose and ß-glucan contents. This waxy flour, which showed lower final viscosity and setback, and higher breakdown, could provide more option for food processing.


Assuntos
Amilose , Edição de Genes , Hordeum , Proteínas de Plantas , Sintase do Amido , Amilose/metabolismo , Hordeum/genética , Hordeum/metabolismo , Edição de Genes/métodos , Sintase do Amido/genética , Sintase do Amido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistemas CRISPR-Cas , Amilopectina/metabolismo , Sacarose/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , beta-Glucanas/metabolismo , Plantas Geneticamente Modificadas , Solubilidade
5.
Genes (Basel) ; 15(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674335

RESUMO

The starch synthase (SS) plays important roles in regulating plant growth and development and responding to adversity stresses. Although the SS family has been studied in many crops, it has not been fully identified in sweet potato and its two related species. In the present study, eight SSs were identified from Ipomoea batatas (I. batata), Ipomoea trifida (I. trifida), and Ipomoea trlioba (I. trlioba), respectively. According to the phylogenetic relationships, they were divided into five subgroups. The protein properties, chromosomal location, phylogenetic relationships, gene structure, cis-elements in the promoter, and interaction network of these proteins were also analyzed; stress expression patterns were systematically analyzed; and real-time polymerase chain reaction (qRT-PCR) analysis was performed. Ipomoea batatas starch synthase (IbSSs) were highly expressed in tuber roots, especially Ipomoea batatas starch synthase 1 (IbSS1) and Ipomoea batatas starch synthase 6 (IbSS6), which may play an important role in root development and starch biosynthesis. At the same time, the SS genes respond to potassium deficiency, hormones, cold, heat, salt, and drought stress. This study offers fresh perspectives for enhancing knowledge about the roles of SSs and potential genes to enhance productivity, starch levels, and resistance to environmental stresses in sweet potatoes.


Assuntos
Regulação da Expressão Gênica de Plantas , Ipomoea batatas , Filogenia , Proteínas de Plantas , Sintase do Amido , Sintase do Amido/genética , Sintase do Amido/metabolismo , Ipomoea batatas/genética , Ipomoea batatas/crescimento & desenvolvimento , Ipomoea batatas/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Família Multigênica , Genoma de Planta/genética , Ipomoea/genética
6.
Carbohydr Polym ; 331: 121860, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388056

RESUMO

Potato starch with mutations in starch branching enzyme genes (SBEI, SBEII) and granule-bound starch synthase gene (GBSS) was characterized for molecular and thermal properties. Mutations in GBSS were here stacked to a previously developed SBEI and SBEII mutation line. Additionally, mutations in the GBSS gene alone were induced in the wild-type variety for comparison. The parental line with mutations in the SBE genes showed a âˆ¼ 40 % increase in amylose content compared with the wild-type. Mutations in GBSS-SBEI-SBEII produced non-waxy, low-amylose lines compared with the wild-type. An exception was a line with one remaining GBSS wild-type allele, which displayed ∼80 % higher amylose content than wild-type. Stacked mutations in GBSS in the SBEI-SBEII parental line caused alterations in amylopectin chain length distribution and building block size categories of whole starch. Correlations between size categories of building blocks and unit chains of amylopectin were observed. Starch in GBSS-SBEI-SBEII mutational lines had elevated peak temperature of gelatinization, which was positively correlated with large building blocks.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Solanum tuberosum , Sintase do Amido , Amilopectina/química , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose , Solanum tuberosum/metabolismo , Estrutura Molecular , Amido/química , Mutação , Enzima Ramificadora de 1,4-alfa-Glucana/química
7.
Int J Biol Macromol ; 253(Pt 8): 127589, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871724

RESUMO

Starch is a branched polymer of glucose with two components, both of which have (1 â†’ 4)-α linear links and (1 â†’ 6)-α branch points: amylopectin, of high molecular weight with many short branches, and amylose, of lower molecular weight and only a few long-chain branches. Granule-bound starch synthase I (GBSSI) is one of the main enzymes controlling amylose synthesis and chain-length distribution. As production of different GBSSI mutants is time-consuming and laborious, molecular dynamics (MD) simulations are used here to predict the binding of different GBSSI mutants to a representative amylose fragment. The simulations were atomistic, with explicit solvent and docking, a method successfully used to understand the binding of wild-type GBSSI to amylose fragments. The binding of GBSSI to G5 (a pentasaccharide amylose fragment) is combined with free-energy calculations employing a thermodynamic integration method to predict the effects of mutations on enzyme activity. Ten GBSSI mutants with different enzyme activities were analyzed to find the structural and energy changes among different single amino-acid mutants and their possible relationship to starch characteristics. Comparing the structural changes and the relative binding free energy of G5 to the wild type GBSSI and GBSSI mutants, it was found that mutants with negative binding energy (lower than -2.0 kcal/mol) are more likely to have higher enzyme activity and amylose content compared to the wild type. This theoretical paper used simulations and robust free energy calculations to interpret in planta data with potential predictions as to what mutants might be generated to give desired properties. This study can be used to help develop grains with improved functional properties.


Assuntos
Amilose , Sintase do Amido , Amilose/química , Sintase do Amido/genética , Amido/química , Amilopectina
8.
Plant Sci ; 336: 111843, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648115

RESUMO

Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.


Assuntos
Sintase do Amido , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose , Amido
9.
Transgenic Res ; 32(5): 383-397, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37330986

RESUMO

CRISPR/Cas9 technology has become the most efficient method for genome editing in many plant species, including important industrial crops such as potatoes. This study used three target regions (T1, T2, and T3) in gbss exon I, whose sequences were first inserted into the BbsI sites in the appropriate guide RNA (gRNA) vector (pEn-Chimera, pMR203, pMR204, and pMR205), and then localized between the AtU6 promoter and the gRNA scaffold sequence. Expression vectors were constructed by introducing gRNA genes into the pMR287 (pYUCas9Plus) plasmids using the MultiSite Gateway system by attR and attL sites. The three target regions of mutant potato lines were analyzed. The use of CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis allowed tri- or tetra-allelic mutant potato lines to be generated. Multiple nucleotide substitutions and indels within and around the three target sites caused a frameshift mutation that led to a premature stop codon, resulting in the production of gbss-knockout plants. Mutation frequencies and analysis of mutation patterns suggested that the stably transformed Cas9/multiple guide RNA expression constructs used in this study can induce targeted mutations efficiently in the potato genome. Full knockout of the gbss gene was analyzed by CAPS, Sanger sequencing and iodine staining. The present study demonstrated successful CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato gbss gene by Agrobacterium-mediated transformation, resulting in an amylose-free phenotype.


Assuntos
Solanum tuberosum , Sintase do Amido , Sistemas CRISPR-Cas/genética , Solanum tuberosum/genética , RNA Guia de Sistemas CRISPR-Cas , Sintase do Amido/genética , Mutagênese/genética
10.
Proc Natl Acad Sci U S A ; 120(19): e2220622120, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37126676

RESUMO

The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.


Assuntos
Diabetes Mellitus Tipo 2 , Oryza , Sintase do Amido , Amido Resistente/metabolismo , Oryza/genética , Sintase do Amido/genética , Melhoramento Vegetal , Amido , Amilose , Proteínas de Plantas/genética
11.
New Phytol ; 239(1): 132-145, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37010093

RESUMO

The control of starch granule initiation in plant leaves is a complex process that requires active enzymes like Starch Synthase 4 and 3 (SS4 or SS3) and several noncatalytic proteins such as Protein Involved in starch Initiation 1 (PII1). In Arabidopsis leaves, SS4 is the main enzyme that control starch granule initiation, but in its absence, SS3 partly fulfills this function. How these proteins collectively act to control the initiation of starch granules remains elusive. PII1 and SS4 physically interact, and PII1 is required for SS4 to be fully active. However, Arabidopsis mutants lacking SS4 or PII1 still accumulate starch granules. Combining pii1 KO mutation with either ss3 or ss4 KO mutations provide new insights of how the remaining starch granules are synthesized. The ss3 pii1 line still accumulates starch, while the phenotype of ss4 pii1 is stronger than that of ss4. Our results indicate first that SS4 initiates starch granule synthesis in the absence of PII1 albeit being limited to one large lenticular granule per plastid. Second, that if in the absence of SS4, SS3 is able to initiate starch granules with low efficiency, this ability is further reduced with the additional absence of PII1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sintase do Amido , Arabidopsis/metabolismo , Amido/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Sintase do Amido/genética , Folhas de Planta/metabolismo , Mutação/genética
12.
Carbohydr Polym ; 308: 120651, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813343

RESUMO

Near-isogenic lines Nip(Wxb/SSII-2), Nip(Wxb/ss2-2), Nip(Wxmw/SSII-2), Nip(Wxmw/ss2-2), Nip(Wxmp/SSII-2) and Nip(Wxmp/ss2-2) in the Nipponbare (Nip) background containing the SSII-2RNAi cassette combined with different Waxy (Wx) alleles were investigated in terms of rice grain transparency and quality profiles. Rice lines carrying the SSII-2RNAi cassette displayed downregulation of SSII-2, SSII-3 and Wx genes. Introduction of the SSII-2RNAi cassette decreased apparent amylose content (AAC) in all transgenic lines, but grain transparency differed between low AAC rice lines. Grains from Nip(Wxb/SSII-2) and Nip(Wxb/ss2-2) were transparent, while those of rice were increasingly translucent with decreasing moisture due to cavities within starch granules. Rice grain transparency was positively correlated with grain moisture and AAC, but negatively correlated with cavity area within starch granules. Starch fine structure analysis revealed a marked increase in short amylopectin chains with DP 6-12, but a decrease in intermediate chains with DP 13-24, resulting in decreased gelatinisation temperature. Starch crystalline structure analysis showed that the transgenic rice starches have lower crystallinity and lamellar repeat distance than controls due to differences in starch fine structure. The results highlight the molecular basis underpinning rice grain transparency, and provide strategies for improving rice grain transparency.


Assuntos
Oryza , Sintase do Amido , Oryza/química , Alelos , Sintase do Amido/genética , Amido/química , Amilopectina/química , Amilose , Grão Comestível , Proteínas de Plantas/genética
13.
Plant Sci ; 328: 111567, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36526029

RESUMO

A chalky endosperm mutant (GM03) induced from an indica rice GLA4 was used to investigate the functional gene in starch biosynthesis. Bulked segregant analysis and sanger sequencing determined that a novel mutation in soluble starch synthase IIIa (SSIIIa) is responsible for the chalky phenotype in GM03. Complementary test by transforming the active SSIIIa gene driven by its native promoter to GM03 recovered the phenotype to its wildtype. The expression of SSIIIa was significantly decreased, while SSIIIa protein was not detected in GM03. The mutation of SSIIIa led to increased expression of most of starch synthesis related genes and elevated the levels of most of proteins in GM03. The CRISPR/Cas9 technology was used for targeted disruption of SSIIIa, and the mutant lines exhibited chalky endosperm which phenocopied the GM03. Additionally, the starch fine structure in the knockout mutant lines ss3a-1 and ss3a-2 was similar with the GM03, which showed increased amylose content, higher proportions of B1 and B2 chains, much lower proportions of B3 chains and decreased degree of crystallinity, leading to altered thermal properties with lower gelatinization temperature and enthalpy. Collectively, these results suggested that SSIIIa plays an important role in starch synthesis by elongating amylopectin long chains in rice.


Assuntos
Oryza , Sintase do Amido , Amilopectina/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo , Oryza/genética , Oryza/metabolismo , Alelos , Amido/metabolismo , Amilose/metabolismo
14.
Plant Cell Physiol ; 64(1): 94-106, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36222360

RESUMO

Rice is the model C3 crop for investigating the starch biosynthesis mechanism in endosperm because of its importance in grain production. However, little is known about starch biosynthesis in the vegetative organs of rice. In this study, we used novel rice mutants by inserting Tos17 into the starch synthase (SS) IIIb gene, which is mainly expressed in the leaf sheath (LS) and leaf blade (LB), and an ss1 mutant to clarify the differences in roles among SS isozymes during starch biosynthesis. Native polyacrylamide gel electrophoresis (PAGE)/activity staining for SS, using LS and LB of ss mutants, revealed that the lowest migrating SS activity bands on the gel were derived from SSIIIb activity and those of two ss3b mutants were not detected. The apparent amylose content of LS starch of ss3b mutants increased. Moreover, the chain-length distribution and size-exclusion chromatography analysis using ss mutants showed that SSIIIb and SSI synthesize the B2-B3 chain and A-B1 chain of amylopectin in the LS and LB respectively. Interestingly, we also found that starch contents were decreased in the LS and LB of ss3b mutants, although SSI deficiency did not affect the starch levels. All these results indicated that SSIIIb synthesizes the long chain of amylopectin in the LS and LB similar to SSIIIa in the endosperm, while SSI synthesizes the short chain in the vegetative organ as the same in the endosperm.


Assuntos
Oryza , Sintase do Amido , Amilopectina , Oryza/genética , Sintase do Amido/genética , Sementes/genética , Amido , Amilose
15.
Funct Integr Genomics ; 23(1): 20, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564499

RESUMO

Amylose fraction of grain starch is correlated with a type of resistant starch with better nutritional quality. Granule-bound starch synthase I (GBSSI) is the known starch synthase, responsible for elongation of linear amylose chains. GBSSI expression, activity, and binding to starch and other proteins are the key factors that can affect amylose content. Previously, a QTL, qhams7A.1 carrying GBSSI mutant allele, was identified through QTL mapping using F2 population of the high amylose mutant line, 'TAC 75'. This high amylose mutant line has >2-fold higher amylose content than wild variety 'C 306'. In this study, we characterized this novel mutant allele, GBSSI.L539P. In vitro starch synthase activity of GBSSI.L539P showed improved activity than the wild type (GBSSI-wt). When expressed in yeast glycogen synthase mutants (Δgsy1gsy2), GBSSI-wt and GBSSI.L539P partially complemented the glycogen synthase (gsy1gsy2) activity in yeast. Structural analysis by circular dichroism (CD) and homology modelling showed no significant structural distortion in the mutant enzyme. Molecular docking studies suggested that the residue Leu539 is distant from the catalytic active site (ADP binding pocket) and had no detectable conformational changes in active site. Both wild and mutant enzymes were assayed for starch binding in vitro, and demonstrating higher affinity of the GBSSI.L539P mutant for starch than the wild type. The present study indicated that distant residue (L539P) influenced GBSSI activity by affecting its starch-binding ability. Therefore, it may be a potential molecular target for enhanced amylose content in grain.


Assuntos
Sintase do Amido , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amilose/metabolismo , Triticum/metabolismo , Glicogênio Sintase/metabolismo , Alelos , Simulação de Acoplamento Molecular , Saccharomyces cerevisiae/metabolismo , Amido
16.
BMC Plant Biol ; 22(1): 486, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224553

RESUMO

BACKGROUND: The timing of bud break is very important for the flowering and fruiting of longan. To obtain new insights into the underlying regulatory mechanism of bud break in longan, a comparative analysis was conducted in three flower induction stages of two longan varieties with opposite flowering phenotypes by using isobaric tags for relative and absolute quantification (iTRAQ). RESULTS: In total, 3180 unique proteins were identified in 18 samples, and 1101 differentially abundant proteins (DAPs) were identified. "SX" ("Shixia"), a common longan cultivated variety that needs an appropriate period of low temperatures to accumulate energy and nutrients for flower induction, had a strong primary inflorescence, had a strong axillary inflorescence, and contained high contents of sugars, and most DAPs during the bud break process were enriched in assimilates and energy metabolism. Combined with our previous transcriptome data, it was observed that sucrose synthase 6 (SS6) and granule-bound starch synthase 1 (GBSSI) might be the key DAPs for "SX" bud break. Compared to those of "SX", the primary inflorescence, axillary inflorescence, floral primordium, bract, and prophyll of "SJ" ("Sijimi") were weaker. In addition, light, rather than a high sugar content or chilling duration, might act as the key signal for triggering bud break. In addition, catalase isozyme 1, an important enzyme in the redox cycle, and RuBisCO, a key enzyme in the Calvin cycle of photosynthetic carbon assimilation, might be the key DAPs for SJ bud break. CONCLUSION: Our results present a dynamic picture of the bud break of longan, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this fruit tree species.


Assuntos
Proteômica , Sintase do Amido , Carbono , Catalase/genética , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Ribulose-Bifosfato Carboxilase/genética , Sapindaceae , Sintase do Amido/genética , Açúcares
17.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232900

RESUMO

The NAC transcription factor (TF) family is one of the largest TF families in plants, which has been widely reported in rice, maize and common wheat. However, the significance of the NAC TF family in wild emmer wheat (Triticum turgidum ssp. dicoccoides) is not yet well understood. In this study, a genome-wide investigation of NAC genes was conducted in the wild emmer genome and 249 NAC family members (TdNACs) were identified. The results showed that all of these genes contained NAM/NAC-conserved domains and most of them were predicted to be located on the nucleus. Phylogenetic analysis showed that these 249 TdNACs can be classified into seven clades, which are likely to be involved in the regulation of grain protein content, starch synthesis and response to biotic and abiotic stresses. Expression pattern analysis revealed that TdNACs were highly expressed in different wheat tissues such as grain, root, leaves and shoots. We found that TdNAC8470 was phylogenetically close to NAC genes that regulate either grain protein or starch accumulation. Overexpression of TdNAC8470 in rice showed increased grain starch concentration but decreased grain Fe, Zn and Mn contents compared with wild-type plants. Protein interaction analysis indicated that TdNAC8470 might interact with granule-bound starch synthase 1 (TdGBSS1) to regulate grain starch accumulation. Our work provides a comprehensive understanding of the NAC TFs family in wild emmer wheat and establishes the way for future functional analysis and genetic improvement of increasing grain starch content in wheat.


Assuntos
Proteínas de Grãos , Oryza , Sintase do Amido , Proteínas de Grãos/metabolismo , Oryza/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Sintase do Amido/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo
18.
J Exp Bot ; 73(19): 6942-6954, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36052968

RESUMO

Head rice yield (HRY) is an essential quality trait, and is sensitive to environmental stresses during the grain-filling, harvest, and postharvest stages. It is therefore important for rice production and global food security to select for superior HRY traits; however, the molecular basis of this trait remains unknown. Using diverse rice germplasm material, we performed a genome-wide association study of grain fissure resistance (GFR), the phenotype most associated with HRY, and found that the granule-bound starch synthase I gene Waxy is an important gene controlling GFR. Analysis of near-isogenic lines demonstrated that genetic variations in Waxy conferred different levels of tolerance to fissuring in grains. The null allele wx resulted in the highest GFR, while alleles that increased amylose synthesis reduced GFR. Increases in amylose content led to increases in the ratio of the widths of the amorphous layer to the semi-crystalline layer of the starch granules, and also to increased occurrence of chalkiness. The layer structure determined GFR by affecting the degree of swelling of granules in response to moisture, and chalkiness acted as an accelerator of moisture infiltration to rapidly increase the number of swelling granules. Our study reveals the molecular basis of GFR and HRY, thus opening the door for further understanding of the molecular networks of GFR and HRY.


Assuntos
Oryza , Sintase do Amido , Oryza/fisiologia , Amilose , Estudo de Associação Genômica Ampla , Ceras , Amido/química , Sintase do Amido/genética , Grão Comestível/genética
19.
J Agric Food Chem ; 70(31): 9802-9816, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35903884

RESUMO

The starch branching enzyme IIb mutant (be2b) in rice significantly increases the resistant starch (RS) content and leads to reduced seed weight. However, the underlying metabolic mechanisms remain unclear. Proteomic analysis indicated that upregulation of starch synthase IIa (SSIIa) and SSIIIa and downregulation of BEI and SSI were possibly responsible for the decreased short amylopectin chains (DP 6-15) and increased longer chains (DP > 16) of be2b starch. The upregulation of granule-bound starch synthase led to increased amylose content (AC). These changes in the amylopectin structure and AC accounted for the increased RS content. α-Amylase 2A showed the strongest upregulation (up to 8.45-fold), indicating that the loss of BEIIb activity enhanced starch degradation. Upregulation of glycolysis-related proteins stimulated carbohydrate repartitioning through glycerate-3-phosphate and promoted the accumulation of tricarboxylic acid cycle intermediates, amino acids, and fatty acids. The unexpected carbohydrate partitioning and enhanced starch degradation resulted in the reduced seed weight in the be2b mutant.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Oryza , Sintase do Amido , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/química , Amilose/química , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica , Amido Resistente , Sementes/genética , Sementes/metabolismo , Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo
20.
J Exp Bot ; 73(18): 6367-6379, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35716106

RESUMO

Recent work has identified several proteins involved in starch granule initiation, the first step of starch synthesis. However, the degree of conservation in the granule initiation process remains poorly understood, especially among grass species differing in patterns of carbohydrate turnover in leaves, and granule morphology in the endosperm. We therefore compared mutant phenotypes of Hordeum vulgare (barley), Triticum turgidum (durum wheat), and Brachypodium distachyon defective in PROTEIN TARGETING TO STARCH 2 (PTST2), a key granule initiation protein. We report striking differences across species and organs. Loss of PTST2 from leaves resulted in fewer, larger starch granules per chloroplast and normal starch content in wheat, fewer granules per chloroplast and lower starch content in barley, and almost complete loss of starch in Brachypodium. The loss of starch in Brachypodium leaves was accompanied by high levels of ADP-glucose and detrimental effects on growth and physiology. Additionally, we found that loss of PTST2 increased granule initiation in Brachypodium amyloplasts, resulting in abnormal compound granule formation throughout the seed. These findings suggest that the importance of PTST2 varies greatly with the genetic and developmental background and inform the extent to which the gene can be targeted to improve starch in crops.


Assuntos
Brachypodium , Hordeum , Sintase do Amido , Amido/metabolismo , Sintase do Amido/genética , Endosperma/metabolismo , Hordeum/genética , Hordeum/metabolismo , Triticum/genética , Triticum/metabolismo , Glucose/metabolismo , Difosfato de Adenosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA