Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Bioinform Comput Biol ; 20(3): 2250008, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35451939

RESUMO

Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide ([Formula: see text]-dependent deacetylase involved in multiple glucose metabolism pathways and plays an important role in the pathogenesis of diabetes mellitus (DM). The enzyme specifically recognizes its deacetylation substrates' peptide segments containing a central acetyl-lysine residue as well as a number of amino acids flanking the central residue. In this study, we attempted to ascertain the minimal sequence requirement (MSR) around the central acetyl-lysine residue of SIRT1 substrate-recognition sites as well as the amino acid preference (AAP) at different residues of the MSR window through quantitative structure-activity relationship (QSAR) strategy, which would benefit our understanding of SIRT1 substrate specificity at the molecular level and is also helpful to rationally design substrate-mimicking peptidic agents against DM by competitively targeting SIRT1 active site. In this procedure, a large-scale dataset containing 6801 13-mer acetyl-lysine peptides (and their SIRT1-catalyized deacetylation activities) were compiled to train 10 QSAR regression models developed by systematic combination of machine learning methods (PLS and SVM) and five amino acids descriptors (DPPS, T-scale, MolSurf, [Formula: see text]-score, and FASGAI). The two best QSAR models (PLS+FASGAI and SVM+DPPS) were then employed to statistically examine the contribution of residue positions to the deacetylation activity of acetyl-lysine peptide substrates, revealing that the MSR can be represented by 5-mer acetyl-lysine peptides that meet a consensus motif [Formula: see text][Formula: see text][Formula: see text](AcK)0[Formula: see text]. Structural analysis found that the [Formula: see text] and (AcK)0 residues are tightly packed against the enzyme active site and confer both stability and specificity for the enzyme-substrate complex, whereas the [Formula: see text], [Formula: see text] and [Formula: see text] residues are partially exposed to solvent but can also effectively stabilize the complex system. Subsequently, a systematic deacetylation activity change profile (SDACP) was created based on QSAR modeling, from which the AAP for each residue position of MSR was depicted. With the profile, we were able to rationally design an SDACP combinatorial library with promising deacetylation activity, from which nine MSR acetyl-lysine peptides as well as two known SIRT1 acetyl-lysine peptide substrates were tested by using SIRT1 deacetylation assay. It is revealed that the designed peptides exhibit a comparable or even higher activity than the controls, although the former is considerably shorter than the latter.


Assuntos
Diabetes Mellitus , Sirtuína 1 , Aminoácidos , Humanos , Lisina/química , Peptídeos/química , Relação Quantitativa Estrutura-Atividade , Sirtuína 1/química
2.
J Assist Reprod Genet ; 38(9): 2349-2361, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33993396

RESUMO

PURPOSE: Implantation is essential for a successful pregnancy. Despite the increasing number of studies, implantation is still an unknown process. This study aimed to determine whether sirtuin-1 has a role in embryo implantation in oxidative stress-induced mice. METHODS: Pregnant mice were separated into 5 groups: control, vehicle, paraquat, SRT1720, and SRT1720+Paraquat. Paraquat is a herbicide and is used to induce oxidative stress. SRT1720 is a specific sirtuin-1 activator. Implantation and inter-implantation sites were removed in the morning of the 5th day of pregnancy after Chicago blue injection was performed. Sirtuin-1 and Forkhead box O1 (FoxO1) were detected by immunohistochemistry and Western blot while acetylated lysine was evaluated by Western blot analysis. Reactive oxygen and nitrogen species (ROS/RNS) and superoxide dismutase (SOD) activity were determined by fluorometric and spectrometric methods, respectively. RESULTS: Although there was no embryo implantation in paraquat-treated mice, 5 out of 9 SRT1720+Paraquat-treated mice had implantation sites which were significantly higher compared to the paraquat-treated group. Sirtuin-1 and FoxO1 expressions were increased at implantation sites of SRT1720-treated mice. ROS/RNS levels were decreased, while deacetylated FoxO1 levels and SOD activity were increased in SRT1720-treated mice. CONCLUSION: Our findings suggest that sirtuin-1 may play a role in embryo implantation against oxidative stress through FoxO1-SOD signaling.


Assuntos
Implantação do Embrião/fisiologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Estresse Oxidativo , Paraquat/toxicidade , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Animais , Implantação do Embrião/efeitos dos fármacos , Feminino , Herbicidas/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Gravidez , Sirtuína 1/química , Sirtuína 1/genética
3.
Front Immunol ; 12: 632383, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981300

RESUMO

Systemic lupus erythematosus (SLE) is a potentially fatal multisystem inflammatory chronic disorder, the etiology and pathogenesis of which remain unclear. The loss of immune tolerance in SLE patients contributes to the production of autoantibodies that attack multiple organs and tissues, such as the skin, joints, and kidneys. Immune cells play important roles in the occurrence and progression of SLE through amplified immune responses. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, has been shown to be a pivotal regulator in various physiological processes, including cell differentiation, apoptosis, metabolism, aging, and immune responses, via modulation of different signaling pathways, such as the nuclear factor κ-light-chain-enhancer of activated B cells and activator protein 1 pathways. Recent studies have provided evidence that SIRT1 could be a regulatory element in the immune system, whose altered functions are likely relevant to SLE development. This review aims to illustrate the functions of SIRT1 in different types of immune cells and the potential roles of SIRT1 in the SLE pathogenesis and its therapeutic perspectives.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , Sirtuína 1/imunologia , Imunidade Adaptativa , Apoptose/efeitos dos fármacos , Humanos , Imunidade Inata , Inflamação , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/patologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Sirtuína 1/química , Sirtuína 1/metabolismo , Sirtuína 1/uso terapêutico
4.
J Chem Inf Model ; 61(3): 1105-1124, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33606530

RESUMO

Sirt1-3 are the most studied sirtuins, playing a key role in caloric-dependent epigenetic modifications. Since they are localized in distinct cellular compartments and act differently under various pathological conditions, selective inhibition would be a promising strategy to understand their biological function and to discover effective therapeutics. Here, sirtuin's inhibitor Ex527* is used as a probe to speculate the possible root cause of selective inhibition and differential structural dynamics of Sirt1-3. Comparative energetics and mutational studies revealed the criticality of residues I279 and I316 for the Sirt1 selectivity toward Ex527*. Furthermore, essential dynamics and residue network analysis revealed that the side-chain reorientation in residue F190 due to nonconserved residue Y191 played a major role in the formation of an extended selectivity pocket in Sirt2. These changes at the dynamical and residual level, which impact the internal wiring significantly, might help in rationally designing selective inhibitors against Sirt1-3.


Assuntos
Sirtuína 1/química , Sirtuína 2/química , Sirtuína 3/química , Sequência de Aminoácidos , Humanos , Conformação Proteica
5.
Neurochem Int ; 142: 104893, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159979

RESUMO

Vitamin D (Vt. D) is one of the vital hormone having multiple functions in various tissues, including brain. Several evidences reported that Vt. D plays a significant part in memory and cognition as its inadequate amount may accelerate cognitive impairment. This study shows for the first time the antioxidant potential of Vt. D against D-Galactose (D-gal) induced oxidative stress mediated Alzheimer disease (AD) pathology in male adult albino mice. The result reveals that the mice exposed to D-gal (120 mg/kg) for eight weeks have pre-and post-synaptic dysfunction and impaired memory investigated through Morris water maze and Y-maze tests. This is followed by the suppressed Nuclear factor erythroid 2-related factor 2 (NRF2), Heme Oxygenase-1 (HO-1) and elevated expressions of Nuclear Factor kappa B (NF-kB), Tumor Necrosis Factor alpha (TNF-α) and Interleukin 1 beta (IL-1ß) proteins in the brain homogenates evaluated through western blotting technique. On the other hand Vt. D (100 µg/kg) administration (three times a week for 4 weeks) activated Silent mating type information regulation 2 homolog 1 (SIRT1) and significantly improved both the neuronal synapse and memory, reduced oxidative stress by upregulating NRF-2 and HO-1 and downregulating NF-kB, TNF-α and IL-1ß proteins expression. Most importantly, Vt. D significantly abrogate the amyloidogenic pathway of amyloid beta (Aß) production against D-gal in the brains of adult male albino mice. These results reveal that Vt. D being an antioxidant agent plays a vital role in reducing the AD pathophysiology in D-gal induced animal model of aging, therefore act as a potential drug candidate in neurodegenerative diseases.


Assuntos
Transtornos da Memória/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Neuroproteção/efeitos dos fármacos , Sirtuína 1/metabolismo , Vitamina D/uso terapêutico , Fatores Etários , Animais , Galactose/toxicidade , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Camundongos , Simulação de Acoplamento Molecular/métodos , Fator 2 Relacionado a NF-E2/química , NF-kappa B/química , Neuroproteção/fisiologia , Transdução de Sinais , Sirtuína 1/química , Vitamina D/farmacologia
6.
Cell Prolif ; 54(2): e12964, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33314534

RESUMO

OBJECTIVES: 20-hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid catalysed by cytochrome P450 enzymes and plays an important role in cell death and proliferation. We hypothesized that 20-HETE synthesis inhibition may have protective effects in traumatic brain injury (TBI) and investigated possible underlying molecular mechanisms. MATERIALS AND METHODS: Neurologic deficits, and lesion volume, reactive oxygen species (ROS) levels and cell death as assessed using immunofluorescence staining, transmission electron microscopy and Western blotting were used to determine post-TBI effects of HET0016, an inhibitor of 20-HETE synthesis, and their underlying mechanisms. RESULTS: The level of 20-HETE was found to be increased significantly after TBI in mice. 20-HETE synthesis inhibition reduced neuronal apoptosis, ROS production and damage to mitochondrial structures after TBI. Mechanistically, HET0016 decreased the Drp1 level and increased the expression of Mfn1 and Mfn2 after TBI, indicating a reversal of the abnormal post-TBI mitochondrial dynamics. HET0016 also promoted the restoration of SIRT1 and PGC-1α in vivo, and a SIRT1 activator (SRT1720) reversed the downregulation of SIRT1 and PGC-1α and the abnormal mitochondrial dynamics induced by 20-HETE in vitro. Furthermore, plasma 20-HETE levels were found to be higher in TBI patients with unfavourable neurological outcomes and were correlated with the GOS score. CONCLUSIONS: The inhibition of 20-HETE synthesis represents a novel strategy to mitigate TBI-induced mitochondrial dysfunction and neuronal apoptosis by regulating the SIRT1/PGC-1α pathway.


Assuntos
Amidinas/farmacologia , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/patologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/veterinária , Dinaminas/metabolismo , Feminino , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Ácidos Hidroxieicosatetraenoicos/farmacologia , Modelos Logísticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Neurônios/ultraestrutura , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/química , Sirtuína 1/metabolismo
7.
Oxid Med Cell Longev ; 2020: 6782872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014276

RESUMO

Sirtuins are the class III of histone deacetylases whose deacetylate of histones is dependent on nicotinamide adenine dinucleotide (NAD+). Among seven sirtuins, SIRT1 plays a critical role in modulating a wide range of physiological processes, including apoptosis, DNA repair, inflammatory response, metabolism, cancer, and stress. Neuroinflammation is associated with many neurological diseases, including ischemic stroke, bacterial infections, traumatic brain injury, Alzheimer's disease (AD), and Parkinson's disease (PD). Recently, numerous studies indicate the protective effects of SIRT1 in neuroinflammation-related diseases. Here, we review the latest progress regarding the anti-inflammatory and neuroprotective effects of SIRT1. First, we introduce the structure, catalytic mechanism, and functions of SIRT1. Next, we discuss the molecular mechanisms of SIRT1 in the regulation of neuroinflammation. Finally, we analyze the mechanisms and effects of SIRT1 in several common neuroinflammation-associated diseases, such as cerebral ischemia, traumatic brain injury, spinal cord injury, AD, and PD. Taken together, this information implies that SIRT1 may serve as a promising therapeutic target for the treatment of neuroinflammation-associated disorders.


Assuntos
Doenças Neurodegenerativas/patologia , Sirtuína 1/metabolismo , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Humanos , NAD/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Resveratrol/uso terapêutico , Sirtuína 1/química , Sirtuína 1/genética , Receptores Toll-Like/metabolismo
8.
Biomolecules ; 10(7)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630842

RESUMO

Regenerative capacity in vital organs is limited by fibrosis propensity. Idiopathic pulmonary fibrosis (IPF), a progressive lung disease linked with aging, is a classic example. In this study, we show that in flow cytometry, immunoblots (IB) and in lung sections, FLIP levels can be regulated, in vivo and in vitro, through SIRT1 activity inhibition by CMH (4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide), a small molecule that, as we determined here by structural biology calculations, docked into its nonhistone substrate Ku70-binding site. Ku70 immunoprecipitations and immunoblots confirmed our theory that Ku70-deacetylation, Ku70/FLIP complex, myofibroblast resistance to apoptosis, cell survival, and lung fibrosis in bleomycin-treated mice, are reduced and regulated by CMH. Thus, small molecules associated with SIRT1-mediated regulation of Ku70 deacetylation, affecting FLIP stabilization in fibrotic-lung myofibroblasts, may be a useful strategy, enabling tissue regeneration.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Ácidos Hidroxâmicos/administração & dosagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Autoantígeno Ku/metabolismo , Pulmão/citologia , Sirtuína 1/química , Sirtuína 1/metabolismo , Acetilação/efeitos dos fármacos , Animais , Sítios de Ligação , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos
9.
Oxid Med Cell Longev ; 2020: 5238650, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32256951

RESUMO

Oxidative stress is a metabolic disorder linked with several chronic diseases, and this condition can be improved by natural antioxidants. The fruit pulp of the palm Acrocomia aculeata (Jacq.) Lodd. ex Mart. is widely used in the treatment of various illnesses, but as far as we know, there are no reports regarding the properties of its leaves. Thus, we aimed to evaluate the antioxidant activity of A. aculeata leaf extracts obtained with water (EA-Aa), ethanol (EE-Aa), and methanol (EM-Aa) solvents. The extracts were chemically characterized, and their antioxidant activity was assessed through the scavenging of the free radicals DPPH and ABTS. EE-Aa and EM-Aa showed the highest amounts of phenolic compounds and free radical scavenging activity. However, EA-Aa was more efficient to protect human erythrocytes against AAPH-induced hemolysis and lipid peroxidation. Thus, we further show the antioxidant effect of EA-Aa in preventing AAPH-induced protein oxidation, H2O2-induced DNA fragmentation, and ROS generation in Cos-7 cells. Increased levels of Sirt1, catalase, and activation of ERK and Nrf2 were observed in Cos-7 treated with EA-Aa. We also verify increased survival in nematodes C. elegans, when induced to the oxidative condition by Juglone. Therefore, our results showed a typical chemical composition of plants for all extracts, but the diversity of compounds presented in EA-Aa is involved in the lower toxicity and antioxidant properties provided to the macromolecules tested, proteins, DNA, and lipids. This protective effect also proven in Cos-7 and in C. elegans was probably due to the activation of the Sirt1/Nrf2 pathway. Altogether, the low toxicity and the antioxidant properties of EA-Aa showed in all the experimental models support its further use in the treatment of oxidative stress-related diseases.


Assuntos
Frutas/química , Folhas de Planta/química , Sirtuína 1/química , Humanos , Estresse Oxidativo
10.
Proc Natl Acad Sci U S A ; 117(12): 6890-6900, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152092

RESUMO

Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood. SIRT1, a NAD+-dependent deacetylase, is pivotal in regulating hepatic gene expression and has emerged as a key therapeutic target. Despite this, if/how nutrient inputs regulate SIRT1 interactions, stability, and therefore downstream functions are still unknown. Here, we establish nutrient-dependent O-GlcNAcylation of SIRT1, within its N-terminal domain, as a crucial determinant of hepatic functions. Our findings demonstrate that during a fasted-to-refed transition, glycosylation of SIRT1 modulates its interactions with various transcription factors and a nodal cytosolic kinase involved in insulin signaling. Moreover, sustained glycosylation in the fed state causes nuclear exclusion and cytosolic ubiquitin-mediated degradation of SIRT1. This mechanism exerts spatiotemporal control over SIRT1 functions by constituting a previously unknown molecular relay. Of note, loss of SIRT1 glycosylation discomposed these interactions resulting in aberrant gene expression, mitochondrial dysfunctions, and enhanced hepatic gluconeogenesis. Expression of nonglycosylatable SIRT1 in the liver abrogated metabolic flexibility, resulting in systemic insulin resistance, hyperglycemia, and hepatic inflammation, highlighting the physiological costs associated with its overactivation. Conversely, our study also reveals that hyperglycosylation of SIRT1 is associated with aging and high-fat-induced obesity. Thus, we establish that nutrient-dependent glycosylation of SIRT1 is essential to gate its functions and maintain physiological fitness.


Assuntos
Gluconeogênese , Homeostase , Hiperglicemia/prevenção & controle , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Sirtuína 1/metabolismo , Acetilglucosamina/metabolismo , Envelhecimento/fisiologia , Animais , Jejum , Glicosilação , Células HEK293 , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Resistência à Insulina , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle , Fosforilação , Sirtuína 1/química , Análise Espaço-Temporal
11.
Biomed Pharmacother ; 126: 110094, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32200257

RESUMO

UVA radiation from the sun is the main external stimulus in the pathogenesis of skin photo-aging. This process is associated with cellular oxidative stress. Here we aim at showing the protective effect of d-Tetramannuronic Acid Tetrasodium Salt (M4), a natural product, against UVA (30J/cm2) irradiation-induced oxidative stress and photo-aging in HaCaT cells, and to reveal the molecular mechanism underlying the protective efficacy. M4 pretreatment significantly increased HaCaT cell viability and MMP, suppressing UVA-induced ROS generation. Moreover, M4 treatment prevented the UVA-induced photo-aging of HaCaT cells (the reduction of cell viability, mitochondria dysfunction, and SIRT1/pGC-1α deregulation). Notably, the anti-photo-aging potential of M4 was directly associated with the increased expression of MMP and SIRT1, which was followed by the up-regulation of pGC-1α, D-LOOP, and Mt-TFA, and the transcriptional activation of NRF1/NRF2. Therefore, M4 is useful for the protection of skin cells from UVA-induced photo-aging.


Assuntos
Ácidos Hexurônicos/farmacologia , Substâncias Protetoras/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Trifosfato de Adenosina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Expressão Gênica , Células HaCaT , Ácidos Hexurônicos/química , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Modelos Moleculares , Conformação Molecular , NAD/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/química , RNA Mensageiro , Espécies Reativas de Oxigênio , Sirtuína 1/química , Sirtuína 1/metabolismo , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 28(7): 115356, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067892

RESUMO

Past few years have seen an active pursuit of the inhibitors for the deacylation catalyzed by the seven human sirtuins (i.e. SIRT1-7) as valuable chemical biological/pharmacological probes of this enzymatic deacylation and lead compounds for developing novel therapeutics for human diseases. In the current study, we prepared eight monocyclic and one bicyclic analogs of a linear pentapeptide-based potent (sub-µM IC50's) pan-SIRT1/2/3 inhibitor Zheng laboratory discovered recently that harbors the catalytic mechanism-based SIRT1/2/3 inhibitory warhead Nε-thioacetyl-lysine at its central position. We found that the bicyclic analog exhibited largely comparable SIRT1/2/3 inhibitory potencies to those of the parent linear pentapeptide, however, the former is proteolytically much more stable than the latter. Moreover, the bicyclic analog displayed very weak inhibition against SIRT5/6/7, was cell permeable, and exhibited an anti-proliferative effect on the human SK-MEL-2 melanoma cells. This bicyclic analog could be a lead for the future development of more potent and still selective pan-SIRT1/2/3 inhibitors whose use in studies on human sirtuin biology, pharmacology, and medicinal chemistry could complement with the use of the potent inhibitors selective for a single human sirtuin.


Assuntos
Lisina/análogos & derivados , Peptídeos/farmacologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 2/antagonistas & inibidores , Sirtuína 3/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lisina/química , Modelos Moleculares , Estrutura Molecular , Peptídeos/química , Conformação Proteica , Sirtuína 1/química , Sirtuína 2/química , Sirtuína 3/química
13.
Aging (Albany NY) ; 12(2): 1704-1724, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31986489

RESUMO

Atherosclerosis-related cardiovascular disease is still the predominant cause of death worldwide. Araloside C (AsC), a natural saponin, exerts extensive anti-inflammatory properties. In this study, we explored the protective effects and mechanism of AsC on macrophage polarization in atherosclerosis in vivo and in vitro. Using a high-fat diet (HFD)-fed ApoE-/- mouse model and RAW264.7 macrophages exposed to ox-LDL, AsC was evaluated for its effects on polarization and autophagy. AsC significantly reduced the plaque area in atherosclerotic mice and lipid accumulation in ox-LDL-treated macrophages, promoted M2 phenotype macrophage polarization, increased the number of autophagosomes and modulated the expression of autophagy-related proteins. Moreover, the autophagy inhibitor 3-methyladenine and BECN1 siRNA obviously abolished the antiatherosclerotic and M2 macrophage polarization effects of AsC. Mechanistically, AsC targeted Sirt1and increased its expression, and this increase in expression was associated with increased autophagy and M2 phenotype polarization. In contrast, the effects of AsC were markedly blocked by EX527 and Sirt1 siRNA. Altogether, AsC attenuates foam cell formation and lessens atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Ácido Oleanólico/farmacologia , Sirtuína 1/genética , Animais , Apolipoproteínas E/deficiência , Aterosclerose/patologia , Biomarcadores , Dieta Hiperlipídica , Modelos Animais de Doenças , Expressão Gênica , Imunofenotipagem , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Macrófagos/ultraestrutura , Camundongos , Camundongos Knockout , Modelos Biológicos , Modelos Moleculares , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ligação Proteica , Sirtuína 1/química , Sirtuína 1/metabolismo , Relação Estrutura-Atividade
14.
Epigenetics ; 15(6-7): 664-683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31942817

RESUMO

SIRT1, a NAD+-dependent deacetylase, is the most well-studied member of class III histone deacetylases. Due to its wide range of activities and substrate targets, this enzyme has emerged as a major regulator of different physiological processes. However, SIRT1-mediated alterations are also implicated in the pathogenesis of several conditions, including metabolic and neurodegenerative disorders, and cancer. Current evidence highlights the potential role of SIRT1 as an attractive therapeutic target for disease prevention and treatment strategies, thus propelling the development of new pharmacological agents. By high-throughput screening of a large library of compounds, we identified SCIC2 as an effective SIRT1 activator. This small molecule showed enzymatic activity of 135.8% at 10 µM, an AC50 value of 50 ± 1.8 µM, and bound SIRT1 with a KD of 26.4 ± 0.6 µM. In order to potentiate its SIRT1-activating ability, SCIC2 was subjected to modelling studies, leading to the identification of a more potent derivative, SCIC2.1. SCIC2.1 displayed higher SIRT1 activity (175%; AC50 = 36.83 ± 2.23 µM), stronger binding to SIRT1, and greater cell permeability than SCIC2. At cellular level, both molecules did not alter the cell cycle progression of cancer cells and normal cells, and were able to strengthen SIRT1-mediated effects in stress response. Finally, SCIC2 and SCIC2.1 attenuated induction of senescence by reducing senescence-associated ß-galactosidase activity. Our findings warrant further investigation of these two novel SIRT1 activators in in vivo and human studies.


Assuntos
Senescência Celular , Inibidores de Histona Desacetilases/farmacologia , Sirtuína 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Estresse Fisiológico , Animais , Sítios de Ligação , Células CACO-2 , Epigênese Genética , Células Hep G2 , Inibidores de Histona Desacetilases/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Sirtuína 1/química , Sirtuína 1/metabolismo , Bibliotecas de Moléculas Pequenas/química
15.
Phys Chem Chem Phys ; 22(2): 826-837, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31840716

RESUMO

Sirtuins are a family of highly conserved NAD-dependent deacetylase that are involved in multiple biological processes in both prokaryotes and eukaryotes. Many sirtuin-activating compounds (STACs) have been reported for SIRT1, which is the best-characterized sirtuin. However, the molecular mechanism of SIRT1 activation by STACs remains controversial. Here, we developed a multiscale simulation model to explore this mechanism. By quantifying the free energy landscape for the closed conformation of a SIRT1-FdL peptide-resveratrol complex, we found a positive correlation between the barrier height of the active free energy basin and the experimentally determined fluctuations in the rate of SIRT1 deacetylation by resveratrol. In addition, by monitoring dynamics, we found that the open conformation of a SIRT1-p53-STAC-1 complex had a faster rate of conformational change than the closed structure. We also determined the structural properties of each thermodynamic or dynamic state and found that two potential activating factors, the stability of FdL peptide (the p53 peptide substrate including an AMC fluorophore group) binding and the stability of the SIRT1 conformation, were weakly correlated under certain conditions. These results address the controversial question of whether the AMC fluorophore group and native hydrophobic residues have similar roles in the SIRT1 activation process. Finally, we captured the global landscape of the transition, including less stable and more stable states, and proposed a global physical landscape for the mechanism of SIRT1 activation by STACs.


Assuntos
Peptídeos/farmacologia , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Modelos Moleculares , Peptídeos/química , Resveratrol/química , Sirtuína 1/química , Termodinâmica
16.
Phytother Res ; 34(5): 1114-1122, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31797473

RESUMO

This trial evaluated the potential impacts of saffron aqueous extract (SAE) and its main carotenoid on some of the atherosclerosis-related gene expression and serum levels of oxidized low-density cholesterol (ox-LDL) and Monocyte chemoattractant protein 1 (MCP-1) in patients with coronary artery disease (CAD). Participants of this randomized controlled trial included 84 CAD patients who categorized into three groups: Group 1 received crocin (30 mg/day), Group 2 SAE (30 mg/day), and Group 3 placebo for 8 weeks. Gene expression of Sirtuin 1 (SIRT1), 5'-adenosine monophosphate-activated protein kinase (AMPK), Lectin-like oxidized LDL receptor 1 (LOX1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and MCP-1 in peripheral blood mononuclear cells assessed by real-time PCR. Furthermore, serum ox-LDL and MCP-1 levels measured at the beginning and end of the intervention. Compared with the placebo group, gene expression of SIRT1 and AMPK increased significantly in the crocin group (p = .001), and the expression of LOX1 and NF-κB decreased significantly (p = .016 and .004, respectively). Serum ox-LDL levels decreased significantly in the crocin group after the intervention (p = .002) while MCP-1 levels decreased both in crocin and SAE groups (p = .001). Crocin may have beneficial effects on CAD patients by increasing the gene expression of SIRT1 and AMPK and decreasing the expression of LOX1 and NF-κB.


Assuntos
Carotenoides/química , Quimiocina CCL2/metabolismo , Doença da Artéria Coronariana/tratamento farmacológico , Crocus/química , NF-kappa B/metabolismo , Sirtuína 1/química , Adulto , Idoso , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Sirtuína 1/metabolismo
17.
Cell Biochem Funct ; 37(8): 598-607, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31515847

RESUMO

As a deacetylase relying on NAD, sirtuin 1 (SIRT1) has been proven to inhibit osteoclastogenesis directly by repressing reactive oxygen species (ROS) production and TRPV1 channel stimulation modulated by TNF-α. MicroRNAs do not have coding functions, but they influence the expression of particular genes after transcription. Nevertheless, the current understanding of the impact of SIRT1 on osteoclastogenesis is insufficient. Our research explored whether and how miRNAs contributed to osteoclast differentiation modulated by SIRT1 in vitro. In osteoclastogenesis induced by RANKL in bone marrow-derived macrophages (BMMs), repression of SIRT1 expression and enhancement of miR-506 expression were discovered. Transfection with an miR-506 inhibitor repressed miR-506 concentration in BMMs treated with RANKL. Additional research revealed that BMMs with repressed miR-506 treated with RANKL displayed phenotypes with suppressed osteoclastogenesis, as demonstrated by TRAP staining, reduced function, decreased expression of osteoclast markers and correlated genes, and reduced multinuclear cell quantity. Bioinformatics prediction outcomes and the dual-luciferase reporter test suggested that miR-506 targeted the SIRT1 3'-UTR for silencing. Decreased miR-506 in BMMs induced by RANKL caused SIRT1 upregulation. Additionally, treatment with EX-527 (SIRT1 repressor) or SIRT1 silencing attenuated repression caused by miR-506 depletion in BMMs treated with RANKL. Furthermore, TNF-α was repressed via miR-506 inhibition but was enhanced following EX-527 incubation as well as SIRT1 depletion. TRPV1 channel stimulation and ROS generation, which was related to osteoclastogenesis, were reduced via miR-506 depletion. miR-506 modulated osteoclastogenesis by targeting SIRT1 expression in part through modulation of the TRPV1 channel, ROS production, and TNF-α.


Assuntos
Diferenciação Celular/efeitos dos fármacos , MicroRNAs/metabolismo , Osteogênese/efeitos dos fármacos , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/efeitos dos fármacos , Regiões 3' não Traduzidas , Animais , Antagomirs/metabolismo , Células da Medula Óssea/citologia , Células Cultivadas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Ligante RANK/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/química , Sirtuína 1/genética
18.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557786

RESUMO

Sirtuins (SIRTs) are seven nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases enzymes (SIRT1-7) that play an important role in maintaining cellular homeostasis. Among those, the most studied are SIRT1 and SIRT3, a nuclear SIRT and a mitochondrial SIRT, respectively, which significantly impact with an increase in mammals' lifespan by modulating metabolic cellular processes. Particularly, when activated, both SIRT1 and 3 enhance pancreatic ß-cells' insulin release and reduce inflammation and oxidative stress pancreatic damage, maintaining then glucose homeostasis. Therefore, SIRT1 and 3 activators have been proposed to prevent and counteract metabolic age-related diseases, such as type 2 diabetes mellitus (T2DM). Physical activity (PA) has a well-established beneficial effect on phenotypes of aging like ß-cell dysfunction and diabetes mellitus. Recent experimental and clinical evidence reports that PA increases the expression levels of both SIRT1 and 3, suggesting that PA may exert its healthy contribute even by activating SIRTs. Therefore, in the present article, we discuss the role of SIRT1, SIRT3, and PA on ß-cell function and on diabetes. We also discuss the possible interaction between PA and activation of SIRTs as a possible therapeutic strategy to maintain glucose hemostasis and to prevent T2DM and its complications, especially in the elderly population.


Assuntos
Glucose/metabolismo , Homeostase , Sirtuína 1/química , Sirtuína 3/química , Animais , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Suscetibilidade a Doenças , Exercício Físico , Humanos , Células Secretoras de Insulina/metabolismo , Doenças Metabólicas/etiologia , Doenças Metabólicas/metabolismo , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo
19.
J Chem Inf Model ; 59(9): 4018-4033, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31461271

RESUMO

Binding free energy (ΔGbind) computation can play an important role in prioritizing compounds to be evaluated experimentally on their affinity for target proteins, yet fast and accurate ΔGbind calculation remains an elusive task. In this study, we compare the performance of two popular end-point methods, i.e., linear interaction energy (LIE) and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA), with respect to their ability to correlate calculated binding affinities of 27 thieno[3,2-d]pyrimidine-6-carboxamide-derived sirtuin 1 (SIRT1) inhibitors with experimental data. Compared with the standard single-trajectory setup of MM/PBSA, our study elucidates that LIE allows to obtain direct ("absolute") values for SIRT1 binding free energies with lower compute requirements, while the accuracy in calculating relative values for ΔGbind is comparable (Pearson's r = 0.72 and 0.64 for LIE and MM/PBSA, respectively). We also investigate the potential of combining multiple docking poses in iterative LIE models and find that Boltzmann-like weighting of outcomes of simulations starting from different poses can retrieve appropriate binding orientations. In addition, we find that in this particular case study the LIE and MM/PBSA models can be optimized by neglecting the contributions from electrostatic and polar interactions to the ΔGbind calculations.


Assuntos
Inibidores Enzimáticos/metabolismo , Simulação de Dinâmica Molecular , Sirtuína 1/metabolismo , Inibidores Enzimáticos/farmacologia , Ligação Proteica , Conformação Proteica , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/química , Termodinâmica
20.
Int J Biol Macromol ; 140: 454-468, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31404596

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive disease exemplified by a poor prognosis, greater degrees of relapse, the absence of hormonal receptors for coherent utilization of targeted therapy, poor response to currently available therapeutics and development of chemoresistance. Aberrant activity of sirtuins (SIRTs) has strong implications in the metastatic and oncogenic progression of TNBC. Synthetic SIRT inhibitors are effective, however, they have shown adverse side effects emphasizing the need for plant-derived inhibitors (PDIs). In the current study, we identified potential plant-derived sirtuin inhibitors using in silico approach i.e. molecular docking, ADMET and molecular dynamics simulations (MD). Docking studies revealed that Sulforaphane, Kaempferol and Apigenin exhibits the highest docking scores against SIRT1 & 5, 3 and 6 respectively. ADMET analysis of above hits demonstrated drug-like profile. MD of prioritized SIRTs-PDIs complexes displayed stability with insignificant deviations throughout the trajectory. Furthermore, we determined the effect of our prioritized molecules on cellular viability, global activity as well as protein expression of sirtuins and stemness of TNBC cells utilizing in vitro techniques. Our in vitro findings complements our in silico results. Collectively, these findings provide a better insight into the structural basis of sirtuin inhibition and can facilitate drug design process for TNBC management.


Assuntos
Apigenina/química , Isotiocianatos/química , Quempferóis/química , Sirtuínas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apigenina/isolamento & purificação , Linhagem Celular Tumoral , Simulação por Computador , Feminino , Humanos , Isotiocianatos/isolamento & purificação , Quempferóis/isolamento & purificação , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plantas/química , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/química , Sirtuína 3/antagonistas & inibidores , Sirtuína 3/química , Sirtuínas/antagonistas & inibidores , Sirtuínas/química , Sulfóxidos , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA