Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
1.
J Bacteriol ; 203(17): e0017821, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34096781

RESUMO

Antimicrobial peptides (AMPs) are one of the key immune responses that can eliminate pathogenic bacteria through membrane perturbation. As a successful skin commensal, Staphylococcus epidermidis can sense and respond to AMPs through the GraXRS two-component system and an efflux system comprising the VraG permease and VraF ATPase. GraS is a membrane sensor known to function in AMP resistance through a negatively charged, 9-residue extracellular loop, which is predicted to be linear without any secondary structure. An important question is how GraS can impart effective sensing of AMPs through such a small unstructured sequence. In this study, we verified the role of graS and vraG in AMP sensing in S. epidermidis, as demonstrated by the failure of the ΔgraS or ΔvraG mutants to sense. Deletion of the extracellular loop of VraG did not affect sensing but reduced survival with polymyxin B. Importantly, a specific region within the extracellular loop, termed the guard loop (GL), has inhibitory activity since sensing of polymyxin B was enhanced in the ΔGL mutant, indicating that the GL may act as a gatekeeper for sensing. Bacterial two-hybrid analysis demonstrated that the extracellular regions of GraS and VraG interact, but interaction appears dispensable to sensing activity. Mutation of the extracellular loop of VraG, the GL, and the active site of VraF suggested that an active detoxification function of VraG is necessary for AMP resistance. Altogether, we provide evidence for a unique sensory scheme that relies on the function of a permease to impart effective information processing. IMPORTANCE Staphylococcus epidermidis has become an important opportunistic pathogen that is responsible for nosocomial and device-related infections that account for considerable morbidity worldwide. A thorough understanding of the mechanisms that enable S. epidermidis to colonize human skin successfully is essential for the development of alternative treatment strategies and prophylaxis. Here, we demonstrate the importance of an AMP response system in a clinically relevant S. epidermidis strain. Furthermore, we provide evidence for a unique sensory scheme that would rely on the detoxification function of a permease to effect information processing.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Conformação Proteica em alfa-Hélice , Infecções Estafilocócicas/metabolismo , Staphylococcus epidermidis/química , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética
2.
Curr Eye Res ; 46(5): 638-647, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32938252

RESUMO

PURPOSE: S. epidermidis is an ocular pathogen and a leading cause of keratitis. It produces hemolysins and at least 3 proteases. The purpose of the present study is to compare the secretion of hemolysins and proteases between 28 ocular isolates and one non-ocular strain and to determine their relationship to ocular virulence in selected strains using a rabbit model of infection. MATERIALS AND METHODS: Culture supernatants were compared for protease production and hemolysis. Selected strains were injected into rabbit corneas and their virulence and pathology recorded. The major protease activity in a virulent strain was identified and the gene was cloned and expressed as a recombinant protein. The corneal toxicity of this protease was determined. Antibodies to the native protease were generated and tested for neutralizing activity in vivo and in vitro. The corneal pathology of the S. epidermidis protease was compared to the pathology of S. aureus V8 protease. RESULTS: Strains that exhibited the least protease activity in vitro caused significantly less ocular pathology in vivo (p ≤ 0.003). Strains that were hemolytic and secreted a major protease had numerically higher SLE scores. This protease was identified as the serine protease Esp. The recombinant Esp protease caused extensive pathology when injected into the corneal stroma (7.62 ± 0.33). Antibody generated against native Esp did not neutralize the activity of the protease in vivo or in vitro. The antibody reacted with Esp proteases secreted by other S. epidermidis strains. S. epidermidis Esp protease and its homologue in S. aureus caused similar ocular pathology when injected in the rabbit corneal stroma. CONCLUSION: Hemolysins and proteases seem to be important in corneal pathology caused by S. epidermidis infections. The Esp protease mediates significant corneal damage. S. epidermidis Esp and S. aureus V8 protease caused similar and extensive edema in rabbit corneas.


Assuntos
Substância Própria/microbiologia , Úlcera da Córnea/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/patogenicidade , Animais , Técnicas de Tipagem Bacteriana , Western Blotting , Contagem de Colônia Microbiana , Substância Própria/efeitos dos fármacos , Úlcera da Córnea/patologia , Modelos Animais de Doenças , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Espectrometria de Massas , Fenótipo , Coelhos , Serina Endopeptidases/toxicidade , Serina Proteases/genética , Serina Proteases/toxicidade , Infecções Estafilocócicas/patologia , Staphylococcus epidermidis/enzimologia , Virulência
3.
Biochem Biophys Res Commun ; 534: 1064-1068, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33092791

RESUMO

In this work, the impact of APTES-modified TiO2 photocatalysts on antioxidant enzymes (catalase and superoxide dismutase) activity secreted by bacteria was presented. Microbial tests has been examined using Escherichia coli (ATCC 29425) and Staphylococcus epidermidis (ATCC 49461) as model organisms. It was found that APTES-TiO2 affected the activity of antioxidant enzymes. Additionally, obtained APTES-TiO2 photocatalysts were capable of total E. coli and S. epidermidis inactivation under artificial solar light irradiation. The sample modified with the concentration of APTES equals 300 mM (TiO2-4h-120°C-300mM) showed the strongest photocatalytic activity toward both bacteria species. The two-stage photocatalytic mechanism of bacteria response to photocatalysts was proposed.


Assuntos
Catalase/metabolismo , Escherichia coli/enzimologia , Propilaminas/química , Silanos/química , Staphylococcus epidermidis/enzimologia , Superóxido Dismutase/metabolismo , Titânio/química , Catálise/efeitos da radiação , Desinfecção , Ativação Enzimática/efeitos da radiação , Escherichia coli/citologia , Escherichia coli/efeitos da radiação , Luz , Viabilidade Microbiana/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Processos Fotoquímicos/efeitos da radiação , Staphylococcus epidermidis/citologia , Staphylococcus epidermidis/efeitos da radiação
4.
J Allergy Clin Immunol ; 147(3): 955-966.e16, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32634452

RESUMO

BACKGROUND: Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism. OBJECTIVE: In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier. METHODS: The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA. RESULTS: S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis. CONCLUSION: S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína Proteases/metabolismo , Dermatite Atópica/microbiologia , Microbiota , Pele/microbiologia , Infecções Cutâneas Estafilocócicas/microbiologia , Staphylococcus epidermidis/enzimologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Células Cultivadas , DNA Bacteriano/genética , Dermatite Atópica/patologia , Desmogleína 1/metabolismo , Humanos , Queratinócitos/microbiologia , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença , Pele/patologia , Infecções Cutâneas Estafilocócicas/patologia , Catelicidinas
5.
Development ; 147(22)2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33093152

RESUMO

Mini-III RNase (mR3), a member of RNase III endonuclease family, can bind to and cleave double-stranded RNAs (dsRNAs). Inactive mR3 protein without the α5ß-α6 loop loses the dsRNA cleavage activity, but retains dsRNA binding activity. Here, we establish an inactive mR3-based non-engineered mR3/dsRNA system for RNA tracking in zebrafish embryos. In vitro binding experiments show that inactive Staphylococcus epidermidis mR3 (dSmR3) protein possesses the highest binding affinity with dsRNAs among mR3s from other related species, and its binding property is retained in zebrafish embryos. Combined with a fluorescein-labeled antisense RNA probe recognizing the target mRNAs, dSmR3 tagged with a nuclear localization sequence and a fluorescent protein could allow visualization of the dynamics of endogenous target mRNAs. The dSmR3/antisense probe dual-color system provides a new approach for tracking non-engineered RNAs in real-time, which will help understand how endogenous RNAs dynamically move during embryonic development.


Assuntos
Proteínas de Bactérias/metabolismo , Fluoresceína , RNA Antissenso , RNA Mensageiro/metabolismo , Ribonuclease III/metabolismo , Staphylococcus epidermidis , Peixe-Zebra/metabolismo , Animais , Proteínas de Bactérias/genética , Fluoresceína/química , Fluoresceína/farmacologia , Microscopia de Fluorescência , RNA Antissenso/química , RNA Antissenso/farmacologia , RNA Mensageiro/genética , Ribonuclease III/genética , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/genética , Peixe-Zebra/genética
6.
J Biol Chem ; 295(49): 16863-16876, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32994223

RESUMO

RNase J enzymes are metallohydrolases that are involved in RNA maturation and RNA recycling, govern gene expression in bacteria, and catalyze both exonuclease and endonuclease activity. The catalytic activity of RNase J is regulated by multiple mechanisms which include oligomerization, conformational changes to aid substrate recognition, and the metal cofactor at the active site. However, little is known of how RNase J paralogs differ in expression and activity. Here we describe structural and biochemical features of two Staphylococcus epidermidis RNase J paralogs, RNase J1 and RNase J2. RNase J1 is a homodimer with exonuclease activity aided by two metal cofactors at the active site. RNase J2, on the other hand, has endonuclease activity and one metal ion at the active site and is predominantly a monomer. We note that the expression levels of these enzymes vary across Staphylococcal strains. Together, these observations suggest that multiple interacting RNase J paralogs could provide a strategy for functional improvisation utilizing differences in intracellular concentration, quaternary structure, and distinct active site architecture despite overall structural similarity.


Assuntos
Proteínas de Bactérias/metabolismo , Ribonucleases/metabolismo , Staphylococcus epidermidis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Dimerização , Regulação Bacteriana da Expressão Gênica , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Quaternária de Proteína , RNA/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ribonucleases/química , Ribonucleases/classificação , Ribonucleases/genética , Especificidade por Substrato
7.
BMC Microbiol ; 20(1): 240, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758127

RESUMO

BACKGROUND: Staphylococcus epidermidis is the leading coagulase negative staphylococci (CoNS) species associated with healthcare associated infections. In order to de-escalate antimicrobial therapy, isolates of S. epidermidis lacking the blaZ gene should be eligible for targeted antimicrobial therapy. However, testing the susceptibility of coagulase negative staphylococci (CoNS) to penicillin G is no longer recommended by EUCAST, given the low performances for penicillinase detection in CoNS. The objective of this work was to determine a phenotypic method with high performance for detecting penicillinase production in S. epidermidis. RESULTS: Four techniques for the detection of penicillinase production (disk diffusion, zone edge test, nitrocefin test, Minimal Inhibitory Concentration (MIC) by automated system Vitek2®) were evaluated on 182 S. epidermidis isolates, using identification of blaZ gene by PCR as the reference method. The performance of the methods for penicillinase detection was compared by the sensitivity, the specificity, the negative predictive value and the positive predictive value, and with Cohen's kappa statistical test. Among the 182 S. epidermidis included in this study, 55 carried the blaZ gene. The nitrocefin test, characterized by a poor sensitivity (91%), was therefore excluded from S. epidermidis penicillinase detection. The algorithm proposed here for the penicillinase detection in S. epidermidis involved two common antimicrobial susceptibility techniques: disk diffusion method and MIC by Vitek2® system. Disk diffusion method, interpreted with a 26 mm breakpoint for penicillin G, was associated with a high sensitivity (98%) and specificity (100%). This method was completed with zone edge test for S. epidermidis with penicillin G diameter from 26 to 35 mm (sensitivity of 98%). The Vitek2® system is associated with a low sensitivity (93%) and a high specificity (99%) This low sensitivity is associated with false negative results, in isolates with 0.12 mg/L Penicillin G MIC values and blaZ positive. Thus for penicillin G MIC of 0.06 mg/L or 0.12 mg/L, a second step with disc diffusion method is suggested. CONCLUSIONS: According to our results, the strategy proposed here allows the interpretation of penicillin G susceptibility in S. epidermidis isolates, with an efficient detection of penicillin G resistance.


Assuntos
Testes de Sensibilidade Microbiana/métodos , Penicilinase/isolamento & purificação , Staphylococcus epidermidis/enzimologia , Algoritmos , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Genes Bacterianos/genética , Humanos , Penicilina G/farmacologia , Resistência às Penicilinas/efeitos dos fármacos , Resistência às Penicilinas/genética , Penicilinase/metabolismo , Fenótipo , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/isolamento & purificação
8.
ACS Infect Dis ; 6(5): 930-938, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32298574

RESUMO

The bacterial genus Staphylococcus comprises diverse species that colonize the skin as commensals but can also cause infection. Previous work identified a family of serine hydrolases termed fluorophoshonate-binding hydrolases (Fphs) in the pathogenic bacteria Staphylococcus aureus, one of which, FphB, functions as a virulence factor. Using a combination of bioinformatics and activity-based protein profiling (ABPP), we identify homologues of these enzymes in the related commensal bacteria Staphylococcus epidermidis. Two of the S. aureus Fph enzymes were not identified in S. epidermidis. Using ABPP, we identified several candidate hydrolases that were not previously identified in S. aureus that may be functionally related to the Fphs. Interestingly, the activity of the Fphs vary across clinical isolates of S. epidermidis. Biochemical characterization of the FphB homologue in S. epidermidis (SeFphB) suggests it is a functional homologue of FphB in S. aureus, but our preliminary studies suggest it may not have a role in colonization in vivo. This potential difference in biological function between the Fphs of closely related staphylococcal species may provide mechanisms for specific inhibition of S. aureus infection without perturbing commensal communities of related bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Staphylococcus epidermidis , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Humanos , Hidrolases/genética , Serina , Pele/microbiologia , Infecções Estafilocócicas , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/genética , Fatores de Virulência/genética
9.
Cell Rep ; 30(9): 2923-2933.e7, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130897

RESUMO

Netherton syndrome (NS) is a monogenic skin disease resulting from loss of function of lymphoepithelial Kazal-type-related protease inhibitor (LEKTI-1). In this study we examine if bacteria residing on the skin are influenced by the loss of LEKTI-1 and if interaction between this human gene and resident bacteria contributes to skin disease. Shotgun sequencing of the skin microbiome demonstrates that lesional skin of NS subjects is dominated by Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). Isolates of either species from NS subjects are able to induce skin inflammation and barrier damage on mice. These microbes promote skin inflammation in the setting of LEKTI-1 deficiency due to excess proteolytic activity promoted by S. aureus phenol-soluble modulin α as well as increased bacterial proteases staphopain A and B from S. aureus or EcpA from S. epidermidis. These findings demonstrate the critical need for maintaining homeostasis of host and microbial proteases to prevent a human skin disease.


Assuntos
Síndrome de Netherton/microbiologia , Síndrome de Netherton/patologia , Peptídeo Hidrolases/metabolismo , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/enzimologia , Staphylococcus epidermidis/enzimologia , Adolescente , Adulto , Animais , Toxinas Bacterianas/metabolismo , Criança , Contagem de Colônia Microbiana , Epiderme , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microbiota , Pessoa de Meia-Idade , Síndrome de Netherton/enzimologia , Fenóis , Solubilidade
10.
Org Biomol Chem ; 18(3): 518-529, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31854421

RESUMO

Mevalonate diphosphate decarboxylase (MDD) catalyses a crucial step of the mevalonate pathway via Mg2+-ATP-dependent phosphorylation and decarboxylation reactions to ultimately produce isopentenyl diphosphate, the precursor of isoprenoids, which is essential to bacterial functions and provides ideal building blocks for the biosynthesis of isopentenols. However, the metal ion(s) in MDD has not been unambiguously resolved, which limits the understanding of the catalytic mechanism and the exploitation of enzymes for the development of antibacterial therapies or the mevalonate metabolic pathway for the biosynthesis of biofuels. Here by analogizing structurally related kinases and molecular dynamics simulations, we constructed a model of the MDD-substrate-ATP-Mg2+ complex and proposed that MDD requires two Mg2+ ions for maintaining a catalytically active conformation. Subsequent QM/MM studies indicate that MDD catalyses the phosphorylation of its substrate mevalonate diphosphate (MVAPP) via a direct phosphorylation reaction, instead of the previously assumed catalytic base mechanism. The results here would shed light on the active conformation of MDD-related enzymes and their catalytic mechanisms and therefore be useful for developing novel antimicrobial therapies or reconstructing mevalonate metabolic pathways for the biosynthesis of biofuels.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Ácido Mevalônico/análogos & derivados , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Domínio Catalítico , Teoria da Densidade Funcional , Magnésio/química , Ácido Mevalônico/química , Modelos Químicos , Simulação de Dinâmica Molecular , Fosforilação , Staphylococcus epidermidis/enzimologia
11.
J Clin Microbiol ; 57(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31462553

RESUMO

Methicillin (ß-lactam) resistance in Staphylococcus epidermidis is mediated by the mecA gene, with resistance reported to be as high as 90%. The goal of this study was to evaluate oxacillin and cefoxitin disk diffusion (DD) and broth microdilution (BMD) methods for the detection of mecA-mediated ß-lactam resistance in 100 human isolates of S. epidermidis (48 mecA-positive isolates and 52 mecA negative isolates). Oxacillin DD tests using the Clinical and Laboratory Standards Institute (CLSI) M100-S28 breakpoints for S. pseudintermedius/S. schleiferi accurately differentiated mecA-positive and -negative S. epidermidis isolates, with categorical agreement (CA) of 100% and no very major errors (VMEs) or major errors (MEs) identified. Likewise, oxacillin BMD and cefoxitin DD tests using the coagulase-negative Staphylococcus species (CoNS) breakpoints were highly reliable for detecting mecA-mediated ß-lactam resistance in S. epidermidis isolates. For cefoxitin DD and BMD results interpreted using S. aureus/S. lugdunensis breakpoints, the CA was 97.6% and 96.2%, respectively. There were 4.9% VMEs for cefoxitin DD with 0% MEs, and 3.6% VMEs and 3.9% MEs for cefoxitin BMD. Oxacillin BMD using S. aureus/S. lugdunensis breakpoints yielded the highest VMEs at 17.4% and 90% CA. Our findings demonstrate that oxacillin DD tests using the CLSI M100-S28 breakpoints for S. pseudintermedius/S. schleiferi and oxacillin BMD and cefoxitin DD tests using the CoNS breakpoints reliably identified mecA-mediated ß-lactam resistance in S. epidermidis Using mecA PCR as the gold standard, the PBP2a SA culture colony test (Abbott Diagnostics) exhibited 100% sensitivity and specificity whereas 2 false negatives were identified using the PBP2' latex agglutination test kit (Thermo Fisher Scientific) with sensitivity and specificity of 95.8% and 100%, respectively.


Assuntos
Antibacterianos/farmacologia , Cefoxitina/farmacologia , Testes de Sensibilidade Microbiana/métodos , Oxacilina/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Resistência beta-Lactâmica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/isolamento & purificação
12.
J Control Release ; 306: 121-129, 2019 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-31170466

RESUMO

The development of formulation concepts for improved skin tissue oxygenation, including methods for measuring oxygen (O2) transport across biological barriers, are important research topics with respect to all processes that are affected by the O2 concentration, such as radiation therapy in oncology treatments, wound healing, and the general health status of skin. In this work we approach this topic by a novel strategy based on the antioxidative enzyme catalase, which is naturally present in the skin organ where it enables conversion of the reactive oxygen species hydrogen peroxide (H2O2) into O2. We introduce various applications of the skin covered oxygen electrode (SCOE) as an in-vitro tool for studies of catalase activity and function. The SCOE is constructed by placing an excised skin membrane directly on an O2 electrode and the methodology is based on measurements of the electrical current generated by reduction of O2 as a function of time (i.e. chronoamperometry). The results confirm that a high amount of native catalase is present in the skin organ, even in the outermost stratum corneum (SC) barrier, and we conclude that excised pig skin (irrespective of freeze-thaw treatment) represents a valid model for ex vivo human skin for studying catalase function by the SCOE setup. The activity of native catalase in skin is sufficient to generate considerable amounts of O2 by conversion from H2O2 and proof-of-concept is presented for catalase-based transdermal O2 delivery from topical formulations containing H2O2. In addition, we show that this concept can be further improved by topical application of external catalase on the skin surface, which enables transdermal O2 delivery from 50 times lower concentrations of H2O2. These important results are promising for development of novel topical or transdermal formulations containing low and safe concentrations of H2O2 for skin tissue oxygenation. Further, our results indicate that the O2 production by catalase, derived from topically applied S. epidermidis (a simple model for skin microbiota) is relatively low as compared to the O2 produced by the catalase naturally present in skin. Still, the catalase activity derived from S. epidermidis is measurable. Taken together, this work illustrates the benefits and versatility of the SCOE as an in vitro skin research tool and introduces new and promising strategies for transdermal oxygen delivery, with simultaneous detoxification of H2O2, based on native or topically applied catalase.


Assuntos
Catalase/metabolismo , Oxigênio/administração & dosagem , Pele/metabolismo , Administração Cutânea , Animais , Catalase/antagonistas & inibidores , Eletrodos , Oxigênio/química , Staphylococcus epidermidis/enzimologia , Suínos
13.
ACS Infect Dis ; 5(8): 1397-1410, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31132246

RESUMO

Staphylococcus epidermidis and Staphylococcus aureus are important human pathogens responsible for two-thirds of all postsurgical infections of indwelling medical devices. Staphylococci form robust biofilms that provide a reservoir for chronic infection, and antibiotic-resistant isolates are increasingly common in both healthcare and community settings. Novel treatments that can simultaneously inhibit biofilm formation and antibiotic-resistance pathways are urgently needed to combat the increasing rates of antibiotic-resistant infections. Herein we report that loratadine, an FDA-approved antihistamine, significantly inhibits biofilm formation in both S. aureus and S. epidermidis. Furthermore, loratadine potentiates ß-lactam antibiotics in methicillin-resistant strains of S. aureus and potentiates both ß-lactam antibiotics and vancomycin in vancomycin-resistant strains of S. aureus. Additionally, we elucidate loratadine's mechanism of action as a novel inhibitor of the regulatory PASTA kinases Stk and Stk1 in S. epidermidis and S. aureus, respectively. Finally, we describe how Stk1 inhibition affects the expression of genes involved in both biofilm formation and antibiotic resistance in S. epidermidis and S. aureus.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Loratadina/farmacologia , Fosfotransferases/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Staphylococcus epidermidis/enzimologia , Vancomicina/farmacologia , Fatores de Virulência/antagonistas & inibidores , beta-Lactamas/farmacologia
14.
Elife ; 82019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30942690

RESUMO

CRISPR-Cas systems provide sequence-specific immunity against phages and mobile genetic elements using CRISPR-associated nucleases guided by short CRISPR RNAs (crRNAs). Type III systems exhibit a robust immune response that can lead to the extinction of a phage population, a feat coordinated by a multi-subunit effector complex that destroys invading DNA and RNA. Here, we demonstrate that a model type III system in Staphylococcus epidermidis relies upon the activities of two degradosome-associated nucleases, PNPase and RNase J2, to mount a successful defense. Genetic, molecular, and biochemical analyses reveal that PNPase promotes crRNA maturation, and both nucleases are required for efficient clearance of phage-derived nucleic acids. Furthermore, functional assays show that RNase J2 is essential for immunity against diverse mobile genetic elements originating from plasmid and phage. Altogether, our observations reveal the evolution of a critical collaboration between two nucleic acid degrading machines which ensures cell survival when faced with phage attack.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/metabolismo , Endorribonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Sequências Repetitivas Dispersas , Plasmídeos , Fagos de Staphylococcus/genética
15.
Mol Cell ; 73(2): 278-290.e4, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30503774

RESUMO

Adaptive immune systems must accurately distinguish between self and non-self in order to defend against invading pathogens while avoiding autoimmunity. Type III CRISPR-Cas systems employ guide RNA to recognize complementary RNA targets, which triggers the degradation of both the invader's transcripts and their template DNA. These systems can broadly eliminate foreign targets with multiple mutations but circumvent damage to the host genome. To explore the molecular basis for these features, we use single-molecule fluorescence microscopy to study the interaction between a type III-A ribonucleoprotein complex and various RNA substrates. We find that Cas10-the DNase effector of the complex-displays rapid conformational fluctuations on foreign RNA targets, but is locked in a static configuration on self RNA. Target mutations differentially modulate Cas10 dynamics and tune the CRISPR interference activity in vivo. These findings highlight the central role of the internal dynamics of CRISPR-Cas complexes in self versus non-self discrimination and target specificity.


Assuntos
Autoimunidade , Proteínas de Bactérias/imunologia , Proteínas Associadas a CRISPR/imunologia , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , RNA Bacteriano/imunologia , Tolerância a Antígenos Próprios , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/imunologia , Cinética , Microscopia de Fluorescência , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Transdução de Sinais , Imagem Individual de Molécula/métodos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/imunologia , Relação Estrutura-Atividade
16.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 6): 351-354, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29870019

RESUMO

The Staphylococcus epidermidis lipase (SeLip, GehC) can be used in flavour-compound production via esterification in aqueous solution. This study reports the crystallization and crystallographic analysis of recombinant GehC (rGehC; Lys303-Lys688) with a molecular weight of 43 kDa. rGehC was crystallized at 293 K using PEG 10 000 as a precipitant, and a 99.9% complete native data set was collected from a cooled crystal at 77 K to a resolution of 1.9 Šwith an overall Rmerge value of 7.3%. The crystals were orthorhombic and belonged to space group P212121, with unit-cell parameters a = 42.07, b = 59.31, c = 171.30 Å, α = ß = γ = 90°. Solvent-content calculations suggest that there is likely to be one lipase subunit in the asymmetric unit.


Assuntos
Lipase/química , Staphylococcus epidermidis/enzimologia , Água , Sequência de Aminoácidos , Cristalografia/métodos , Esterificação , Lipase/genética , Lipase/metabolismo , Soluções/metabolismo , Staphylococcus epidermidis/genética , Água/metabolismo
17.
BMC Oral Health ; 18(1): 89, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776416

RESUMO

BACKGROUND: Urease is an enzyme produced by plaque bacteria hydrolysing urea from saliva and gingival exudate into ammonia in order to regulate the pH in the dental biofilm. The aim of this study was to assess the urease activity among oral bacterial species by using the rapid urease test (RUT) in a micro-plate format and to examine whether this test could be used for measuring the urease activity in site-specific supragingival dental plaque samples ex vivo. METHODS: The RUT test is based on 2% urea in peptone broth solution and with phenol red at pH 6.0. Oral bacterial species were tested for their urease activity using 100 µl of RUT test solution in the well of a micro-plate to which a 1 µl amount of cells collected after growth on blood agar plates or in broth, were added. The color change was determined after 15, 30 min, and 1 and 2 h. The reaction was graded in a 4-graded scale (none, weak, medium, strong). Ex vivo evaluation of dental plaque urease activity was tested in supragingival 1 µl plaque samples collected from 4 interproximal sites of front teeth and molars in 18 adult volunteers. The color reaction was read after 1 h in room temperature and scored as in the in vitro test. RESULTS: The strongest activity was registered for Staphylococcus epidermidis, Helicobacter pylori, Campylobacter ureolyticus and some strains of Haemophilus parainfluenzae, while known ureolytic species such as Streptococcus salivarius and Actinomyces naeslundii showed a weaker, variable and strain-dependent activity. Temperature had minor influence on the RUT reaction. The interproximal supragingival dental plaque between the lower central incisors (site 31/41) showed significantly higher scores compared to between the upper central incisors (site 11/21), between the upper left first molar and second premolar (site 26/25) and between the lower right second premolar and molar (site 45/46). CONCLUSION: The rapid urease test (RUT) in a micro-plate format can be used as a simple and rapid method to test urease activity in bacterial strains in vitro and as a chair-side method for testing urease activity in site-specific supragingival plaque samples ex vivo.


Assuntos
Bactérias/enzimologia , Técnicas Bacteriológicas/métodos , Placa Dentária/microbiologia , Urease/análise , Actinomyces/enzimologia , Campylobacter/enzimologia , Haemophilus parainfluenzae/enzimologia , Helicobacter pylori/enzimologia , Humanos , Staphylococcus epidermidis/enzimologia , Streptococcus salivarius/enzimologia
19.
APMIS ; 126(3): 177-185, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29399876

RESUMO

Staphylococci produce a large number of extracellular proteases, some of which are considered as potential virulence factors. Staphylococcus epidermidis is a causative agent of nosocomial infections in medical devices by the formation of biofilms. It has been proposed that proteases contribute to the different stages of biofilm formation. S. epidermidis secretes a small number of extracellular proteases, such as serine protease Esp, cysteine protease EcpA, and metalloprotease SepA that have a relatively low substrate specificity. Recent findings indicate a significant contribution of extracellular proteases in biofilm formation through the proteolytic inactivation of adhesion molecules. The objective of this work is to provide an overview of the current knowledge of S. epidermidis' extracellular proteases during pathogenicity, especially in the different stages of biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cisteína Proteases/metabolismo , Metaloendopeptidases/metabolismo , Serina Proteases/metabolismo , Staphylococcus epidermidis/enzimologia , Moléculas de Adesão Celular/metabolismo , Infecção Hospitalar/microbiologia , Infecção Hospitalar/patologia , Humanos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus epidermidis/metabolismo , Staphylococcus epidermidis/patogenicidade , Fatores de Virulência/metabolismo
20.
Biochem Biophys Res Commun ; 495(2): 2078-2084, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29242153

RESUMO

Polynucleotide phosphorylase catalyzes both 3'-5' exoribonuclease and polyadenylation reactions. The crystal structure of Staphylococcus epidermidis PNPase revealed a bound phosphate in the PH2 domain of each protomer coordinated by three adjacent serine residues. Mutational analysis suggests that phosphate coordination by these serine residues is essential to maintain the catalytic center in an active conformation. We note that PNPase forms a complex with RNase J1 and RNase J2 without substantially altering either exo-ribonuclease or polyadenylation activity of this enzyme. This decoupling of catalytic activity from protein-protein interactions suggests that association of these endo- or exo-ribonucleases with PNPase could be more relevant for cellular localization or concerted targeting of structured RNA for recycling.


Assuntos
Simulação de Acoplamento Molecular , Nucleotidiltransferases/química , Nucleotidiltransferases/ultraestrutura , Ribonucleases/química , Ribonucleases/ultraestrutura , Staphylococcus epidermidis/enzimologia , Sítios de Ligação , Ativação Enzimática , Estabilidade Enzimática , Modelos Químicos , Complexos Multienzimáticos , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA