RESUMO
Potato virus Y (PVY, Potyviridae) is among the most important viral pathogens of potato. The potato resistance gene Nytbr confers hypersensitive resistance to the ordinary strain of PVY (PVYO), but not the necrotic strain (PVYN). Here, we unveil that residue 247 of PVY helper component proteinase (HCPro) acts as a central player controlling Nytbr strain-specific activation. We found that substituting the serine at 247 in the HCPro of PVYO (HCProO) with an alanine as in PVYN HCPro (HCProN) disrupts Nytbr recognition. Conversely, an HCProN mutant carrying a serine at position 247 triggers defence. Moreover, we demonstrate that plant defences are induced against HCProO mutants with a phosphomimetic or another phosphorylatable residue at 247, but not with a phosphoablative residue, suggesting that phosphorylation could modulate Nytbr resistance. Extending beyond PVY, we establish that the same response elicited by the PVYO HCPro is also induced by HCPro proteins from other members of the Potyviridae family that have a serine at position 247, but not by those with an alanine. Together, our results provide further insights in the strain-specific PVY resistance in potato and infer a broad-spectrum detection mechanism of plant potyvirus effectors contingent on a single amino acid residue.
Assuntos
Doenças das Plantas , Potyvirus , Solanum tuberosum , Proteínas Virais , Solanum tuberosum/virologia , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Fosforilação , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Aminoácidos/metabolismo , Resistência à Doença/genética , Nicotiana/virologiaRESUMO
In this study, the impact of culture media filtrate of QD3 actinobacterial isolate on two potato cultivars, Spunta and Diamond, infected with potato virus Y (PVY) was investigated. Various parameters, including infection percentage, PVY virus infectivity, disease severity scoring, PVY optical density, photosynthetic and defense-related biochemical markers, enzymatic profiling, phenolic compounds, proline content, salicylic acid levels, and growth and yield parameters, were assessed to elucidate the potential of the QD3 actinobacterial isolate culture filtrate in mitigating PVY-induced damage. The physiological and biochemical characteristics of the QD3 actinobacterial isolate, including its salinity tolerance, pH preferences, and metabolic traits, were investigated. Molecular identification via 16S rRNA gene sequencing confirmed its classification as Streptomyces fradiae QD3, and it was deposited in GenBank with the gene accession number MN160630. Distinct responses between Spunta and Diamond cultivars, with Spunta displaying greater resistance to PVY infection. Notably, pre-infection foliar application of the QD3 filtrate significantly reduced disease symptoms and virus infection in both cultivars. For post-PVY infection, the QD3 filtrate effectively mitigated disease severity and the PVY optical density. Furthermore, the QD3 filtrate positively influenced photosynthetic pigments, enzymatic antioxidant activities, and key biochemical components associated with plant defense mechanisms. Gas chromatographyâmass spectrometry (GCâMS) analysis revealed palmitic acid (hexadecanoic acid, methyl ester) and oleic acid (9-octadecanoic acid, methyl ester) as the most prominent compounds, with retention times of 23.23 min and 26.41 min, representing 53.27% and 23.25%, respectively, of the total peak area as primary unsaturated fatty acids and demonstrating antiviral effects against plant viruses. Cytotoxicity assays on normal human skin fibroblasts (HSFs) revealed the safety of QD3 metabolites, with low discernible toxicity at high concentrations, reinforcing their potential as safe and effective interventions. The phytotoxicity results indicate that all the seeds presented high germination rates of approximately 95-98%, suggesting that the treatment conditions had no phytotoxic effect on the Brassica oleracea (broccoli) seeds, Lactuca sativa (lettuce) seeds, and Eruca sativa (arugula or rocket) seeds. Overall, the results of this study suggest that the S. fradiae filtrate has promising anti-PVY properties, influencing various physiological, biochemical, and molecular aspects in potato cultivars. These findings provide valuable insights into potential strategies for managing PVY infections in potato crops, emphasizing the importance of Streptomyces-derived interventions in enhancing plant health and crop protection.
Assuntos
Resistência à Doença , Doenças das Plantas , Potyvirus , Solanum tuberosum , Streptomyces , Solanum tuberosum/virologia , Solanum tuberosum/microbiologia , Streptomyces/isolamento & purificação , Streptomyces/fisiologia , Streptomyces/genética , Potyvirus/fisiologia , Doenças das Plantas/virologia , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genéticaRESUMO
Ethylene response factors (ERFs) have been associated with biotic stress in Arabidopsis, while their function in non-model plants is still poorly understood. Here we investigated the role of potato ERF StPti5 in plant immunity. We show that StPti5 acts as a susceptibility factor. It negatively regulates potato immunity against potato virus Y and Ralstonia solanacearum, pathogens with completely different modes of action, and thereby has a different role than its orthologue in tomato. Remarkably, StPti5 is destabilised in healthy plants via the autophagy pathway and accumulates exclusively in the nucleus upon infection. We demonstrate that StEIN3 and StEIL1 directly bind the StPti5 promoter and activate its expression, while synergistic activity of the ethylene and salicylic acid pathways is required for regulated StPti expression. To gain further insight into the mode of StPti5 action in attenuating potato defence responses, we investigated transcriptional changes in salicylic acid deficient potato lines with silenced StPti5 expression. We show that StPti5 regulates the expression of other ERFs and downregulates the ubiquitin-proteasome pathway as well as several proteases involved in directed proteolysis. This study adds a novel element to the complex puzzle of immune regulation, by deciphering a two-level regulation of ERF transcription factor activity in response to pathogens.
Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Potyvirus , Regiões Promotoras Genéticas , Ralstonia solanacearum , Ácido Salicílico , Solanum tuberosum , Solanum tuberosum/microbiologia , Solanum tuberosum/imunologia , Solanum tuberosum/genética , Solanum tuberosum/virologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Etilenos/metabolismo , Ralstonia solanacearum/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Ácido Salicílico/metabolismo , Potyvirus/fisiologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Complexo de Endopeptidases do Proteassoma/metabolismo , Autofagia , Núcleo Celular/metabolismoRESUMO
The potato leafhopper (Empoasca fabae, PLH) is a serious pest that feeds on a wide range of agricultural crops and is found throughout the United States but is not known to be a vector for plant-infecting viruses. We probed the diversity of virus sequences in field populations of PLH collected from four Midwestern states: Illinois, Indiana, Iowa, and Minnesota. High-throughput sequencing data from total RNAs extracted from PLH were used to assemble sequences of fifteen positive-stranded RNA viruses, two negative-stranded RNA viruses, and one DNA virus. These sequences included ten previously described plant viruses and eight putative insect-infecting viruses. All but one of the insect-specific viruses were novel and included three solemoviruses, one iflavirus, one phenuivirus, one lispivirus, and one ambidensovirus. Detailed analyses of the novel genome sequences and their evolutionary relationships with related family members were conducted. Our study revealed a diverse group of plant viruses circulating in the PLH population and discovered novel insect viruses, expanding knowledge on the untapped virus diversity in economically important crop pests. Our findings also highlight the importance of monitoring the emergence and circulation of plant-infecting viruses in agriculturally important arthropod pests.
Assuntos
Genoma Viral , Hemípteros , Filogenia , Vírus de Plantas , Animais , Hemípteros/virologia , Vírus de Plantas/genética , Vírus de Plantas/classificação , Vírus de Plantas/isolamento & purificação , Doenças das Plantas/virologia , Doenças das Plantas/parasitologia , Produtos Agrícolas/virologia , Vírus de Insetos/genética , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação , Solanum tuberosum/virologia , Solanum tuberosum/parasitologia , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de DNA/genética , Vírus de DNA/classificação , Vírus de DNA/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Variação Genética , Insetos Vetores/virologiaRESUMO
KEY MESSAGE: The Ra extreme resistance against potato virus A was mapped to the upper of chromosome 4 in tetraploid potato. Potato virus A (PVA) is one of the major viruses affecting potato worldwide and can cause serious disease symptoms and yield losses. Previously, we determined that potato cultivar Barbara harbors Rysto (genotype: Ryryryry) and Ra (genotype: Rararara) that each independently confer extreme resistance to PVA. In this study, employing a combination of next-generation sequencing and bulked-segregant analysis, we further located this novel Ra on chromosome 4 using a tetraploid BC1 potato population derived from a Ry-free progeny (Rararararyryryry) of Barbara (RarararaRyryryry) × F58050 (rararararyryryry). Using 29 insertion-deletion (InDel) markers spanning chromosome 4, Ra was delimited by the InDel markers M8-83 and M10-8 within a genetic interval of 1.46 cM, corresponding to a 1.86-Mb genomic region in the potato DM reference genome. The InDel marker M10-8, which is closely linked with the resistance against PVA in the Ry-free segregating populations, was then used to screen 43 selected Rysto-free tetraploid potato breeding clones. The phenotype to PVA was significantly correlated with the present/absent of the marker, albeit with a 9.3% false positive rate and a 14.0% false negative rate. These findings are of importance in furthering the cloning of Ra and employing the marker-assisted selection for PVA resistance.
Assuntos
Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Potyvirus , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/virologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Potyvirus/patogenicidade , Fenótipo , Genótipo , Marcadores Genéticos , Mutação INDEL , Cromossomos de Plantas/genética , Tetraploidia , Melhoramento VegetalRESUMO
The bacterial diseases black leg and soft rot in potatoes cause heavy losses of potatoes worldwide. Bacteria within the genus Pectobacteriaceae are the causative agents of black leg and soft rot. The use of antibiotics in agriculture is heavily regulated and no other effective treatment currently exists, but bacteriophages (phages) have shown promise as potential biocontrol agents. In this study we isolated soft rot bacteria from potato tubers and plant tissue displaying soft rot or black leg symptoms collected in Danish fields. We then used the isolated bacterial strains as hosts for phage isolation. Using organic waste, we isolated phages targeting different species within Pectobacterium. Here we focus on seven of these phages representing a new genus primarily targeting P. brasiliense; phage Ymer, Amona, Sabo, Abuela, Koroua, Taid and Pappous. TEM image of phage Ymer showed siphovirus morphotype, and the proposed Ymer genus belongs to the class Caudoviricetes, with double-stranded DNA genomes varying from 39 kb to 43 kb. In silico host range prediction using a CRISPR-Cas spacer database suggested both P. brasiliense, P. polaris and P. versatile as natural hosts for phages within the proposed Ymer genus. A following host range experiment, using 47 bacterial isolates from Danish tubers and plants symptomatic with soft rot or black leg disease verified the in silico host range prediction, as the genus as a group were able to infect all three Pectobacterium species. Phages did, however, primarily target P. brasiliense isolates and displayed differences in host range even within the species level. Two of the phages were able to infect two or more Pectobacterium species. Despite no nucleotide similarity with any phages in the NCBI database, the proposed Ymer genus did share some similarity at the protein level, as well as gene synteny, with currently known phages. None of the phages encoded integrases or other genes typically associated with lysogeny. Similarly, no virulence factors nor antimicrobial resistance genes were found, and combined with their ability to infect several soft rot-causing Pectobacterium species from Danish fields, demonstrates their potential as biocontrol agents against soft rot and black leg diseases in potatoes.
Assuntos
Bacteriófagos , Especificidade de Hospedeiro , Pectobacterium , Doenças das Plantas , Solanum tuberosum , Pectobacterium/virologia , Pectobacterium/genética , Pectobacterium/patogenicidade , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Bacteriófagos/classificação , Dinamarca , Genoma Viral , FilogeniaRESUMO
Potato mop-top virus (PMTV) is an emerging viral pathogen that causes tuber necrosis in potatoes. PMTV is composed of three single-stranded RNA segments: RNA1 encodes RNA-dependent RNA polymerase, RNA2 contains the coat protein (CP), and RNA3 harbors a triple gene block (TGB 1, TGB2, and TGB3). CP plays a role in viral transmission, while TGB is known to facilitate cell-to-cell and long-distance systemic movement. The role of CP in symptom development, specifically in the presence of TGB genes, was investigated using potato virus X (PVX) as a delivery vehicle to express PMTV genes in the model plant Nicotiana benthamiana. Plants expressing individual genes showed mild symptoms that included leaf curling and crumpling. Interestingly, symptom severity varied among plants infected with three different combinations: CP with TGB1, CP with TGB2, and CP with TGB3. Notably, the combination of CP and TGB3 induced a hypersensitive response, accompanied by stunted growth and downward curling and crumpling. These results suggest the potential role of TGB co-expressed with CP in symptom development during PMTV infection. Additionally, this study demonstrates the use of the PVX-based expression system as a valuable platform for assessing the role of unknown genes in viral pathogenicity.
Assuntos
Proteínas do Capsídeo , Nicotiana , Doenças das Plantas , Potexvirus , Solanum tuberosum , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Nicotiana/genética , Nicotiana/virologia , Nicotiana/metabolismo , Potexvirus/genética , Potexvirus/patogenicidade , Doenças das Plantas/virologia , Doenças das Plantas/genética , Solanum tuberosum/virologia , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Pospiviroids infect a wide range of plant species, and many pospiviroids can be transmitted to potato and tomato. Pospiviroids continue to be a major production constraint as well as of quarantine concern for the movement of germplasm, and are regulated in several countries/regions. The USDA APHIS issued a federal order requiring all imported tomato and pepper seeds be certified free of six pospiviroids of quarantine significance. The six pospiviroids of quarantine interest include CLVd, PCFVd, PSTVd, TASVd, TCDVd, TPMVd. Currently, those six viroids are detected by real-time RT-PCR. CRISPR/Cas-based genome editing has been increasingly used for virus detection in the past five years. We used a rapid Cas13-based Specific High-sensitivity Enzymatic Reporter unLOCKing (SHERLOCK) platform for pospiviroid detection, determined the limits of detection and specificity of CRISPR-Cas13a assays. This platform combines recombinase polymerase amplification (RPA) with CRISPR and CRISPR-associated (CRISPR-Cas) RNA-guided endoribonuclease that is rapid and does not require expensive equipment, and can be adapted for on-site detection.
Assuntos
Sistemas CRISPR-Cas , Doenças das Plantas , Viroides , Doenças das Plantas/virologia , Viroides/genética , Viroides/isolamento & purificação , Sensibilidade e Especificidade , Solanum lycopersicum/virologia , Edição de Genes/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Solanum tuberosum/virologiaRESUMO
Variations in infection progression with concurrent or prior infections by different viruses, viroids, or their strains are evident, but detailed investigations into viroid variant interactions are lacking. We studied potato spindle tuber viroid intermediate strain (PSTVd-I) to explore variant interactions. Two mutants, U177A/A182U (AU, replication- and trafficking-competent) and U178G/U179G (GG, replication-competent but trafficking-defective) on loop 27 increased cell-to-cell movement of wild-type (WT) PSTVd without affecting replication. In mixed infection assays, both mutants accelerated WT phloem unloading, while only AU promoted it in separate leaf assays, suggesting that enhancement of WT infection is not due to systemic signals. The mutants likely enhance WT infection due to their loop-specific functions, as evidenced by the lack of impact on WT infection seen with the distantly located G347U (UU) mutant. This study provides the first comprehensive analysis of viroid variant interactions, highlighting the prolonged phloem unloading process as a significant barrier to systemic spread.
Assuntos
Mutação , Floema , Doenças das Plantas , RNA Viral , Viroides , Viroides/genética , Viroides/fisiologia , Floema/virologia , Floema/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Doenças das Plantas/virologia , Replicação Viral , Nicotiana/virologia , Solanum tuberosum/virologia , Folhas de Planta/virologiaRESUMO
Potato is considered a key component of the global food system and plays a vital role in strengthening world food security. A major constraint to potato production worldwide is the Potato Virus Y (PVY), belonging to the genus Potyvirus in the family of Potyviridae. Selective breeding of potato with resistance to PVY pathogens remains the best method to limit the impact of viral infections. Understanding the genetic diversity and population structure of potato germplasm is important for breeders to improve new cultivars for the sustainable use of genetic materials in potato breeding to PVY pathogens. While, genetic diversity improvement in modern potato breeding is facing increasingly narrow genetic basis and the decline of the genetic diversity. In this research, we performed genotyping-by-sequencing (GBS)-based diversity analysis on 10 commercial potato cultivars and weighted gene co-expression network analysis (WGCNA) to identify candidate genes related to PVY-resistance. WGCNA is a system biology technique that uses the WGCNA R software package to describe the correlation patterns between genes in multiple samples. In terms of consumption, these cultivars are a high rate among Iranian people. Using population structure analysis, the 10 cultivars were clustered into three groups based on the 118343 single nucleotide polymorphisms (SNPs) generated by GBS. Read depth ranged between 5 and 18. The average data size and Q30 of the reads were 145.98 Mb and 93.63%, respectively. Based on the WGCNA and gene expression analysis, the StDUF538, StGTF3C5, and StTMEM161A genes were associated with PVY resistance in the potato genome. Further, these three hub genes were significantly involved in defense mechanism where the StTMEM161A was involved in the regulation of alkalization apoplast, the StDUF538 was activated in the chloroplast degradation program, and the StGTF3C5 regulated the proteins increase related to defense in the PVY infected cells. In addition, in the genetic improvement programs, these hub genes can be used as genetic markers for screening commercial cultivars for PVY resistance. Our survey demonstrated that the combination of GBS-based genetic diversity germplasm analysis and WGCNA can assist breeders to select cultivars resistant to PVY as well as help design proper crossing schemes in potato breeding.
Assuntos
Doenças das Plantas , Potyvirus , Solanum tuberosum , Solanum tuberosum/virologia , Solanum tuberosum/genética , Potyvirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Resistência à Doença/genética , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas , Genótipo , Polimorfismo de Nucleotídeo Único , Técnicas de Genotipagem/métodos , Melhoramento Vegetal/métodos , Genes de PlantasRESUMO
BACKGROUND: Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. RESULTS: The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. CONCLUSIONS: The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms.
Assuntos
Resistência à Doença , Variação Genética , Doenças das Plantas , Potyvirus , Solanum tuberosum , Solanum , Potyvirus/fisiologia , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Solanum/genética , Solanum/virologia , Solanum tuberosum/genética , Solanum tuberosum/virologia , Genes de Plantas , Genótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
An unprecedented study of the application of planar chiral compounds in antiviral pesticide development is reported. A class of multifunctional planar chiral ferrocene derivatives bearing α-amino phosphonate moieties was synthesized. These compounds, exhibiting superior optical purities, were subsequently subjected to antiviral evaluations against the notable plant pathogen potato virus Y (PVY). The influence of the absolute configurations of the planar chiral compounds on their antiviral bioactivities was significant. A number of these enantiomerically enriched planar chiral molecules demonstrated superior anti-PVY activities. Specifically, compound (Sp, R)-9n displayed extraordinary curative activities against PVY, with a 50% maximal effective concentration (EC50) of 216.11 µg/mL, surpassing the efficacy of ningnanmycin (NNM, 272.74 µg/mL). The protective activities of compound (Sp, R)-9n had an EC50 value of 152.78 µg/mL, which was better than that of NNM (413.22 µg/mL). The molecular docking and defense enzyme activity tests were carried out using the planar chiral molecules bearing different absolute configurations to investigate the mechanism of their antiviral activities against PVY. (Sp, R)-9n, (Sp, R)-9o, and NMM all showed stronger affinities to the PVY-CP than the (Rp, S)-9n. Investigations into the mechanisms revealed that the planar chiral configurations of the compounds played pivotal roles in the interactions between the PVY-CP molecules and could augment the activities of the defense enzymes. This study contributes substantial insights into the role of planar chirality in defending plants against viral infections.
Assuntos
Antivirais , Simulação de Acoplamento Molecular , Organofosfonatos , Doenças das Plantas , Potyvirus , Solanum tuberosum , Antivirais/farmacologia , Antivirais/síntese química , Antivirais/química , Doenças das Plantas/virologia , Organofosfonatos/farmacologia , Organofosfonatos/química , Organofosfonatos/síntese química , Solanum tuberosum/virologia , Solanum tuberosum/química , Potyvirus/efeitos dos fármacos , Relação Estrutura-Atividade , Estereoisomerismo , Estrutura MolecularRESUMO
Potato virus Y (PVY) relies on aphids and tubers to spread in the field and causes serious economic losses in the potato industry. Here, we found that pyrido[1,2-α] pyrimidinone mesoionic compounds with insecticidal activity against aphids possessed a good inhibitory effect on PVY. Among them, compound 35 had the best inhibitory activity against PVY (EC50 = 104 µg/mL), even superior to that of ningnanmycin (125 µg/mL). The fluorescence and qPCR results confirmed that compound 35 could inhibit the proliferation of PVY in Nicotiana benthamiana. Preliminary experiments on the mechanism of action indicated that compound 35 had good binding affinity with the coat protein (CP), which plays an essential role in aphid-PVY interactions. Molecular docking revealed that compound 35 could bind to the pocket of CP formed by Ser52, Glu204, and Arg208. Compound 35 had substantially lower binding affinity (Kd) values with CPS52A (219 µM), CPE204A (231 µM), and CPR208A (189 µM) than those with CPWT (5.80 µM). A luciferase assay confirmed that mutating Ser52, Glu204, and Arg208 significantly affected the expression level of CP and further reduced virus proliferation. Therefore, the broad-spectrum activity of compound 35 provides a unique strategy for the prevention and treatment of PVY.
Assuntos
Antivirais , Afídeos , Simulação de Acoplamento Molecular , Nicotiana , Doenças das Plantas , Potyvirus , Afídeos/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Animais , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Potyvirus/efeitos dos fármacos , Potyvirus/genética , Potyvirus/química , Nicotiana/virologia , Pirimidinonas/farmacologia , Pirimidinonas/química , Inseticidas/química , Inseticidas/farmacologia , Solanum tuberosum/química , Solanum tuberosum/virologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Relação Estrutura-AtividadeRESUMO
The San Luis Valley (SLV), Colorado, is the second-largest fresh-potato-growing region in the United States, which accounts for about 95% of the total production in Colorado. Potato virus Y (PVY) is the leading cause of seed potato rejection in the SLV, which has caused a constant decline in seed potato production over the past two decades. To help potato growers control PVY, we monitored the dynamics of PVY infection pressure over the growing seasons of 2022 and 2023 (May through August) using tobacco bait plants exposed to field infection weekly. PVY infection dynamics were slightly different between the two seasons, but July and August had the highest infection in both years. The first PVY infection was detected in the second half of June, which coincides with the emergence of potato crops in the valley. PVY infection increased toward the beginning of August and declined toward the end of the season. Three PVY strains were identified in tobacco bait plants and potato fields, namely PVYO, PVYN-Wi, and PVYNTN. Unlike other producing areas of the United States, PVYO is still the major strain infecting potato crops in Colorado, comprising â¼40% of total PVY strain composition. This could be explained by the prevalence of the potato cultivar Russet Norkotah that lacks any identified N genes, including the Nytbr that controls PVYO, which imposes no negative selection against this strain. The current study demonstrated the usefulness of bait plants to understand PVY epidemiology and develop more targeted control practices of PVY.
Assuntos
Doenças das Plantas , Potyvirus , Solanum tuberosum , Colorado , Doenças das Plantas/virologia , Potyvirus/fisiologia , Potyvirus/genética , Solanum tuberosum/virologia , Estações do Ano , Nicotiana/virologiaRESUMO
Spongospora subterranea f. sp. subterranea (Sss) is a soilborne potato pathogen responsible for causing powdery scab on tubers and galls on roots, reducing root water uptake through colonizing root hairs, and vectoring of Potato mop-top virus (PMTV). However, effects of Sss on overall plant susceptibilities against subsequent infections of potato pathogens above ground have not been previously reported. This study aimed to investigate the effects of Sss on root and tuber disease expression, yield, and susceptibilities to subsequent late blight and white mold infections across six potato varieties. Sss-infected Silverton plants had 28.3% less total tuber yield and 29% fewer tubers compared to noninfected Silverton plants. We did not find a correlation across the varieties between root colonization and root gall formation. Sss-infected Silverton plants were more susceptible to hemibiotrophic late blight and less susceptible to necrotrophic white mold. Sss infection also increased susceptibilities of Goldrush and Atlantic plants to white mold. We also evaluated prevalence of asymptomatic Sss infections across the six varieties. Between 50 and 92% of the asymptomatic tubers tested positive for Sss DNA, depending on the variety. Further research is required to understand the possibility and extent of these asymptomatic infections to the spread of Sss in the field. These findings highlight the complexity of Sss-host interactions and give precedence that the lack of disease expression does not necessarily indicate resistance of a variety to Sss.
Assuntos
Ascomicetos , Doenças das Plantas , Raízes de Plantas , Solanum tuberosum , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Solanum tuberosum/microbiologia , Solanum tuberosum/virologia , Raízes de Plantas/microbiologia , Raízes de Plantas/virologia , Ascomicetos/fisiologia , Suscetibilidade a Doenças , Tubérculos/microbiologia , Tubérculos/virologiaRESUMO
Aphids are phloem-feeding insects that reduce crop productivity due to feeding and transmission of plant viruses. When aphids disperse across the landscape to colonize new host plants, they will often probe on a wide variety of nonhost plants before settling on a host suitable for feeding and reproduction. There is limited understanding of the diversity of plants that aphids probe on within a landscape, and characterizing this diversity can help us better understand host use patterns of aphids. Here, we used gut content analysis (GCA) to identify plant genera that were probed by aphid vectors of potato virus Y (PVY). Aphids were trapped weekly near potato fields during the growing seasons of 2020 and 2021 in San Luis Valley in Colorado. High-throughput sequencing of plant barcoding genes, trnF and ITS2, from 200 individual alate (i.e., winged) aphids representing nine vector species of PVY was performed using the PacBio sequencing platform, and sequences were identified to genus using NCBI BLASTn. We found that 34.7% of aphids probed upon presumed PVY host plants and that two of the most frequently detected plant genera, Solanum and Brassica, represent important crops and weeds within the study region. We found that 75% of aphids frequently probed upon PVY nonhosts including many species that are outside of their reported host ranges. Additionally, 19% of aphids probed upon more than one plant species. This study provides the first evidence from high-throughput molecular GCA of aphids and reveals host use patterns that are relevant for PVY epidemiology.
Assuntos
Afídeos , Sequenciamento de Nucleotídeos em Larga Escala , Potyvirus , Animais , Afídeos/virologia , Afídeos/genética , Potyvirus/genética , Potyvirus/fisiologia , Doenças das Plantas/virologia , Conteúdo Gastrointestinal/virologia , Colorado , Insetos Vetores/virologia , Insetos Vetores/genética , Solanum tuberosum/virologiaRESUMO
Potato virus V (PVV) causes a disease of potato (Solanum tubersosum) in South and Central America, Europe, and the Middle East. We report here the complete genomic sequences of 42 new PVV isolates from the potato's Andean domestication center in Peru and of eight historical or recent isolates from Europe. When the principal open reading frames of these genomic sequences together with those of nine previously published genomic sequences were analyzed, only two from Peru and one from Iran were found to be recombinant. The phylogeny of the 56 nonrecombinant open reading frame sequences showed that the PVV population had two major phylogroups, one of which formed three minor phylogroups (A1 to A3) of isolates, all of which are found only in the Andean region of South America (Peru and Colombia), and the other formed two minor phylogroups, a basal one of Andean isolates (A4) that is paraphyletic to a crown cluster containing all the isolates found outside South America (World). This suggests that PVV originated in the Andean region, with only one minor phylogroup spreading elsewhere in the world. In minor phylogroups A1 and A3, there were two subclades on long branches containing isolates from S. phureja evolving more rapidly than the others, and these interfered with dating calculations. Although no temporal signal was directly detected among the dated nonrecombinant sequences, PVV and potato virus Y (PVY) are from the same potyvirus lineage and are ecologically similar, so "subtree dating" was done via a single maximum likelihood phylogeny of PVV and PVY sequences, and PVY's well-supported 157 ce "time to most common recent ancestor" was extrapolated to date that of PVV as 29 bce. Thus the independent historical coincidences supporting the datings of the PVV and PVY phylogenies are the same; PVV arose ≥2,000 years ago in the Andes and was taken to Europe during the Columbian Exchange, where it diversified around 1853 ce, soon after the European potato late blight pandemic. PVV is likely to be more widespread than currently realized and is of biosecurity relevance for world regions that have not yet recorded its presence.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Filogenia , Potyvirus , Solanum tuberosum , Evolução Biológica , Doenças das Plantas/virologia , Potyvirus/classificação , Solanum tuberosum/virologia , América do SulRESUMO
Viruses in the Luteoviridae family, such as Potato leafroll virus (PLRV), are transmitted by aphids in a circulative and nonpropagative mode. This means the virions enter the aphid body through the gut when they feed from infected plants and then the virions circulate through the hemolymph to enter the salivary glands before being released into the saliva. Although these viruses do not replicate in their insect vectors, previous studies have demonstrated viruliferous aphid behavior is altered and the obligate symbiont of aphids, Buchnera aphidocola, may be involved in transmission. Here we provide the transcriptome of green peach aphids (Myzus persicae) carrying PLRV and virus-free control aphids using Illumina sequencing. Over 150 million paired-end reads were obtained through Illumina sequencing, with an average of 19 million reads per library. The comparative analysis identified 134 differentially expressed genes (DEGs) between the M. persicae transcriptomes, including 64 and 70 genes that were up- and down-regulated in aphids carrying PLRV, respectively. Using functional classification in the GO databases, 80 of the DEGs were assigned to 391 functional subcategories at category level 2. The most highly up-regulated genes in aphids carrying PLRV were cytochrome p450s, genes related to cuticle production, and genes related to development, while genes related to heat shock proteins, histones, and histone modification were the most down-regulated. PLRV aphids had reduced Buchnera titer and lower abundance of several Buchnera transcripts related to stress responses and metabolism. These results suggest carrying PLRV may reduce both aphid and Buchnera genes in response to stress. This work provides valuable basis for further investigation into the complicated mechanisms of circulative and nonpropagative transmission.
Assuntos
Afídeos , Buchnera/metabolismo , Insetos Vetores , Luteoviridae/metabolismo , Doenças das Plantas , Solanum tuberosum , Animais , Afídeos/microbiologia , Afídeos/virologia , Insetos Vetores/microbiologia , Insetos Vetores/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Solanum tuberosum/microbiologia , Solanum tuberosum/virologiaRESUMO
The combination of recombinase polymerase amplification (RPA) and lateral flow test (LFT) is a strong diagnostic tool for rapid pathogen detection in resource-limited conditions. Here, we compared two methods generating labeled RPA amplicons following their detection by LFT: (1) the basic one with primers modified with different tags at the terminals and (2) the nuclease-dependent one with the primers and labeled oligonucleotide probe for nuclease digestion that was recommended for the high specificity of the assay. Using both methods, we developed an RPA-LFT assay for the detection of worldwide distributed phytopathogen-alfalfa mosaic virus (AMV). A forward primer modified with fluorescein and a reverse primer with biotin and fluorescein-labeled oligonucleotide probe were designed and verified by RPA. Both labeling approaches and their related assays were characterized using the in vitro-transcribed mRNA of AMV and reverse transcription reaction. The results demonstrated that the RPA-LFT assay based on primers-labeling detected 103 copies of RNA in reaction during 30 min and had a half-maximal binding concentration 22 times lower than probe-dependent RPA-LFT. The developed RPA-LFT was successfully applied for the detection of AMV-infected plants. The results can be the main reason for choosing simple labeling with primers for RPA-LFT for the detection of other pathogens.
Assuntos
Vírus do Mosaico da Alfafa/isolamento & purificação , Nicotiana/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Sondas de Oligonucleotídeos/química , Doenças das Plantas/virologia , Recombinases/metabolismo , Solanum tuberosum/virologia , Vírus do Mosaico da Alfafa/genética , Bioensaio , Recombinases/genética , Transcrição Reversa , Proteínas Virais/genéticaRESUMO
Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV-plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.