Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ACS Biomater Sci Eng ; 10(7): 4336-4346, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850557

RESUMO

Prostate cancer (PCa) with a high incidence worldwide is a serious threat to men's health. Despite the continuous development of treatment strategies for PCa in recent years, the long-term prognosis of patients is still poor. Hence, the discovery and development of novel, secure, and efficient therapeutic approaches hold significant clinical significance. Although sorafenib (SOR) displays potential as a therapeutic option for PCa, its clinical efficacy is hindered by drug resistance, limited water solubility, and rapid metabolism. Therefore, we proposed to prepare nanoparticles (named SOR@8P4 NPs) utilizing the phenylalanine-based poly(ester amide) polymer (8P4) as the drug carrier to enhance the solubility and drug stability of SOR and improve the therapeutic targeting and bioavailability. SOR@8P4 NPs had high stability and showed acid-responsive drug release at the acidic tumor microenvironment. Additionally, SOR@8P4 NPs demonstrated more remarkable anticancer, antimetastatic, and antiproliferative abilities in vitro, compared with those of free drugs. SOR@8P4 NPs showed high tumor targeting and significantly inhibited tumor growth in vivo. In summary, the drug delivery system of SOR@8P4 NPs provides new ideas for the clinical treatment of PCa.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias da Próstata , Sorafenibe , Masculino , Sorafenibe/uso terapêutico , Sorafenibe/farmacologia , Sorafenibe/química , Sorafenibe/farmacocinética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Humanos , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Poliésteres/química , Camundongos , Portadores de Fármacos/química , Amidas/química , Amidas/uso terapêutico , Amidas/farmacologia , Liberação Controlada de Fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Camundongos Endogâmicos BALB C
2.
Clin Pharmacol Drug Dev ; 13(9): 985-999, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38808617

RESUMO

Despite clinical advances with protein kinase inhibitors (PKIs), oral administration of many PKIs is associated with highly variable plasma exposure and a narrow therapeutic window. We developed a novel hybrid nanoparticle-amorphous solid dispersion (ASD) technology platform consisting of an amorphous PKI embedded in a polymer matrix. The technology was used to manufacture immediate-release formulations of 2 tyrosine kinase inhibitors (TKIs), dasatinib and sorafenib. Our primary objective was to improve the absorption properties and reduce the pharmacokinetic (PK) variability of each TKI. The PKs of XS004 (dasatinib-ASD, 100 mg tablet) and XS005 (sorafenib-ASD, 2 × 50 mg capsules) were compared with their crystalline formulated reference drugs (140 mg of dasatinib-reference and 200 mg of sorafenib-reference). The in vitro biopharmaceutics of dasatinib-ASD and XS005-granulate showed sustained increased solubility in the pH range 1.2-8.0 compared to their crystalline references. In vivo, XS004 was bioequivalent at a 30% lower dose and showed increased absorption and bioavailability, with 2.1-4.8 times lower intra- and intersubject variability compared to the reference. XS005 had an increased absorption and bioavailability of 45% and 2.2-2.8 times lower variability, respectively, but it was not bioequivalent at the investigated dose level. Taken together, the formulation platform is suited to generate improved PKI formulations with consistent bioavailability and a reduced pH-dependent absorption process.


Assuntos
Disponibilidade Biológica , Dasatinibe , Inibidores de Proteínas Quinases , Sorafenibe , Dasatinibe/farmacocinética , Dasatinibe/administração & dosagem , Sorafenibe/farmacocinética , Sorafenibe/administração & dosagem , Humanos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/sangue , Masculino , Administração Oral , Nanopartículas , Solubilidade , Adulto , Equivalência Terapêutica , Composição de Medicamentos , Comprimidos , Adulto Jovem , Estudos Cross-Over , Feminino
3.
Drug Deliv Transl Res ; 14(11): 3089-3111, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38430357

RESUMO

Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths worldwide. Current treatment strategies include surgical resection, liver transplantation, liver-directed therapy, and systemic therapy. Sorafenib (Sor) is the first systemic drug authorized by the US Food and Drug Administration (FDA) for HCC treatment. Nevertheless, the conventional oral administration of Sor presents several limitations: poor solubility, low bioavailability, drug resistance development, and off-target tissue accumulation, leading to numerous adverse effects. Nano-emulsion, a nano-delivery system, is a viable carrier for poorly water-soluble drugs. It aims to enhance drug bioavailability, target organ accumulation, and reduce off-target tissue exposure, thus improving therapeutic outcomes while minimizing side effects. This study formulated Sor nano-emulsion (Sor NanoEm) using the homogenization technique. The resultant nano-emulsion was characterized by particle size (121.75 ± 12 nm), polydispersity index (PDI; 0.310), zeta potential (-12.33 ± 1.34 mV), viscosity (34,776 ± 3276 CPs), and pH (4.38 ± 0.3). Transmission Electron Microscopy exhibited spherical nano-droplets with no aggregation signs indicating stability. Furthermore, the encapsulation of Sor within the nano-emulsion sustained its release, potentially reducing the frequency of therapeutic doses. Cytotoxicity assessments on the HepG2 cell line revealed that Sor NanoEm had a significantly (P < 0.05) more potent cytotoxic effect compared to Sor suspension. Subsequent tests highlighted superior pharmacokinetic parameters and reduced dosage requirements of Sor NanoEm in mice. It exhibited an enhanced safety profile, particularly in behavior, brain, and liver, compared to its suspended form. These findings underscore the enhanced pharmacological and toxicological attributes of Sor Nano-emulsion, suggesting its potential utility in HCC treatment.


Assuntos
Antineoplásicos , Emulsões , Nanopartículas , Sorafenibe , Sorafenibe/farmacocinética , Sorafenibe/administração & dosagem , Sorafenibe/química , Sorafenibe/toxicidade , Animais , Humanos , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/toxicidade , Nanopartículas/química , Nanopartículas/administração & dosagem , Células Hep G2 , Camundongos , Neoplasias Hepáticas/tratamento farmacológico , Tamanho da Partícula , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Masculino , Sobrevivência Celular/efeitos dos fármacos
4.
Bioanalysis ; 16(10): 461-473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530220

RESUMO

Aim: Investigation of the pharmacokinetics of sorafenib (SRF) in rats with hepatocellular carcinoma (HCC). Methods: A reproducible ultra-HPLC-MS method for simultaneous determination of serum SRF, N-hydroxymethyl sorafenib and N-demethylation sorafenib. Results: Both the maximum serum concentrations (2.5-times) and the area under the serum concentration-time curve from 0 h to infinity (4.5-times) of SRF were observed to be significantly higher, with a greater than 3.0-fold decrease in the clearance rate in the HCC-bearing rats compared with these values in healthy animals. Further study revealed approximately 3.8- and 3.2-times increases in the apparent Michaelis constant for N-hydroxymethyl sorafenib and N-demethylation sorafenib conversions in the HCC-bearing rats. Conclusion: The low efficiency for the SRF conversions was a key contributor to the increased serum concentrations of SRF.


[Box: see text].


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Niacinamida , Compostos de Fenilureia , Sorafenibe , Sorafenibe/farmacocinética , Sorafenibe/sangue , Sorafenibe/uso terapêutico , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Niacinamida/análogos & derivados , Niacinamida/sangue , Niacinamida/farmacocinética , Ratos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Masculino , Compostos de Fenilureia/farmacocinética , Compostos de Fenilureia/sangue , Compostos de Fenilureia/uso terapêutico , Cromatografia Líquida de Alta Pressão/métodos , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Antineoplásicos/sangue , Ratos Sprague-Dawley , Espectrometria de Massas
5.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080187

RESUMO

Hepatocellular carcinoma (HCC) and type 2 diabetes mellitus (T2DM) are common clinical conditions, and T2DM is an independent risk factor for HCC. Sorafenib and lenvatinib, two multi-targeted tyrosine kinase inhibitors, are first-line therapies for advanced HCC, while canagliflozin, a sodium-glucose co-transporter 2 inhibitor, is widely used in the treatment of T2DM. Here, we developed an ultra-performance liquid chromatography-tandem mass spectrometry method for the simultaneous determination of canagliflozin, sorafenib, and lenvatinib, and investigated the pharmacokinetic drug interactions between canagliflozin and sorafenib or lenvatinib in rats. The animals were randomly divided into five groups. Groups I-III were gavage administrated with sorafenib, lenvatinib, and canagliflozin, respectively. Group IV received sorafenib and canagliflozin; while Group V received lenvatinib and canagliflozin. The area under the plasma concentration-time curves (AUC) and maximum plasma concentrations (Cmax) of canagliflozin increased by 37.6% and 32.8%, respectively, while the apparent volume of distribution (Vz/F) and apparent clearance (CLz/F) of canagliflozin significantly decreased (30.6% and 28.6%, respectively) in the presence of sorafenib. Canagliflozin caused a significant increase in AUC and Cmax of lenvatinib by 28.9% and 36.2%, respectively, and a significant decrease in Vz/F and CLz/F of lenvatinib by 52.9% and 22.7%, respectively. In conclusion, drug interactions exist between canagliflozin and sorafenib or lenvatinib, and these findings provide a reference for the use of these drugs in patients with HCC and T2DM.


Assuntos
Canagliflozina , Compostos de Fenilureia , Quinolinas , Sorafenibe , Animais , Canagliflozina/farmacocinética , Carcinoma Hepatocelular/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Interações Medicamentosas , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Quinolinas/farmacocinética , Ratos , Inibidores do Transportador 2 de Sódio-Glicose/farmacocinética , Sorafenibe/farmacocinética
6.
Int J Oncol ; 60(4)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35244188

RESUMO

Hypoxia promotes drug resistance and induces the expression of hypoxia inducible factor (HIF)­1α in liver cancer cells. However, to date, no selective HIF­1α inhibitor has been clinically approved. The aim of this study is to investigate a drug­targetable molecule that can regulate HIF­1α under hypoxia. The present study demonstrated that hyperactivation of dual­specificity tyrosine­phosphorylation­regulated kinase 1A (DYRK1A)/HIF­1α signaling was associated with an increased risk of liver cancer. In addition, DYRK1A knockdown using small interfering RNA transfection or treatment with harmine, a natural alkaloid, significantly reduced the protein expression levels of HIF­1α in liver cancer cells under hypoxic conditions in vitro. Conversely, DYRK1A overexpression­vector transfection in liver cancer cell lines notably induced HIF­1α expression under the same conditions. Furthermore, DYRK1A was shown to interact and activate STAT3 under hypoxia to regulate HIF­1α expression. These findings indicated that DYRK1A may be a potential upstream activator of HIF­1α and positively regulate HIF­1α via the STAT3 signaling pathway in liver cancer cells. Additionally, treatment with harmine attenuated the proliferative ability of liver cancer cells under hypoxic conditions using sulforhodamine B and colony formation assay. Furthermore, DYRK1A knockdown could significantly enhance the anti­liver cancer effects of regorafenib and sorafenib under hypoxia. Co­treatment with harmine and either regorafenib or sorafenib also promoted cell death via the STAT3/HIF­1α/AKT signaling pathway under hypoxia using PI staining and western blotting. Overall, the results from the present study suggested that DYRK1A/HIF­1α signaling may be considered a novel pathway involved in chemoresistance, thus providing a potentially effective therapeutic regimen for treating liver cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Hipóxia/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Sorafenibe/farmacocinética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/fisiopatologia , Compostos de Fenilureia/metabolismo , Fatores de Proteção , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Piridinas/metabolismo , Sorafenibe/metabolismo , Quinases Dyrk
7.
Dis Markers ; 2021: 9711179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721737

RESUMO

BACKGROUND: Sorafenib is an anticancer drug used in the treatment of unresectable hepatocellular carcinoma and advanced renal cell carcinoma. It is a substrate for the human OATP1B1. This study is aimed at assessing the role of OATP1B1 in transportation and uptake of sorafenib in hepatocellular carcinoma and how OATP1B1 affects the pharmacodynamics of sorafenib in vitro and in vivo. METHODS: Sorafenib transport was measured in HepG2, HepG2-OATP1B1∗1a, HepG2-OATP1B1∗1b, HepG2-OATP1B1∗15, LO2, LO2-OATP1B1∗1a, LO2-OATP1B1∗1b, and LO2-OATP1B1∗15 cells, as well as in HepG2 cells transfected with miR-148a mimics. The viability and apoptosis rate of cells treated with sorafenib were evaluated. A liver cancer rat model was established to explore the pharmacokinetics and pharmacodynamics of sorafenib after overexpression of Oatp2. RESULTS: Changes in expression and genetic mutations of OATP1B1 significantly affected the uptake of sorafenib in HepG2 and LO2 transgenic cells, and the uptake of sorafenib was higher in HepG2 than LO2. Genetic mutations of OATP1B1 significantly affected the cell viability and apoptosis rate of HepG2 cells after sorafenib treatment. Compared to control group, the uptake of sorafenib in miR-148a mimic-transfected HepG2 cells was decreased, and the cell viability was increased. PCN significantly increased the expression of Oatp2 and affected the pharmacokinetics of sorafenib. Vascular endothelial growth factor levels and microvascular density in tumor-adjacent tissues decreased significantly, suggesting that increased Oatp2 expression improves the treatment effect of sorafenib in a rat model of liver cancer. CONCLUSIONS: OATP1B1 plays an important role in the pharmacokinetics and pharmacodynamics of sorafenib in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Mutação , Sorafenibe/farmacologia , Sorafenibe/farmacocinética , Animais , Antineoplásicos , Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Nanobiotechnology ; 19(1): 360, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749742

RESUMO

In addition to early detection, early diagnosis, and early surgery, it is of great significance to use new strategies for the treatment of hepatocellular carcinoma (HCC). Studies showed that the combination of sorafenib (SFN) and triptolide (TPL) could reduce the clinical dose of SFN and maintain good anti-HCC effect. But the solubility of SFN and TPL in water is low and both drugs have certain toxicity. Therefore, we constructed a biomimetic nanosystem based on cancer cell-platelet (PLT) hybrid membrane camouflage to co-deliver SFN and TPL taking advantage of PLT membrane with long circulation functions and tumor cell membrane with homologous targeting. The biomimetic nanosystem, SFN and TPL loaded cancer cell-PLT hybrid membrane-camouflaged liquid crystalline lipid nanoparticles ((SFN + TPL)@CPLCNPs), could simultaneously load SFN and TPL at the molar ratio of SFN to TPL close to 10:1. (SFN + TPL)@CPLCNPs achieved long circulation function and tumor targeting at the same time, promoting tumor cell apoptosis, inhibiting tumor growth, and achieving a better "synergy and attenuation effect", which provided new ideas for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Diterpenos , Lipossomos , Neoplasias Hepáticas/metabolismo , Nanopartículas , Fenantrenos , Sorafenibe , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Materiais Biomiméticos/química , Plaquetas/química , Linhagem Celular Tumoral , Membrana Celular/química , Diterpenos/química , Diterpenos/farmacocinética , Diterpenos/farmacologia , Compostos de Epóxi/química , Compostos de Epóxi/farmacocinética , Compostos de Epóxi/farmacologia , Humanos , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Nanopartículas/química , Nanopartículas/toxicidade , Fenantrenos/química , Fenantrenos/farmacocinética , Fenantrenos/farmacologia , Células RAW 264.7 , Sorafenibe/química , Sorafenibe/farmacocinética , Sorafenibe/farmacologia
9.
Hum Exp Toxicol ; 40(12_suppl): S646-S653, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34784831

RESUMO

OBJECTIVE: Cytochrome P450 3A5 (CYP3A5) is a highly polymorphic gene and the encoded protein variants differ in catalytic activity, leading to inter-individual variation in metabolic ability. The aim of the current study was to investigate the effects of seven allelic variants on the ability of CYP3A5 to metabolize sorafenib in vitro and further explore the impacts of CYP3A5 polymorphism on the proliferation and apoptosis of hepatocellular carcinoma cell line (HepG2) induced by sorafenib. METHODS: Wild-type and variant CYP3A5 enzymes were expressed in Spodoptera frugiperda insect cells using a baculovirus dual-expression system, and protein expression was checked by western blot. The enzymes were incubated with sorafenib at 37°C for 30 min, and formation of the major metabolite sorafenib N-oxide was assayed using ultra-performance liquid chromatography and tandem mass spectrometry. Intrinsic clearance values (Vmax/Km) were calculated for each enzyme. Additionally, recombinant HepG2 cells transfecting with CYP3A5 variants were used to investigate the effects of sorafenib on the proliferation of HepG2 cells. RESULTS: Intrinsic clearance of the six variants CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 was 26.41-71.04% of the wild-type (CYP3A5*1) value. In contrast, the clearance value of the variant CYP3A5*6 was significantly higher (174.74%). Additionally, the decreased ATP levels and cell viability and the increased cell apoptosis in HepG2 cells transfected with CYP3A5*2, CYP3A5*3A, CYP3A5*3C, CYP3A5*4, CYP3A5*5, and CYP3A5*7 were observed, whereas, the increased ATP levels and cell viability and the reduced cell apoptosis in HepG2 cells transfected with CYP3A5*6 were also investigated when compared to CYP3A5*1. CONCLUSION: Our results suggest that CYP3A5 polymorphism influences sorafenib metabolism and pharmacotherapeutic effect in hepatic carcinomas. These data may help explain differential response to drug therapy for hepatocellular carcinoma, and they support the need for individualized treatment.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Citocromo P-450 CYP3A/genética , Neoplasias Hepáticas/tratamento farmacológico , Polimorfismo Genético , Sorafenibe/uso terapêutico , Antineoplásicos/farmacocinética , Humanos , Sorafenibe/farmacocinética
10.
Drug Metab Pharmacokinet ; 39: 100362, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34242938

RESUMO

Sorafenib was suggested to cause drug-drug interaction (DDI) with the common anticoagulant, warfarin based on published studies. The inhibition on CYP2C9 enzyme was thought to be the mechanism, but further studies are warranted. Thus, a mechanistic PBPK/PD model for warfarin enantiomers was developed to predict DDI potential with sorafenib, aiming at providing reference for the rational use of both drugs. PBPK models of warfarin enantiomers were constructed by Simcyp software. A mechanistic PK/PD model was built in NONMEM software. PBPK model of sorafenib was fitted via a top-down method. The final PBPK/PD model of warfarin enantiomers was verified and validated by different dosing regimens, ethnicities and genetic polymorphisms, and used to perform DDI simulations between warfarin racemate and sorafenib among general populations and sub-populations with various CYP2C9 and VKORC1 genotypes. Results suggested low DDI risk between warfarin and sorafenib for general populations. Potentially serious consequence was seen for those carrying both CYP2C9 ∗2 and ∗3 and VKORC1 A/A genotypes. This PBPK/PD modeling approach for warfarin enantiomers enabled DDI evaluation with sorafenib. Close monitoring and warfarin dosage adjustment were recommended for patients carrying mutant genotypes. The novel model could be applied to investigate other drugs that may interact with warfarin.


Assuntos
Coagulação Sanguínea , Citocromo P-450 CYP2C9/genética , Interações Medicamentosas/fisiologia , Hemorragia , Sorafenibe , Vitamina K Epóxido Redutases/genética , Varfarina , Anticoagulantes/metabolismo , Anticoagulantes/farmacocinética , Coagulação Sanguínea/efeitos dos fármacos , Coagulação Sanguínea/fisiologia , Simulação por Computador , Relação Dose-Resposta a Droga , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Humanos , Coeficiente Internacional Normatizado , Modelos Biológicos , Modelos Teóricos , Testes Farmacogenômicos/métodos , Medição de Risco/métodos , Sorafenibe/metabolismo , Sorafenibe/farmacocinética , Varfarina/metabolismo , Varfarina/farmacocinética
11.
Pharmacol Res ; 170: 105732, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139345

RESUMO

Renal cell carcinoma (RCC) is a highly vascularized tumor and prone to distant metastasis. Sorafenib is the first targeted multikinase inhibitor and first-line chemical drug approved for RCC therapy. In fact, only a small number of RCC patients benefit significantly from sorafenib treatment, while the growing prevalence of sorafenib resistance has become a major obstacle for drug therapy effectivity of sorafenib. The molecular mechanisms of sorafenib resistance in RCC are not completely understood by now. Herein, we comprehensively summarize the underlying mechanisms of sorafenib resistance and molecular biomarkers for predicting sorafenib responsiveness. Moreover, we outline strategies suitable for overcoming sorafenib resistance and prospect potential approaches for identifying biomarkers associated with sorafenib resistance in RCC, which contributes to guide individualized and precision drug therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/secundário , Tomada de Decisão Clínica , Regulação Neoplásica da Expressão Gênica , Genômica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Sorafenibe/efeitos adversos , Sorafenibe/farmacocinética , Resultado do Tratamento
12.
Clin Transl Sci ; 14(6): 2152-2160, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34060723

RESUMO

Sorafenib improves outcomes in adult hepatocellular carcinoma; however, hand foot skin reaction (HFSR) is a dose limiting toxicity of sorafenib that limits its use. HFSR has been associated with sorafenib systemic exposure. The objective of this study was to use modeling and simulation to determine whether using pharmacokinetically guided dosing to achieve a predefined sorafenib target range could reduce the rate of HFSR. Sorafenib steady-state exposures (area under the concentration curve from 0 to 12-h [AUC0->12 h ]) were simulated using published sorafenib pharmacokinetics at either a fixed dosage (90 mg/m2 /dose) or a pharmacokinetically guided dose targeting an AUC0->12 h between 20 and 55 h µg/ml. Dosages were either rounded to the nearest quarter of a tablet (50 mg) or capsule (10 mg). A Cox proportional hazard model from a previously published study was used to quantify HFSR toxicity. Simulations showed that in-target studies increased from 50% using fixed doses with tablets to 74% using pharmacokinetically guided dosing with capsules. The power to observe at least 4 of 6 patients in the target range increased from 33% using fixed dosing with tablets to 80% using pharmacokinetically guided with capsules. The expected HFSR toxicity rate decreased from 22% using fixed doses with tablets to 16% using pharmacokinetically guided dosing with capsules. The power to observe less than 6 of 24 studies with HFSR toxicity increased from 51% using fixed dosing with tablets to 88% using pharmacokinetically guided with capsules. Our simulations provide the rationale to use pharmacokinetically guided sorafenib dosing to maintain effective exposures that potentially improve tolerability in pediatric clinical trials.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/administração & dosagem , Sorafenibe/farmacocinética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Modelos Biológicos , Guias de Prática Clínica como Assunto , Adulto Jovem
13.
Nat Nanotechnol ; 16(6): 725-733, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33767382

RESUMO

Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.


Assuntos
Portadores de Fármacos/química , Ensaios de Triagem em Larga Escala/métodos , Nanopartículas/química , Sorafenibe/farmacologia , Terbinafina/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Simulação por Computador , Portadores de Fármacos/síntese química , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Difusão Dinâmica da Luz , Excipientes/química , Feminino , Ácido Glicirrízico/química , Humanos , Aprendizado de Máquina , Camundongos Endogâmicos , Absorção Cutânea , Sorafenibe/química , Sorafenibe/farmacocinética , Ácido Taurocólico/química , Terbinafina/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Pharm Nanotechnol ; 8(6): 471-484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33069205

RESUMO

BACKGROUND: Sorafenib tosylate (SFN) belongs to the BCS class II drug with low solubility and undergoes first-pass metabolism, which leads to reduced bioavailability of 38%. OBJECTIVE: The present study aimed at developing SFN SNEDDS to improve their solubility and bioavailability. METHODS: Preliminary solubility studies were performed to identify oil, surfactant, and co-surfactant ratios. Pseudo tertiary phase diagram was constructed to select the areas of nanoemulsion based on the monophasic region. A total of 15 formulations of SFN SNEDDS were prepared and screened for phase separation and temperature variation using thermodynamic stability studies. These SNEDDS further characterized for % transmission, content of the drug, and in vitro dissolution analysis. The optimized formulation was analyzed for particle size, Z average, entrapment efficiency, and SEM analysis. RESULTS: Based on the pseudo tertiary phase diagram, acrysol EL 135, kolliphor, and transcutol-P as oil, surfactant, and co-surfactant were selected, respectively. All the formulations were stable with no phase separation and maximum % transmittance of 98.92%. The formulation F15 was selected as an optimized one, based on maximum drug content of 99.89%, with 98.94% drug release within 1 hour and it will be stable for 6 months. From in vivo bioavailability studies, the Cmax of optimized SNEDDS (94.12±2.12ng/ml) is higher than pure SFN suspension (15.32±1.46 ng/ml) and the AUC0-∞ of optimized SNEDDS is also increased by 5 times (512.1±8.54 ng.h/ml) than pure drug (98.75±6.45ng.h/ml), which indicates improved bioavailability of the formulation. CONCLUSION: SFN loaded SNEDDS could potentially be exploited as a delivery system for improving oral bioavailability by minimizing first-pass metabolism and increased solubility. Lay Summary: Renal cell carcinoma accounts for 2% of global cancer diagnoses and deaths, it has more than doubled in incidence in the developed world over the past half-century, and today is the ninth most common neoplasm in the United States. Sorafenib is a protein kinase inhibitor indicated as a treatment for advanced renal cell carcinoma. The present study aimed at developing Sorafenib SNEDDS to improve their solubility and bioavailability. A total of 15 formulations of Sorafenib SNEDDS were prepared and screened for phase separation and temperature variation using thermodynamic stability studies. Sorafenib loaded SNEDDS could potentially be exploited as a delivery system for increased oral bioavailability by 5 times when comparing with pure drug by minimizing first-pass metabolism and increased solubility.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacocinética , Sorafenibe/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Carcinoma de Células Renais/diagnóstico , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos/fisiologia , Emulsões/química , Neoplasias Renais/patologia , Modelos Animais , Nanopartículas/administração & dosagem , Nanopartículas/química , Óleos/química , Tamanho da Partícula , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Wistar , Solubilidade , Sorafenibe/administração & dosagem , Sorafenibe/uso terapêutico , Tensoativos/química , Termodinâmica
15.
Eur J Drug Metab Pharmacokinet ; 45(6): 801-808, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32776310

RESUMO

BACKGROUND AND OBJECTIVE: Sorafenib is an oral, multikinase inhibitor with established single-agent activity in several tumor types. Sorafenib was moderately transported by P-glycoprotein (P-gp) and more efficiently by breast cancer resistance protein. The constitutive androstane receptor (CAR) is a ligand-activated transcription factor involved in P-gp regulation in the brain microvasculature. Paracetamol is a CAR activator. The purpose of this study was to investigate the effect of paracetamol on the brain uptake of sorafenib and sorafenib N-oxide. METHODS: The rats were assigned to two groups-rats receiving oral paracetamol 100 mg/kg and sorafenib 100 mg/kg (n = 42, ISR+PA) and rats receiving oral vehicle and sorafenib 100 mg/kg (n = 42, IISR). The sorafenib and sorafenib N-oxide concentrations in blood plasma and brain tissue were determined by a high-performance liquid chromatography method with ultraviolet detection. Brain-to-plasma partition coefficient (Kp) was calculated as a ratio of the area under the curve from zero to 24 h (AUC) in the brain and plasma. A drug targeting index (DTI) was estimated as the group ISR+PA Kp to group IISR Kp ratio. RESULTS: Pharmacokinetic analysis revealed increased brain exposure to sorafenib and sorafenib N-oxide after co-administration of paracetamol. The brain maximum concentration (Cmax) and the AUC of the parent drug in the ISR+PA group compared with the IISR group were greater by 49.5 and 77.8%, respectively, and the same parameters for the metabolite were higher by 51.4 and 50.9%. However, the Kp values of sorafenib and sorafenib N-oxide did not differ significantly between the two animal groups and the DTI values were close to 1. CONCLUSION: Paracetamol increases exposure to sorafenib and sorafenib N-oxide in the brain, likely due to increased exposure in plasma.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Sorafenibe/farmacocinética , Animais , Área Sob a Curva , Encéfalo/metabolismo , Masculino , Veículos Farmacêuticos , Ratos , Ratos Wistar
16.
Pharmacogenomics ; 21(12): 853-862, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32700644

RESUMO

Aim: To predict the impact of the different CYP2C9 and VKORC1 genotypes on warfarin-sorafenib interactions in whites and Asians. Materials & methods: The influences of the CYP2C9*1/*3 and VKORC1 -1639 A/A genotypes on increases in anticoagulation responses (international normalized ratio [INR]) in the presence of sorafenib were predicted using the population pharmacokinetic/pharmacodynamic (PK/PD) model in whites and Asians. Results: INRs were predicted to be 2.0-2.1- versus 1.8-1.9-times higher in the presence of sorafenib in the CYP2C9 (*1/*1 vs *1/*3) groups than those for warfarin alone in both whites and Asians. INRs were also predicted to be 2.1-2.2- versus 1.9-2.1-times higher in the VKORC1 (GG or GA vs AA) groups. Conclusion: Warfarin-sorafenib interactions might be similar irrespective of CYP2C9 and VKORC1 genotypes or ethnicity.


Assuntos
Povo Asiático/genética , Citocromo P-450 CYP2C9/genética , Sorafenibe/farmacocinética , Vitamina K Epóxido Redutases/genética , Varfarina/farmacocinética , População Branca/genética , Idoso , Idoso de 80 Anos ou mais , Anticoagulantes/farmacocinética , Antineoplásicos/farmacocinética , Interações Medicamentosas/genética , Feminino , Previsões , Genótipo , Humanos , Coeficiente Internacional Normatizado/métodos , Masculino , Pessoa de Meia-Idade
17.
Biomed Pharmacother ; 130: 110530, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32712531

RESUMO

Sorafenib (SR) is one of the most potent UGT (1A1, 1A9) inhibitors (in in vitro tests). The inhibition of UGT1A1 may cause hyperbilirubinaemia, whereas the inhibition of UGT1A9 and 1A1 may result in drug-drug interactions (DDIs). Tapentadol (TAP) is a synthetic µ-opioid agonist and is used to treat moderate to severe acute pain. Tapentadol is highly glucuronidated by the UGT1A9 and UGT2B7 isoenzymes. The aim of the study was to assess the DDI between SR and TAP. Wistar rats were divided into three groups, with eight animals in each. The rats were orally treated with SR (100 mg/kg) or TAP (4.64 mg/kg) or in combination with 100 mg/kg SOR and 4.64 TAP mg/kg. The concentrations of SR and sorafenib N-oxide, TAP and tapentadol glucuronide were respectively measured by means of high-performance liquid chromatography (HPLC) with ultraviolet detection and by means of ultra-performance liquid chromatography-tandem mass spectrometry. The co-administration of TAP with SR caused TAP maximum plasma concentration (Cmax) to increase 5.3-fold whereas its area under the plasma concentration-time curve (AUC0-∞) increased 1.5-fold. The tapentadol glucuronide Cmax increased 5.3-fold and whereas its AUC0-∞ increased 2.0-fold. The tapentadol glucuronide/TAP AUC0-∞ ratio increased 1.4-fold (p = 0.0118). TAP also increased SR Cmax 1.9-fold, whereas its AUC0-∞ increased 1.3-fold. The sorafenib N-oxide Cmax increased 1.9-fold whereas its AUC0-∞ increased 1.3-fold. The sorafenib N-oxide/SR AUC0-t ratio increased 1.4-fold (p = 0.0127). The results show that the co-administration of sorafenib and tapentadol increases the exposure to both drugs and changes their metabolism. In consequence, the pharmacological effect may be intensified, but the toxicity may increases, too.


Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Antineoplásicos/farmacocinética , Glucuronosiltransferase/antagonistas & inibidores , Sorafenibe/farmacocinética , Tapentadol/farmacologia , Animais , Antineoplásicos/sangue , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Glucuronídeos/metabolismo , Masculino , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sorafenibe/sangue , Espectrofotometria Ultravioleta , Espectrometria de Massas em Tandem
18.
Cancer Chemother Pharmacol ; 86(1): 129-139, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32588123

RESUMO

PURPOSE: Severe adverse events frequently occur in patients treated with sorafenib, whereas some patients have suboptimal response to sorafenib. We aimed to evaluate the association of sorafenib-induced toxicities and clinical outcomes with the pharmacokinetics of sorafenib in patients with hepatocellular carcinoma (HCC). METHODS: This was a retrospective, observational study in which 26 HCC patients who had been treated with sorafenib were enrolled between September 2010 and March 2015. The association between trough sorafenib concentration and occurrence of grade ≥ 3 toxicities was evaluated. In addition, we estimated the association of trough sorafenib concentration with overall survival (OS). RESULTS: The median sorafenib concentration was 2.91 µg/mL (range 0.74-8.8 µg/mL). Based on the receiver operating characteristic curve, the threshold value of the trough sorafenib concentration for predicting grade ≥ 3 toxicities and responder (complete response or partial response at best response, or stable disease for ≥ 3 months) was 3.45 µg/mL [area under the curve (AUC) 0.74, 95% confidence interval (CI) 0.54-0.93; p <0.05] and 1.40 µg/mL (AUC 0.97, 95% CI 0.97-1.00; p <0.05), respectively. OS of patients with sorafenib 1.40-3.45 µg/mL had a tendency to be longer than those of patients administered < 1.40 µg/mL and ≥ 3.45 µg/mL [median 17.8 months (1.40-3.45 µg/mL) vs. 5.3 months (< 1.40 µg/mL) and 9.5 months (≥ 3.45 µg/mL)]. CONCLUSIONS: From results of this study, we proposed that the target range of sorafenib may be a trough concentration of 1.40-3.45 µg/mL in patients with HCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Sorafenibe/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/mortalidade , Feminino , Humanos , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sorafenibe/efeitos adversos , Sorafenibe/sangue , Sorafenibe/farmacocinética , Resultado do Tratamento
19.
Pharm Res ; 37(7): 124, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32524365

RESUMO

PURPOSE: Lipid-based formulations (LBF) have shown oral bioavailability enhancement of lipophilic drugs, but not necessarily in the case of hydrophobic drugs. This study explored the potential of lipid vehicles to improve the bioavailability of the hydrophobic drug nilotinib comparing a chase dosing approach and lipid suspensions. METHODS: Nilotinib in vivo bioavailability in rats was determined after administering an aqueous suspension chase dosed with blank olive oil, Captex 1000, Peceol or Capmul MCM, respectively. Absolute bioavailability was determined (relative to an intravenous formulation). Pharmacokinetic parameters were compared to lipid suspensions. RESULTS: Compared to the lipid suspensions, the chase dosed lipids showed a 2- to 7-fold higher bioavailability. Both long chain chase dosed excipients also significantly increased the bioavailability up to 2-fold compared to the aqueous suspension. Deconvolution of the pharmacokinetic data indicated that chase dosing of nilotinib resulted in prolonged absorption compared to the aqueous suspension. CONCLUSION: Chase dosed LBF enhanced the in vivo bioavailability of nilotinib. Long chain lipids showed superior performance compared to medium chain lipids. Chase dosing appeared to prolong the absorption phase of the drug. Therefore, chase dosing of LBF is favourable compared to lipid suspensions for 'brick dust' molecules such as nilotinib. Graphical Abstract The potential of bio-enabling lipid vehicles, administered via chase dosing and lipid suspensions, has been evaluated as an approach to enhance oral bioavailability of nilotinib.


Assuntos
Lipídeos/química , Lipossomos/química , Pirimidinas/química , Animais , Disponibilidade Biológica , Química Farmacêutica , Diglicerídeos/química , Relação Dose-Resposta a Droga , Excipientes/química , Interações Hidrofóbicas e Hidrofílicas , Masculino , Monoglicerídeos/química , Ácidos Oleicos/química , Azeite de Oliva/química , Pirimidinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Solubilidade , Sorafenibe/química , Sorafenibe/farmacocinética , Suspensões/química , Água
20.
Sci Rep ; 10(1): 9575, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533042

RESUMO

To evaluate the effect and mechanism of radiotherapy (RT)-sorafenib pharmacokinetics (PK) in different regimens with conventional or high dose irradiation. Between February 2012 and December 2018, 43 patients with portal vein tumor thrombosis treated with sorafenib plus conventional RT (58%) or stereotactic body radiation therapy (SBRT, 42%) were retrospectively reviewed. In vivo and in vitro studies of concurrent and sequential RT with sorafenib were designed. SBRT resulted in a 3-fold increase in complete recanalization compared to conventional RT group (28% vs. 8%, p = 0.014). Compared to the control group, the area under the concentration vs. time curve (AUC) of sorafenib was increased in the concurrent RT2Gy and RT9Gy groups and the sequential RT9Gy group by 132% (p = 0.046), 163% (p = 0.038) and 102% (p = 0.018), respectively; and was decreased by 59% in the sequential RT2Gy group (p = 0.036). Sequential RT2Gy and RT9Gy increased CYP3A4 activity by 82% (p = 0.028) and 203% (p = 0.0004), respectively, compared to that with the corresponding concurrent regimen. SBRT produced better recanalization than conventional RT with sorafenib. The AUC of sorafenib was modulated by RT. P-gp expression was not influenced by RT. The sequential RT regimen increased CYP3A4 activity that may increase the RT-sorafenib synergy effect and overall sorafenib activity. The biodistribution of sorafenib was modulated by local RT with the different regimens.


Assuntos
Antineoplásicos/farmacocinética , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Veia Porta/efeitos da radiação , Inibidores de Proteínas Quinases/farmacocinética , Radiocirurgia/métodos , Sorafenibe/farmacocinética , Trombose Venosa/radioterapia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos da radiação , Animais , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/complicações , Linhagem Celular Tumoral , Terapia Combinada , Ciclosporina/farmacologia , Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Relação Dose-Resposta à Radiação , Indução Enzimática/efeitos da radiação , Humanos , Neoplasias Hepáticas/complicações , Masculino , NF-kappa B/metabolismo , NF-kappa B/efeitos da radiação , Inibidores de Proteínas Quinases/uso terapêutico , Ratos , Ratos Sprague-Dawley , Estudos Retrospectivos , Sorafenibe/uso terapêutico , Organismos Livres de Patógenos Específicos , Distribuição Tecidual , Trombose Venosa/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA