Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.948
Filtrar
2.
PLoS One ; 19(7): e0303573, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990866

RESUMO

Fibromyalgia (FM) is a central disorder characterized by chronic pain, fatigue, insomnia, depression, and other minor symptoms. Knowledge about pathogenesis is lacking, diagnosis difficult, clinical approach puzzling, and patient management disappointing. We conducted a theoretical study based on literature data and computational analysis, aimed at developing a comprehensive model of FM pathogenesis and addressing suitable therapeutic targets. We started from the evidence that FM must involve a dysregulation of central pain processing, is female prevalent, suggesting a role for the hypothalamus-pituitary-gonadal (HPG) axis, and is stress-related, suggesting a role for the HP-adrenocortical (HPA) axis. Central pathogenesis was supposed to involve a pain processing loop system including the thalamic ventroposterolateral nucleus (VPL), the primary somatosensory cortex (SSC), and the thalamic reticular nucleus (TRN). For decreasing GABAergic and/or increasing glutamatergic transmission, the loop system crosses a bifurcation point, switching from monostable to bistable, and converging on a high-firing-rate steady state supposed to be the pathogenic condition. Thereafter, we showed that GABAergic transmission is positively correlated with gonadal-hormone-derived neurosteroids, notably allopregnanolone, whereas glutamatergic transmission is positively correlated with stress-induced glucocorticoids, notably cortisol. Finally, we built a dynamic model describing a multistable, double-inhibitory loop between HPG and HPA axes. This system has a high-HPA/low-HPG steady state, allegedly reached in females under combined premenstrual/postpartum brain allopregnanolone withdrawal and stress condition, driving the thalamocortical loop to the high-firing-rate steady state, and explaining the connection between endocrine and neural mechanisms in FM pathogenesis. Our model accounts for FM female prevalence and stress correlation, suggesting the use of neurosteroid drugs as a possible solution to currently unsolved problems in the clinical treatment of the disease.


Assuntos
Fibromialgia , Sistema Hipotálamo-Hipofisário , Humanos , Fibromialgia/metabolismo , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiopatologia , Modelos Biológicos
3.
Function (Oxf) ; 5(4)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38985004

RESUMO

A neurological dogma is that the contralateral effects of brain injury are set through crossed descending neural tracts. We have recently identified a novel topographic neuroendocrine system (T-NES) that operates via a humoral pathway and mediates the left-right side-specific effects of unilateral brain lesions. In rats with completely transected thoracic spinal cords, unilateral injury to the sensorimotor cortex produced contralateral hindlimb flexion, a proxy for neurological deficit. Here, we investigated in acute experiments whether T-NES consists of left and right counterparts and whether they differ in neural and molecular mechanisms. We demonstrated that left- and right-sided hormonal signaling is differentially blocked by the δ-, κ- and µ-opioid antagonists. Left and right neurohormonal signaling differed in targeting the afferent spinal mechanisms. Bilateral deafferentation of the lumbar spinal cord abolished the hormone-mediated effects of the left-brain injury but not the right-sided lesion. The sympathetic nervous system was ruled out as a brain-to-spinal cord-signaling pathway since hindlimb responses were induced in rats with cervical spinal cord transections that were rostral to the preganglionic sympathetic neurons. Analysis of gene-gene co-expression patterns identified the left- and right-side-specific gene co-expression networks that were coordinated via the humoral pathway across the hypothalamus and lumbar spinal cord. The coordination was ipsilateral and disrupted by brain injury. These findings suggest that T-NES is bipartite and that its left and right counterparts contribute to contralateral neurological deficits through distinct neural mechanisms, and may enable ipsilateral regulation of molecular and neural processes across distant neural areas along the neuraxis.


Assuntos
Transdução de Sinais , Animais , Ratos , Sistemas Neurossecretores/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Masculino , Medula Espinal/metabolismo , Lateralidade Funcional/fisiologia , Membro Posterior/inervação
4.
Front Endocrinol (Lausanne) ; 15: 1408065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957439

RESUMO

Purpose: The impact of delayed diagnosis on tumor-related prognosis appears to be minimal in individuals with intracranial germ cell tumors (iGCTs). However, its effect on neuroendocrine functions remains unclear. We aimed to assess the effects of delayed diagnosis on neuroendocrine function in individuals with suprasellar GCTs. Methods: We conducted a retrospective cohort study of 459 individuals with suprasellar GCTs and categorized them into two groups based on disease duration: delayed diagnosis (> 6 months) and non-delayed diagnosis (≤ 6 months). We compared endocrinological symptoms, neuroendocrine dysfunction and its grading (categorized into 0-3 grades based on severity), and recovery from neuroendocrine dysfunction in both groups. Results: Patients with delayed diagnosis exhibited higher incidences of amenorrhea, slow growth, fatigue, and polyuria/polydipsia. Neuroendocrine dysfunction, including central adrenal insufficiency (CAI), central hypothyroidism (CHT), arginine vasopressin deficiency (AVP-D), growth hormone deficiency, hypogonadism, and hyperprolactinemia, was more pronounced in the delayed diagnosis group at diagnosis, the end of treatment, and the last follow-up. Furthermore, individuals with delayed diagnosis showed higher grades of neuroendocrine dysfunction at diagnosis (OR=3.005, 95% CI 1.929-4.845, p<0.001), end of oncologic treatment (OR=4.802, 95% CI 2.878-8.004, p<0.001), and last follow-up(OR=2.335, 95% CI 1.307-4.170, p=0.005) after adjusting for confounders. Finally, less recovery, particularly in CAI, CHT, and AVP-D, was seen among the group with delayed diagnosis after treatment. Conclusion: Among individuals with suprasellar GCTs, delayed diagnosis is associated with increased, more severe, and less recovered neuroendocrine dysfunction, emphasizing the importance of early diagnosis and treatment to reduce neuroendocrine dysfunction.


Assuntos
Diagnóstico Tardio , Neoplasias Embrionárias de Células Germinativas , Humanos , Masculino , Feminino , Estudos Retrospectivos , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Adulto , Adulto Jovem , Adolescente , Prognóstico , Sistemas Neurossecretores/fisiopatologia , Pessoa de Meia-Idade , Seguimentos
5.
Front Endocrinol (Lausanne) ; 15: 1277929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978617

RESUMO

Introduction: Stress-related diseases pose significant health risks and show wide prevalence. Empirical evidence suggests that contemplative practices, such as socio-emotional dyadic mental exercises, hold promise in mitigating the adverse effects of stress and promoting psychosocial well-being. This study aimed to investigate the differential effects of two online contemplative mental training programs on the psychosocial stress response: the first involved classic mindfulness practices, while the second incorporated a socio-emotional dyadic approach known as Affect Dyad. Methods: The study was conducted as part of the longitudinal CovSocial project's phase 2 in the context of the COVID-19 pandemic. 140 individuals participated in the Trier Social Stress Task (TSST), where the psychosocial stress response was assessed with cortisol saliva samples and subjective stress questionnaires in a cross-sectional design after the active training groups finished their intervention period. Participants were randomly assigned to the socio-emotional training group, mindfulness-based training group, or a control group that did not receive any training. Both training programs consisted of a ten-week intervention period with a daily 12-minute app-based mental training practice and weekly 2-hour online coaching sessions led by mental training teachers. Results: Results showed that the socio-emotional Dyad group but not the mindfulness-based group exhibited significantly lower cortisol levels at 10, 20, 30, and 40 minutes after the stressor as well as lower total cortisol output compared to the control group during the TSST, indicating a reduced hormonal stress response to a social stressor. Subjective markers did not show differences between the three groups. Discussion: These findings indicate that the daily socio-emotional dyadic practice, which emphasizes non-judgmental and empathic listening as well as the acceptance of challenging emotions in the presence of others within one's daily life context, may serve as a protective factor against the adverse effects of psychosocial stress triggered by the fear of negative social judgments. Given the high prevalence of stress-related diseases, such online mental training programs based on dyadic practices may thus represent an efficient and scalable approach for stress reduction.


Assuntos
COVID-19 , Hidrocortisona , Atenção Plena , Saliva , Estresse Psicológico , Humanos , Atenção Plena/métodos , Masculino , Feminino , Estresse Psicológico/psicologia , Adulto , Hidrocortisona/metabolismo , COVID-19/psicologia , COVID-19/epidemiologia , Saliva/metabolismo , Saliva/química , Estudos Transversais , Adulto Jovem , Emoções/fisiologia , Sistemas Neurossecretores
6.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928237

RESUMO

The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.


Assuntos
Sistemas Neurossecretores , Ovulação , Humanos , Ovulação/fisiologia , Feminino , Sistemas Neurossecretores/fisiologia , Sistemas Neurossecretores/metabolismo , Animais , Hipófise/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Dinorfinas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiologia
7.
Sci Adv ; 10(24): eadk9481, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38865452

RESUMO

The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. In Caenorhabditis elegans, the neuroendocrine transforming growth factor-ß ligand, DAF-7, regulates diverse behavioral responses to bacterial food and pathogens. The dynamic neuron-specific expression of daf-7 is modulated by environmental and endogenous bacteria-derived cues. Here, we investigated natural variation in the expression of daf-7 from the ASJ pair of chemosensory neurons. We identified common genetic variants in gap-2, encoding a Ras guanosine triphosphatase (GTPase)-activating protein homologous to mammalian synaptic Ras GTPase-activating protein, which modify daf-7 expression cell nonautonomously and promote exploratory foraging behavior in a partially DAF-7-dependent manner. Our data connect natural variation in neuron-specific gene expression to differences in behavior and suggest that genetic variation in neuroendocrine signaling pathways mediating host-microbe interactions may give rise to diversity in animal behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Variação Genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Sistemas Neurossecretores/metabolismo , Comportamento Alimentar , Comportamento Animal/fisiologia , Neurônios/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta
8.
FEBS Lett ; 598(13): 1557-1575, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38858179

RESUMO

The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.


Assuntos
Sistema Hipotálamo-Hipofisário , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistemas Neurossecretores/metabolismo , Regulação da Expressão Gênica , Hipófise/metabolismo
9.
Sci Rep ; 14(1): 12680, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902275

RESUMO

17ß-estradiol, the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo brain 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET) study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age, plasma estradiol and sex hormone binding globulin, and were highly consistent, correctly classifying all women as being postmenopausal or premenopausal. Higher ER density in target regions was associated with poorer memory performance for both postmenopausal and perimenopausal groups, and predicted presence of self-reported mood and cognitive symptoms after menopause. These findings provide novel insights on brain ER density modulation by female neuroendocrine aging, with clinical implications for women's health.


Assuntos
Envelhecimento , Encéfalo , Cognição , Tomografia por Emissão de Pósitrons , Receptores de Estrogênio , Humanos , Feminino , Pessoa de Meia-Idade , Cognição/fisiologia , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Envelhecimento/metabolismo , Receptores de Estrogênio/metabolismo , Adulto , Estradiol/sangue , Estradiol/metabolismo , Sistemas Neurossecretores/metabolismo , Menopausa/metabolismo
10.
Mol Cell Endocrinol ; 590: 112265, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697385

RESUMO

The neuroendocrine system of crustaceans is complex and regulates many processes, such as development, growth, reproduction, osmoregulation, behavior, and metabolism. Once stimulated, crustaceans' neuroendocrine tissues modulate the release of monoamines, ecdysteroids, and neuropeptides that can act as hormones or neurotransmitters. Over a few decades, research has unraveled some mechanisms governing these processes, substantially contributing to understanding crustacean physiology. More aspects of crustacean neuroendocrinology are being comprehended with molecular biology, transcriptome, and genomics analyses. Hence, these studies will also significantly enhance the ability to cultivate decapods, such as crabs and shrimps, used as human food sources. In this review, current knowledge on crustacean endocrinology is updated with new findings about crustacean hormones, focusing mainly on the main neuroendocrine organs and their hormones and the effects of these molecules regulating metabolism, growth, reproduction, and color adaptation. New evidence about vertebrate-type hormones found in crustaceans is included and discussed. Finally, this review may assist in understanding how the emerging chemicals of environmental concern can potentially impair and disrupt crustacean's endocrine functions and their physiology.


Assuntos
Crustáceos , Sistemas Neurossecretores , Animais , Crustáceos/fisiologia , Crustáceos/metabolismo , Neuropeptídeos/metabolismo , Sistemas Neurossecretores/fisiologia , Sistemas Neurossecretores/metabolismo , Reprodução/fisiologia
11.
Mol Cell Endocrinol ; 591: 112270, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750811

RESUMO

Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.


Assuntos
Sistemas Neurossecretores , Óxido Nítrico , Óxido Nítrico/metabolismo , Humanos , Animais , Sistemas Neurossecretores/metabolismo , Transdução de Sinais , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Renina-Angiotensina/fisiologia , Dor/metabolismo , Dor/fisiopatologia
12.
Neuroendocrinology ; 114(7): 658-669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38643753

RESUMO

INTRODUCTION: Axons of magnocellular neurosecretory cells project from the hypothalamus to the posterior lobe (PL) of the pituitary. In the PL, a wide perivascular space exists between the outer basement membrane (BM), where nerve axons terminate, and the inner BM lining the fenestrated capillaries. Hypothalamic axon terminals and outer BMs in the PL form neurovascular junctions. We previously had found that collagen XIII is strongly localized in the outer BMs. In this study, we investigated the role of collagen XIII in the PL of rat pituitaries. METHODS: We first studied the expression of Col13a1, the gene encoding the α1 chains of collagen XIII, in rat pituitaries via quantitative real-time polymerase chain reaction and in situ hybridization. We observed the distribution of COL13A1 in the rat pituitary using immunohistochemistry and immunoelectron microscopy. We examined the expression of Col13a1 and the distribution of COL13A1 during the development of the pituitary. In addition, we examined the effects of water deprivation and arginine vasopressin (AVP) signaling on the expression of Col13a1 in the PL. RESULTS: Col13a1 was expressed in NG2-positive pericytes, and COL13A1 signals were localized in the outer BM of the PL. The expression of Col13a1 was increased by water deprivation and was regulated via the AVP/AVPR1A/Gαq/11 cascade in pericytes of the PL. CONCLUSION: These results suggest that pericytes surrounding fenestrated capillaries in the PL secrete COL13A1 and are involved in the construction of neurovascular junctions. COL13A1 is localized in the outer BM surrounding capillaries in the PL and may be involved in the connection between capillaries and axon terminals.


Assuntos
Colágeno Tipo XIII , Animais , Ratos , Masculino , Colágeno Tipo XIII/metabolismo , Sistemas Neurossecretores/metabolismo , Arginina Vasopressina/metabolismo , Ratos Wistar , Neuro-Hipófise/metabolismo , Hipófise/metabolismo , Pericitos/metabolismo , Membrana Basal/metabolismo
14.
Environ Pollut ; 349: 123956, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626866

RESUMO

Ammonia-N, as the most toxic nitrogenous waste, has high toxicity to marine animals. However, the interplay between ammonia-induced neuroendocrine toxicity and intestinal immune homeostasis has been largely overlooked. Here, a significant concordance of metabolome and transcriptome-based "cholinergic synapse" supports that plasma metabolites acetylcholine (ACh) plays an important role during NH4Cl exposure. After blocking the ACh signal transduction, the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the cerebral ganglia increased, while the release of NPF in the thoracic ganglia and NE in the abdominal ganglia, and crustacean hyperglycemic hormone (CHH) and neuropeptide F (NPF) in the eyestalk decreased, finally the intestinal immunity was enhanced. After bilateral eyestalk ablation, the neuroendocrine system of shrimp was disturbed, more neuroendocrine factors, such as corticotropin releasing hormone (CRH), adrenocorticotropic-hormone (ACTH), ACh, DA, 5-HT, and norepinephrine (NE) were released into the plasma, and further decreased intestinal immunity. Subsequently, these neuroendocrine factors reach the intestine through endocrine or neural pathways and bind to their receptors to affect downstream signaling pathway factors to regulate intestinal immune homeostasis. Combined with different doses of ammonia-N exposure experiment, these findings suggest that NH4Cl may exert intestinal toxicity on shrimp by disrupting the cerebral ganglion-eyestalk axis and the cerebral ganglion-thoracic ganglion-abdominal ganglion axis, thereby damaging intestinal barrier function and inducing inflammatory response.


Assuntos
Amônia , Penaeidae , Animais , Penaeidae/imunologia , Penaeidae/efeitos dos fármacos , Penaeidae/metabolismo , Amônia/toxicidade , Intestinos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Dopamina/metabolismo , Nitrogênio/metabolismo , Acetilcolina/metabolismo , Sistemas Neurossecretores/efeitos dos fármacos , Proteínas de Artrópodes/metabolismo
15.
Zoolog Sci ; 41(1): 1-3, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38587511

RESUMO

The endocrine and neuroendocrine systems exert powerful and broad control over the regulation of homeostasis in animals. Secreted hormones play significant roles in lifetime-related events such as germ cell development, sexual maturation, development, metamorphosis, aging, feeding, and energy metabolism. Additionally, hormones, particularly sex steroid hormones, are involved in reproduction, including sexual behavior and dimorphism. Changes in body color protect against external enemies, and circadian rhythms direct physiology and behaviors in synchrony with light and dark cycles. Water and electrolyte metabolism are essential for survival in land or seawater. Both aquatic and terrestrial animals have developed a variety of endocrine and neuroendocrine systems that exquisitely manage water and electrolyte metabolism to support survival. In zoological science, many animal species are investigated for their unique life history phenomena, and many researchers bring original and unique research approaches to understand these phenomena. Exploring such a variety of animal species leads to an understanding of diversity and unity, and contributes to the development of comparative endocrinology. This Special Issue contains 15 papers focusing on the endocrine mechanisms involved in the aforementioned life phenomena.


Assuntos
Envelhecimento , Sistemas Neurossecretores , Animais , Hormônios , Eletrólitos , Água
16.
J Neuroendocrinol ; 36(6): e13382, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38468186

RESUMO

Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.


Assuntos
Comportamento Alimentar , Sistemas Neurossecretores , Bulbo Olfatório , Bulbo Olfatório/fisiologia , Bulbo Olfatório/metabolismo , Animais , Humanos , Sistemas Neurossecretores/fisiologia , Sistemas Neurossecretores/metabolismo , Comportamento Alimentar/fisiologia , Olfato/fisiologia , Metabolismo Energético/fisiologia
17.
Phytomedicine ; 128: 155324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552437

RESUMO

BACKGROUND: Researchers have not studied the integrity, orderly correlation, and dynamic openness of complex organisms and explored the laws of systems from a global perspective. In the context of reductionism, antidepressant development formerly focused on advanced technology and molecular details, clear targets and mechanisms, but the clinical results were often unsatisfactory. PURPOSE: MDD represents an aggregate of different and highly diverse disease subtypes. The co-occurrence of stress-induced nonrandom multimorbidity is widespread, whereas only a fraction of the potential clusters are well known, such as the MDD-FGID cluster. Mapping these clusters, and determining which are nonrandom, is vital for discovering new mechanisms, developing treatments, and reconfiguring services to better meet patient needs. STUDY DESIGN: Acute stress 15-minute forced swimming (AFS) or CUMS protocols can induce the nonrandom MDD-FGID cluster. Multiple biological processes of rats with depression-like behaviours and gastrointestinal dysmobility will be captured under conditions of stress, and the Fructus Aurantii-Rhizoma Chuanxiong (ZQCX) decoction will be utilized to dock the MDD-FGID cluster. METHODS/RESULTS: Here, Rhizoma Chuanxiong, one of the seven components of Chaihu-shugan-San, elicited the best antidepressant effect on CUMS rats, followed by Fructus Aurantii. ZQCX reversed AFS-induced depression-like behaviours and gastrointestinal dysmobility by regulating the glutamatergic system, AMPAR/BDNF/mTOR/synapsin I pathway, ghrelin signalling and gastrointestinal nitric oxide synthase. Based on the bioethnopharmacological analysis strategy, the determined meranzin hydrate (MH) and senkyunolide I (SI) by UPLC-PDA, simultaneously absorbed by the jejunum and hippocampus of rats, have been considered major absorbed bioactive compounds acting on behalf of ZQCX. Cotreatment with MH and SI at an equivalent dose in ZQCX synergistically replicated over 50.33 % efficacy of the parent formula in terms of antidepressant and prokinetic actions by modulating neuroinflammation and ghrelin signalling. CONCLUSION: Brain-centric mind shifts require the integration of multiple central and peripheral systems and the elucidation of the underlying neurobiological mechanisms that ultimately contribute to novel therapeutic options. Ghrelin signalling and the immune system may partially underlie multimorbidity vulnerability, and ZQCX anchors stress-induced MDD-FGID clusters by docking them. Combining the results of micro details with the laws of the macro world may be more effective in finding treatments for MDD.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Estresse Psicológico , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estresse Psicológico/tratamento farmacológico , Masculino , Ratos , Antidepressivos/farmacologia , Modelos Animais de Doenças , Gastroenteropatias/tratamento farmacológico , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Motilidade Gastrointestinal/efeitos dos fármacos , Sistemas Neurossecretores/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Citrus/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo
18.
Mol Cell Endocrinol ; 588: 112215, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548145

RESUMO

Monoamines (MA) such as serotonin, catecholamines (dopamine, norepinephrine, epinephrine), and trace amines (octopamine, tyramine), are neurotransmitters and neuroendocrine modulators in vertebrates, that contribute to adaptation to the environment. Although MA are conserved in evolution, information is still fragmentary in invertebrates, given the diversity of phyla and species. However, MA are crucial in homeostatic processes in these organisms, where the absence of canonical endocrine glands in many groups implies that the modulation of physiological functions is essentially neuroendocrine. In this review, we summarize available information on MA systems in invertebrates, with focus on bivalve molluscs, that are widespread in different aquatic environments, where they are subjected to a variety of environmental stimuli. Available data are reviewed on the presence of the different MA in bivalve tissues, their metabolism, target cells, signaling pathways, and the physiological functions modulated in larval and adult stages. Research gaps and perspectives are highlighted, in order to enrich the framework of knowledge on MA neuroendocrine functions, and on their role in adaptation to ongoing and future environmental changes.


Assuntos
Monoaminas Biogênicas , Bivalves , Sistemas Neurossecretores , Animais , Sistemas Neurossecretores/metabolismo , Bivalves/metabolismo , Monoaminas Biogênicas/metabolismo , Transdução de Sinais , Invertebrados/metabolismo
19.
Exp Dermatol ; 33(3): e15029, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429868

RESUMO

Skin is now emerging as a complex realm of three chief systems viz. immune system, nervous system, and endocrine system. The cells involved in their intricate crosstalk, namely native skin cells, intra-cutaneous immune cells and cutaneous sensory neurons have diverse origin and distinct functions. However, recent studies have explored their role beyond their pre-defined functional boundaries, such that the cells shun their traditional functions and adopt unconventional roles. For example, the native skin cells, apart from providing for basic structural framework of skin, also perform special immune functions and participate in extensive neuro-endocrine circuitry, which were traditionally designated as functions of cutaneous resident immune cells and sensory neurons respectively. At the cellular level, this unique collaboration is brought out by special molecules called neuromediators including neurotransmitters, neuropeptides, neurotrophins, neurohormones and cytokines/chemokines. While this intricate crosstalk is essential for maintaining cutaneous homeostasis, its disruption is seen in various cutaneous diseases. Recent study models have led to a paradigm shift in our understanding of pathophysiology of many such disorders. In this review, we have described in detail the interaction of immune cells with neurons and native skin cells, role of neuromediators, the endocrine aspect in skin and current understanding of cutaneous neuro-immuno-endocrine loop in one of the commonest skin diseases, psoriasis. An accurate knowledge of this unique crosstalk can prove crucial in understanding the pathophysiology of different skin diseases and allow for generation of targeted therapeutic modalities.


Assuntos
Neuropeptídeos , Dermatopatias , Humanos , Pele , Sistemas Neurossecretores , Sistema Imunitário/fisiologia , Neurotransmissores
20.
Proc Natl Acad Sci U S A ; 121(14): e2308374121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38489380

RESUMO

Ultraviolet radiation (UVR) is primarily recognized for its detrimental effects such as cancerogenesis, skin aging, eye damage, and autoimmune disorders. With exception of ultraviolet B (UVB) requirement in the production of vitamin D3, the positive role of UVR in modulation of homeostasis is underappreciated. Skin exposure to UVR triggers local responses secondary to the induction of chemical, hormonal, immune, and neural signals that are defined by the chromophores and extent of UVR penetration into skin compartments. These responses are not random and are coordinated by the cutaneous neuro-immuno-endocrine system, which counteracts the action of external stressors and accommodates local homeostasis to the changing environment. The UVR induces electrical, chemical, and biological signals to be sent to the brain, endocrine and immune systems, as well as other central organs, which in concert regulate body homeostasis. To achieve its central homeostatic goal, the UVR-induced signals are precisely computed locally with transmission through nerves or humoral signals release into the circulation to activate and/or modulate coordinating central centers or organs. Such modulatory effects will be dependent on UVA and UVB wavelengths. This leads to immunosuppression, the activation of brain and endocrine coordinating centers, and the modification of different organ functions. Therefore, it is imperative to understand the underlying mechanisms of UVR electromagnetic energy penetration deep into the body, with its impact on the brain and internal organs. Photo-neuro-immuno-endocrinology can offer novel therapeutic approaches in addiction and mood disorders; autoimmune, neurodegenerative, and chronic pain-generating disorders; or pathologies involving endocrine, cardiovascular, gastrointestinal, or reproductive systems.


Assuntos
Pele , Raios Ultravioleta , Sistema Imunitário , Encéfalo , Sistemas Neurossecretores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA