Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 99(9): 1489-500, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22922399

RESUMO

PREMISE OF THE STUDY: Knowledge of functional leaf traits can provide important insights into the processes structuring plant communities. In the genus Sorbus, the generation of taxonomic novelty through reticulate evolution that gives rise to new microspecies is believed to be driven primarily by a series of interspecific hybridizations among closely related taxa. We tested hypotheses for dispersion of intermediacy across the leaf traits in Sorbus hybrids and for trait linkages with leaf area and specific leaf area. METHODS: Here, we measured and compared the whole complex of growth, vascular, and ecophysiological leaf traits among parental (Sorbus aria, Sorbus aucuparia, Sorbus chamaemespilus) and natural hybrid (Sorbus montisalpae, Sorbus zuzanae) species growing under field conditions. A recently developed atomic force microscopy technique, PeakForce quantitative nanomechanical mapping, was used to characterize the topography of cell wall surfaces of tracheary elements and to map the reduced Young's modulus of elasticity. KEY RESULTS: Intermediacy was associated predominantly with leaf growth traits, whereas vascular and ecophysiological traits were mainly parental-like and transgressive phenotypes. Larger-leaf species tended to have lower modulus of elasticity values for midrib tracheary element cell walls. Leaves with a biomass investment related to a higher specific leaf area had a lower density. Leaf area- and length-normalized theoretical hydraulic conductivity was related to leaf thickness. CONCLUSIONS: For the whole complex of examined leaf traits, hybrid microspecies were mosaics of parental-like, intermediate, and transgressive phenotypes. The high proportion of transgressive character expressions found in Sorbus hybrids implies that generation of extreme traits through transgressive segregation played a key role in the speciation process.


Assuntos
Hibridização Genética , Folhas de Planta/anatomia & histologia , Característica Quantitativa Herdável , Sorbus/anatomia & histologia , Sorbus/genética , Análise de Variância , Parede Celular/metabolismo , Clorofila/metabolismo , Flores/anatomia & histologia , Fluorescência , Gases/metabolismo , Microscopia Confocal , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Análise de Componente Principal , Sorbus/citologia , Xilema/fisiologia
2.
Heredity (Edinb) ; 99(1): 47-55, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17473870

RESUMO

The influence of population size and spatial isolation on contemporary gene flow by pollen and mating patterns in temperate forest trees are not well documented, although they are crucial factors in the life history of plant species. We analysed a small, isolated population and a large, continuous population of the insect-pollinated tree species Sorbus torminalis in two consecutive years. The species recently experienced increased habitat fragmentation due to altered forest management leading to forests with closed canopies. We estimated individual plant size, percentage of flowering trees, intensity of flowering, degree of fruiting and seed set per fruit, and we determined mating patterns, pollen flow distances and external gene flow in a genetic paternity analysis based on microsatellite markers. We found clear effects of small population size and spatial isolation in S. torminalis. Compared with the large, continuous population, the small and isolated population harboured a lower percentage of flowering trees, showed less intense flowering, lower fruiting, less developed seeds per fruit, increased selfing and received less immigrant pollen. However, the negative inbreeding coefficients (F(IS)) of offspring indicated that this did not result in inbred seed at the population level. We also show that flowering, fruiting and pollen flow patterns varied among years, the latter being affected by the size of individuals. Though our study was unreplicated at the factor level (i.e. isolated vs non-isolated populations), it shows that small and spatially isolated populations of S. torminalis may also be genetically isolated, but that their progeny is not necessarily more inbred.


Assuntos
Fluxo Gênico , Pólen , Reprodução , Sorbus/anatomia & histologia , Sorbus/genética , Ecossistema , Flores , Frutas , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA