Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
BMC Microbiol ; 24(1): 426, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438820

RESUMO

BACKGROUND: Milk is an excellent growth medium for microorganisms due to its nutritive composition. Microorganisms have been implicated in bovine mastitis (BM) in dairy cows as well as causing infections in animals and humans. Despite extensive endeavours to manage BM, this condition continues to persist as the most prevalent and economically burdensome problem affecting dairy cattle on a global scale. Non-aureus staphylococci (NAS) species such as Staphylococcus haemolyticus, S. epidermidis, and S. xylosus are currently the predominant microbiological agents identified as the main cause of subclinical udder infections and are also considered opportunistic pathogens in cases of clinical mastitis in dairy cows. Therefore, it is crucial to elucidate the genetic profile of these species. The primary objective of this study was to characterise three phenotypically determined multidrug-resistant NAS environmental strains (NWU MKU1, NWU MKU2, and NWU MKS3) obtained from dairy cows milk via whole-genome sequencing. RESULTS: The results confirmed that the three isolates were S. haemolyticus with genome sizes of 2.44, 2.56, and 2.56 Mb and a G + C content of 32.8%. The genomes contained an array of antibiotic resistance genes that may potentially confer resistance to a range of antibiotic classes, such as macrolides, fluoroquinolones, aminoglycosides, cephalosporins, tetracyclines, peptides, and phenicol. Furthermore, all the genomes carried virulence genes, which are responsible for several functions, such as adhesion, enzyme and toxin production. The genomes of these organisms contained signatures encoding mobile genetic elements such as prophages and insertion sequences. CONCLUSION: These findings indicate there is a need for diligent monitoring with improved management practices and quality control strategies on farms to safeguard milk production systems and human health.


Assuntos
Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Genoma Bacteriano , Mastite Bovina , Leite , Infecções Estafilocócicas , Staphylococcus haemolyticus , Sequenciamento Completo do Genoma , Animais , Bovinos , Leite/microbiologia , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Feminino , Mastite Bovina/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Composição de Bases , Testes de Sensibilidade Microbiana
2.
BMC Microbiol ; 24(1): 334, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39251908

RESUMO

BACKGROUND: Characteristics of non-clinical strains of methicillin-resistant Staphylococcus aureus (MRSA) especially from fishery environment are poorly understood. This research, in addition to comprehensive characterisation, sought to delineate the genetic relatedness between the MRSA strains originating from clinical as well as non-clinical settings. Out of 39 methicillin-resistant staphylococcal isolates from 197 fish samples, 6 (Three each of methicillin-resistant S. haemolyticus (MRSH) and MRSA) with distinct resistance profiles were selected for whole-genome sequencing. Using respective bioinformatics tools, MRSA genomes were comprehensively characterized for resistome, virulomes, molecular epidemiology and phylogenetic analysis. Simultaneously, MRSH genomes were specifically examined to characterize antimicrobial resistance genes (ARGs), owing to the fact that MRSH is often recognized as a reservoir for resistance determinants. RESULTS: Three MRSA clones identified in this study include ST672-IVd/t13599 (sequence type-SCCmec type/spa type), ST88-V/t2526, and ST672-IVa/t1309. Though, the isolates were phenotypically vancomycin-sensitive, five of the six genomes carried vancomycin resistance genes including the VanT (VanG cluster) or VanY (VanM cluster). Among the three MRSA, only one harbored the gene encoding Panton-Valentine Leukocidin (PVL) toxin, while staphylococcal enterotoxin (SEs) genes such as sea and seb, associated with staphylococcal food poisoning were identified in two other MRSA. Genomes of MRSH carried a composite of type V staphylococcal cassette chromosome mec (SCCmec) elements (5C2 & 5). This finding may be explained by the inversion and recombination events that may facilitate the integration of type V elements to the SCC elements of S. aureus with a methicillin-susceptible phenotype. Phylogenetically, MRSA from a non-clinical setting displayed a considerable relatedness to that from clinical settings. CONCLUSION: This study highlights the genetic diversity and resistance profiles of MRSA and MRSH, with non-clinical MRSA showing notable relatedness to clinical strains. Future research should explore resistance gene transfer mechanisms and environmental reservoirs to better manage MRSA spread.


Assuntos
Peixes , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina , Filogenia , Intoxicação Alimentar Estafilocócica , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Animais , Peixes/microbiologia , Intoxicação Alimentar Estafilocócica/microbiologia , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Sequenciamento Completo do Genoma , Virulência/genética , Testes de Sensibilidade Microbiana , Humanos , Fatores de Virulência/genética , Alimentos Marinhos/microbiologia , Microbiologia de Alimentos , Toxinas Bacterianas/genética , Epidemiologia Molecular , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/isolamento & purificação , Staphylococcus haemolyticus/patogenicidade
3.
Diagn Microbiol Infect Dis ; 110(4): 116483, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39236594

RESUMO

This study aimed to establish the correlation between antibiotic resistance and biofilm formation by Staphylococcus haemolyticus and to examine the impact of sub-inhibitory concentrations of antibiotics (sub-MICs) on biofilm formation. Antibiotic susceptibility testing was conducted using the disk diffusion method, and biofilm formation was determined using Congo red agar and microtiter plate methods. Antibiotic resistance and biofilm-associated genes were detected using polymerase chain reaction. The majority of the twenty-one S. haemolyticus isolates were multidrug-resistant, methicillin-resistant (MRSH) and biofilm producers, including 43 % of moderate biofilm producers. A significant correlation was observed between MRSH and MSSH isolates in terms of biofilm production. Vancomycin, gentamicin, and ciprofloxacin at their sub-MICs tended to promote biofilm formation. The eno gene was present in 76.2 % of strains, followed by aap, and atlE. This study revealed a strong correlation between the biofilm-forming ability and antibiotic resistance in S. haemolyticus, which underlines a crucial public health issue.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas , Staphylococcus haemolyticus , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/isolamento & purificação , Humanos , Marrocos , Antibacterianos/farmacologia , Infecções Estafilocócicas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Masculino , Fenótipo , Infecções Urinárias/microbiologia , Adulto , Pessoa de Meia-Idade , Farmacorresistência Bacteriana/genética , Adulto Jovem
4.
Res Vet Sci ; 177: 105365, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053094

RESUMO

Staphylococci are classified as one of the pathogens causing bovine mastitis that can pose not only an economic loss to the dairy farms, but a serious public-health threat based on their zoonotic potential. We focused to monitor phenotypes of the isolated strains of Staphylococcus aureus (S. aureus) and Staphylococcus haemolyticus (S. haemolyticus) from milk of cows with clinical mastitis, including antibiotic resistance, biofilm forming ability and the presence of biofilm- and toxin- related genes. From a total of 191 milk samples were identified as S. aureus - 12% (22 isolates) and S. haemolyticus - 6% (12 isolates). Automatic interpreted reading of the antibiogram evaluated potentially 12 isolates as methicillin-resistant S. aureus and methicillin-resistant coagulase-negative Staphylococci. Genotypically, the isolates were positive for blaZ and negative for mecA and mecC. Others important mechanisms were inducible macrolide-lincosamide-streptogramin B (iMLSB) resistance with presence of msrA, ermC, vgaA. The most detected biofilm-associated and toxins genes were clfA, sdrD, sdrE, fnbpB, bbp, isdA, isdB, hla and see. S. aureus isolates were subjected to spa typing. It turned out that despite the strains coming from different farms, they were either resistant or sensitive to antibiotic, were all of the same spa-type t 10035. Our findings revealed the presence iMLSB, which, to our best knowledge, were described in Slovakian bovine staphylococci rarely. The majority of isolates were multidrug-resistant and carried multiple virulence genes, posing a potential public-health risk.


Assuntos
Antibacterianos , Biofilmes , Mastite Bovina , Infecções Estafilocócicas , Staphylococcus aureus , Staphylococcus haemolyticus , Animais , Bovinos , Mastite Bovina/microbiologia , Feminino , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/isolamento & purificação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Leite/microbiologia , Testes de Sensibilidade Microbiana/veterinária , Farmacorresistência Bacteriana/genética
5.
J Antimicrob Chemother ; 79(10): 2479-2483, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39082161

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus haemolyticus (MRSH) is an important pathogenic agent of bovine mastitis. Among the prominent clone lineages in dairy cows are MRSH sequence types ST3 and ST42. Little information is available on the complete characterization of SCCmec elements in MRSH. OBJECTIVE: In this study, two clinical isolates of MRSH ST3 and ST42 from bovine mastitis milk were selected, and their nontypable SCCmec structures were compared. METHODS: Two MRSH strains, MRSH-ST3 strain M62.3 and MRSH-ST42 strain M81.1, were identified from bovine mastitis milk in Thailand in 2022. Minimum inhibitory concentration was used to screen for antimicrobial resistance susceptibility. Oxford Nanopore Technologies and Illumina sequencing were performed in combination to complete the genome. Their gene organization and structure of SCCmec types were analysed and compared with the whole sequences of other strains in the same sequence types. RESULTS: Both MRSH-ST3 strain M62.3 and MRSH-ST42 strain M81.1 possessed the class C1 mec complex but lacked the ccr gene complex. Notably, MRSH-ST42 strain M81.1 contained a novel variant of C1 mec complex, which consisted of IS431-mecA-ISSha1-paaZ-upgQ-IS431, with IS431 organized in the same orientation. Apart from class C1 mec and the heavy metal-resistant cluster, the gene composition and order of the SCCmec element varied. In ST3, variations in the SCCmec type, gene content and organization were observed. CONCLUSIONS: The distinct evolution of the MRSH lineage was indicated by the various SCCmec elements. The insertion of ISSha1 resulted in a unique variant of class C1 mec complex that demonstrated the important role of the insertion sequence in SCCmec diversification.


Assuntos
Antibacterianos , Mastite Bovina , Testes de Sensibilidade Microbiana , Leite , Infecções Estafilocócicas , Staphylococcus haemolyticus , Animais , Mastite Bovina/microbiologia , Bovinos , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/isolamento & purificação , Feminino , Leite/microbiologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Antibacterianos/farmacologia , Tailândia , Cromossomos Bacterianos/genética , Resistência a Meticilina/genética , Genoma Bacteriano , Sequenciamento Completo do Genoma
6.
Emerg Microbes Infect ; 13(1): 2353291, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38738561

RESUMO

An emergence of multidrug-resistant (MDR) Staphylococcus haemolyticus has been observed in the neonatal intensive care unit (NICU) of Nîmes University Hospital in southern France. A case-control analysis was conducted on 96 neonates, to identify risk factors associated with S. haemolyticus infection, focusing on clinical outcomes. Forty-eight MDR S. haemolyticus strains, isolated from neonates between October 2019 and July 2022, were investigated using routine in vitro procedures and whole-genome sequencing. Additionally, five S. haemolyticus isolates from adult patients were sequenced to identify clusters circulating within the hospital environment. The incidence of neonatal S. haemolyticus was significantly associated with low birth weight, lower gestational age, and central catheter use (p < 0.001). Sepsis was the most frequent clinical manifestation in this series (20/46, 43.5%) and was associated with five deaths. Based on whole-genome analysis, three S. haemolyticus genotypes were predicted: ST1 (6/53, 11%), ST25 (3/53, 5.7%), and ST29 (44/53, 83%), which included the subcluster II-A, predominantly emerging in the neonatal department. All strains were profiled in silico to be resistant to methicillin, erythromycin, aminoglycosides, and fluoroquinolones, consistent with in vitro antibiotic susceptibility tests. Moreover, in silico prediction of biofilm formation and virulence-encoding genes supported the association of ST29 with severe clinical outcomes, while the persistence in the NICU could be explained by the presence of antiseptic and heavy metal resistance-encoding genes. The clonality of S. haemolyticus ST29 subcluster II-A isolates confirms healthcare transmission causing severe infections. Based on these results, reinforced hygiene measures are necessary to eradicate the nosocomial transmission of MDR strains.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Unidades de Terapia Intensiva Neonatal , Infecções Estafilocócicas , Staphylococcus haemolyticus , Sequenciamento Completo do Genoma , Humanos , Staphylococcus haemolyticus/genética , Staphylococcus haemolyticus/efeitos dos fármacos , Staphylococcus haemolyticus/isolamento & purificação , Staphylococcus haemolyticus/classificação , França/epidemiologia , Recém-Nascido , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Masculino , Antibacterianos/farmacologia , Estudos de Casos e Controles , Testes de Sensibilidade Microbiana , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Genótipo , Fatores de Risco , Genoma Bacteriano
7.
Microbiol Res ; 282: 127652, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432015

RESUMO

Staphylococcus haemolyticus, a key species of the Staphylococcus genus, holds significant importance in healthcare-associated infections, due to its notable resistance to antimicrobials, like methicillin, and proficient biofilms-forming capabilities. This coagulase-negative bacterium poses a substantial challenge in the battle against nosocomial infections. Recent research has shed light on Staph. haemolyticus genomic plasticity, unveiling genetic elements responsible for antibiotic resistance and their widespread dissemination within the genus. This review presents an updated and comprehensive overview of the clinical significance and prevalence of Staph. haemolyticus, underscores its zoonotic potential and relevance in the one health framework, explores crucial virulence factors, and examines genetics features contributing to its success in causing emergent and challenging infections. Additionally, we scrutinize ongoing studies aimed at controlling spread and alternative approaches for combating it.


Assuntos
Infecção Hospitalar , Infecções Estafilocócicas , Humanos , Staphylococcus haemolyticus/genética , Infecção Hospitalar/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Virulência/genética , Farmacorresistência Bacteriana/genética , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
8.
J Infect Public Health ; 17(1): 18-24, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992430

RESUMO

BACKGROUND: Staphylococcus haemolyticus belongs to the Coagulase-Negative Staphylococci (CoNS), exhibiting the highest levels of antibiotic resistance within this group of bacteria. This species has been increasingly implicated in nosocomial and animal infections worldwide, with a prevalence of methicillin-resistant Staphylococcus haemolyticus (MRSH). Most information about this organism comes from regional analyzes or with the absence of typing data, thus not revealing the real role of S. haemolyticus strains in world public health. METHODS: Here, we performed an enhanced global epidemiological analysis considering all available S. haemolyticus genomes from all continents, including genomes of nosocomial, environmental, and animal origin (n = 310). Furthermore, we added original genomic information from a clinical MRSH from the Brazilian Amazon region. The resistome and virulome of the genomes were associated with their mobilome, being inferred based on the presence of specific genes and databases such as CARD, VFDB, and PlasmidFinder, respectively. RESULTS: Phylogenetic analysis revealed three main groups, the main one covering most of the clinical clonal complex 3 (CC3) genomes in the world. The virulome of some genomes in this cluster showed the complete capsule operon (capA-capM). Importantly, this virulome trait could be associated with the mobilome, since the capsule operon, as well as a whole set of genes of the type VII secretion system, were observed in plasmids. In addition, the resistome of the main cluster (CC3) was larger, characterized mainly by the presence of the mecA gene, in addition to a set of other genes (aad, aac-aph, aph, erm), contrasting with the poor resistome of the other two clusters. Several insertion sequences were identified, some of them linked to specific clusters, and resistance genes, such as the rare cfrA (IS257). CONCLUSIONS: Therefore, successful lineages of CC3 S. haemolyticus causing human infections are widespread worldwide, raising concern about the impact of this scenario on public health.


Assuntos
Infecção Hospitalar , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus haemolyticus/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Filogenia , Staphylococcus/genética , Genômica , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
9.
Sci Rep ; 13(1): 18646, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903798

RESUMO

Three stable microbial consortia, each composed of Bacillus paranthracis and Staphylococcus haemolyticus strains, were isolated from milk of cows diagnosed with mastitis in three geographically remote regions of Russia. The composition of these consortia remained stable following multiple passages on culture media. Apparently, this stability is due to the structure of the microbial biofilms formed by the communities. The virulence of the consortia depended on the B. paranthracis strains. It seems plausible that the ability of the consortia to cause mastitis in cattle was affected by mutations of the cytK gene of B. paranthracis.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Feminino , Animais , Bovinos , Humanos , Staphylococcus haemolyticus/genética , Infecções Estafilocócicas/veterinária , Leite , Genômica
10.
Anal Chim Acta ; 1273: 341534, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423664

RESUMO

Staphylococcus haemolyticus (S. haemolyticus), which is highly prevent in the hospital environment, is an etiological factor for nosocomial infections. Point-of-care rapid testing (POCT) of S. haemolyticus is not possible with the currently used detection methods. Recombinase polymerase amplification (RPA) is a novel isothermal amplification technology with high sensitivity and specificity. The combination of RPA and lateral flow strips (LFS) can achieve rapid pathogen detection, enabling POCT. This study developed an RPA-LFS methodology using a specific probe/primer pair to identify S. haemolyticus. A basic RPA reaction was performed to screen the specific primer from 6 primer pairs targeting mvaA gene. The optimal primer pair was selected based on agarose gel electrophoresis, and the probe was designed. To eliminate false-positive results caused by the byproducts, base mismatches were introduced in the primer/probe pair. The improved primer/probe pair could specifically identify the target sequence. To explore the optimal reaction conditions, the effects of reaction temperature and duration of the RPA-LFS method were systematically investigated. The improved system enabled optimal amplification at 37 °C for 8 min, and the results were visualized within 1 min. The S. haemolyticus detection sensitivity of the RPA-LFS method, whose performance was unaffected by contamination with other genomes, was 0.147 CFU/reaction. Furthermore, we analyzed 95 random clinical samples with RPA-LFS, quantitative polymerase chain reaction (qPCR), and traditional bacterial-culture assays and found that the RPA-LFS had 100% and 98.73% compliance rates with the qPCR and traditional culture method, respectively, which confirms its clinical applicability. In this study, we designed an improved RPA-LFS assay based on the specific probe/primer pair for the detection of S. haemolyticus via rapid POCT, free from the limitations of the precision instruments, helping to make diagnoses and treatment decisions as soon as possible.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Recombinases , Recombinases/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Staphylococcus haemolyticus/genética , Sensibilidade e Especificidade
11.
J Med Microbiol ; 72(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37477411

RESUMO

Introduction. Linezolid is an effective therapeutic option for treating severe infections caused by multidrug-resistant Gram-positive organisms. Several mechanisms have been reported to be responsible for resistance to this antibiotic.Hypothesis or Gap Statement. Although several mechanisms of linezolid resistance have been reported in Staphylococcus haemolyticus, the prevalence and potential for horizontal transfer of resistance genes have not been fully characterized, particularly among S. haemolyticus isolates from India.Aim. To perform whole-genome sequencing (WGS) of linezolid-resistant S. haemolyticus isolates to characterize the resistance mechanisms.Methodology. WGS was performed for 16 linezolid-resistant S. haemolyticus isolates to check for the presence of cfr, optrA and poxtA genes and mutations in 23S rRNA and ribosomal proteins (L3, L4 and L22) that are possible mechanisms implicated in linezolid resistance. Sequence types were identified using MLST finder. The minimum inhibitory concentration (MIC) of linezolid was determined using the E-test method. Polymerase chain reaction (PCR) was carried out for the detection of the cfr gene.Results. The study documented three different mechanisms of linezolid resistance in S. haemolyticus. Thirteen of the 16 isolates were phenotypically resistant to linezolid, of which 12 were positive for the cfr gene. The G2603T mutation in 23S rRNA was found in the majority of the isolates (n=13). Ten isolates had the R138V mutation in L3 ribosomal protein. Twelve isolates with the cfr gene in combination with either G2603T or R138V mutations displayed extremely high MIC values. Surprisingly, three phenotypically sensitive isolates were found to be positive for the cfr gene but negative for other resistance mechanisms. Importantly, in almost half of the isolates the cfr gene was present on a plasmid. ST3 and ST1 were found to be the predominant sequence types.Conclusion. All phenotypically resistant isolates exhibited two or three linezolid resistance mechanisms. The cfr gene was found on plasmids in many isolates, demonstrating its potential for horizontal transfer to more pathogenic organisms.


Assuntos
RNA Ribossômico 23S , Staphylococcus haemolyticus , Linezolida/farmacologia , Staphylococcus haemolyticus/genética , Tipagem de Sequências Multilocus , RNA Ribossômico 23S/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Enterococcus , Testes de Sensibilidade Microbiana
12.
Front Cell Infect Microbiol ; 13: 1183390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37265496

RESUMO

Introduction: Non-aureus Staphylococcus (NAS) species are currently the most commonly identified microbial agents causing sub-clinical infections of the udder and are also deemed as opportunistic pathogens of clinical mastitis in dairy cattle. More than 10 NAS species have been identified and studied but little is known about S. haemolyticus in accordance with dairy mastitis. The present study focused on the molecular epidemiology and genotypic characterization of S. haemolyticus isolated from dairy cattle milk in Northwest, China. Methods: In this study, a total of 356 milk samples were collected from large dairy farms in three provinces in Northwest, China. The bacterial isolation and presumptive identification were done by microbiological and biochemical methods following the molecular confirmation by 16S rRNA gene sequencing. The antimicrobial susceptibility testing (AST) was done by Kirby-Bauer disk diffusion assay and antibiotic-resistance genes (ARGs) were identified by PCR. The phylogenetic grouping and sequence typing was done by Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus Sequence Typing (MLST) respectively. Results: In total, 39/356 (11.0%) were identified as positive for S. haemolyticus. The overall prevalence of other Staphylococcus species was noted to be 39.6% (141/356), while the species distribution was as follows: S. aureus 14.9%, S. sciuri 10.4%, S. saprophyticus 7.6%, S. chromogenes 4.2%, S. simulans 1.4%, and S. epidermidis 1.1%. The antimicrobial susceptibility of 39 S. haemolyticus strains exhibited higher resistance to erythromycin (92.3%) followed by trimethoprim-sulfamethoxazole (51.3%), ciprofloxacin (43.6%), florfenicol (30.8%), cefoxitin (28.2%), and gentamicin (23.1%). All of the S. haemolyticus strains were susceptible to tetracycline, vancomycin, and linezolid. The overall percentage of multi-drug resistant (MDR) S. haemolyticus strains was noted to be 46.15% (18/39). Among ARGs, mphC was identified as predominant (82.05%), followed by ermB (33.33%), floR (30.77%), gyrA (30.77%), sul1 (28.21%), ermA (23.08%), aadD (12.82%), grlA (12.82%), aacA-aphD (10.26%), sul2 (10.26%), dfrA (7.69%), and dfrG (5.13%). The PFGE categorized 39 S. haemolyticus strains into A-H phylogenetic groups while the MLST categorized strains into eight STs with ST8 being the most predominant while other STs identified were ST3, ST11, ST22, ST32, ST19, ST16, and ST7. Conclusion: These findings provided new insights into our understanding of the epidemiology and genetic characteristics of S. haemolyticus in dairy farms to inform interventions limiting the spread of AMR in dairy production.


Assuntos
Mastite Bovina , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Feminino , Bovinos , Animais , Staphylococcus haemolyticus/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Tipagem de Sequências Multilocus , Epidemiologia Molecular , Leite , Filogenia , RNA Ribossômico 16S/genética , Mastite Bovina/epidemiologia , Mastite Bovina/microbiologia , Staphylococcus , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
13.
Future Microbiol ; 18: 407-414, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213139

RESUMO

Background: Staphylococcus haemolyticus is an emerging threat in the nosocomial environment but only some virulence factors are known. Materials & methods: The frequency of the sasX gene (or orthologues sesI/shsA), encoding an invasiveness-related surface-associated protein, in S. haemolyticus was detected in different hospitals in Rio de Janeiro. Results: 9.4% of strains were sasX/sesI/shsA-positive, some were in the context of the ΦSPß-like prophage and devoid of CRISPR systems, indicating potential transferability of their virulence genes. Gene sequencing evidenced that Brazilian S. haemolyticus harbored sesI, instead of the usual sasX, while S. epidermidis had sasX instead of sesI, suggesting horizontal acquisition. Conclusion: The contexts of Brazilian sasX/sesI/shsA favor transfer, which is alarming given the difficulty in treating infections caused by S. haemolyticus.


Assuntos
Infecção Hospitalar , Infecções Estafilocócicas , Humanos , Staphylococcus haemolyticus/genética , Virulência/genética , Brasil/epidemiologia , Infecção Hospitalar/epidemiologia , Infecções Estafilocócicas/epidemiologia , Staphylococcus epidermidis/genética , Hospitais , Antibacterianos
14.
Microb Pathog ; 180: 106152, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178725

RESUMO

OBJECTIVES: This study aimed to determine the inhibitory and bactericidal effects of teicoplanin (TEC) on TEC-susceptible Staphylococcus haemolyticus isolated from a patient with cancer in whom infection persisted despite TEC therapy. We also focused on the biofilm-forming ability of the isolate in vitro. METHODS: S. haemolyticus clinical isolate (strain 1369A) and its control strain, ATCC 29970 were cultured in Luria-Bertani (LB) broth with TEC. The inhibitory and bactericidal effects of TEC on planktonic, adherent, biofilm-dispersed, and biofilm-embedded cells of these strains were analyzed by using a biofilm formation/viability assay kit. The expression of biofilm-related genes was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Biofilm formation was determined by using scanning electron microscopy (SEM). RESULTS: The clinical isolate of S. haemolyticus had enhanced ability to bacterial growth, adherence, aggregation, and biofilm formation, thus the inhibitory and bactericidal effects of TEC on planktonic, adherent, biofilm-dispersed, and biofilm-embedded cells of the isolate were attenuated. Additionally, TEC induced cell aggregation, biofilm formation, and some biofilm-related gene expression of the isolate. CONCLUSION: The clinical isolate of S. haemolyticus is resistant to TEC treatment due to cell aggregation and biofilm formation.


Assuntos
Infecções Estafilocócicas , Teicoplanina , Humanos , Teicoplanina/farmacologia , Staphylococcus haemolyticus/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana
15.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047168

RESUMO

Multi-drug resistant Staphylococcus haemolyticus is a frequent nosocomial invasive bacteremia pathogen in hospitals. Our previous analysis showed one of the predominant strains, ST42 originated from ST3, had only one multilocus sequence typing (MLST) variation among seven loci in SH1431; yet no significant differences in biofilm formation observed between ST42 and ST3, suggesting that other factors influence clonal lineage change. Whole genome sequencing was conducted on two isolates from ST42 and ST3 to find phenotypic and genotypic variations, and these variations were further validated in 140 clinical isolates. The fusidic acid- and tetracycline-resistant genes (fusB and tetK) were found only in CGMH-SH51 (ST42). Further investigation revealed consistent resistant genotypes in all isolates, with 46% and 70% of ST42 containing fusB and tetK, respectively. In contrast, only 23% and 4.2% ST3 contained these two genes, respectively. The phenotypic analysis also showed that ST42 isolates were highly resistant to fusidic acid (47%) and tetracycline (70%), compared with ST3 (23% and 4%, respectively). Along with drug-resistant genes, three capsule-related genes were found in higher percentage distributions in ST42 than in ST3 isolates. Our findings indicate that ST42 could become endemic in Taiwan, further constitutive surveillance is required to prevent the spread of this bacterium.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Ácido Fusídico/farmacologia , Staphylococcus haemolyticus/genética , Tipagem de Sequências Multilocus , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Tetraciclina , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/microbiologia
16.
Vet Dermatol ; 34(4): 298-309, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36908239

RESUMO

BACKGROUND: Staphylococcus haemolyticus is a coagulase-negative commensal organism of both people and companion animals. It has pathogenic potential and when cultured is often meticillin- and multidrug-resistant. OBJECTIVES: To characterise the clinical features of dogs and cats with clinical skin disease that had positive S. haemolyticus skin cultures, and to employ whole-genome sequencing (WGS) to identify resistance genes and characterise the genetic relatedness of strains. MATERIALS AND METHODS: Isolates were identified by the institutional clinical microbiology laboratory by routine aerobic culture and susceptibility from seven veterinary hospitals across the United States. Then, WGS and analysis of each isolate were performed and clinical data collected via a retrospective clinician questionnaire. RESULTS: S. haemolyticus was identified from superficial (seven of 12) and deep (five of 12) cutaneous infections in our study. Most animals had received antimicrobials (10 of 12) and/or immunomodulatory drugs (nine of 12) within the six months before culture. WGS analysis revealed a variety of genetic lineages and a wide array of antimicrobial resistance genes. Meticillin resistance was identified in nine of 12 isolates and four of 12 isolates demonstrated mupirocin tolerance. CONCLUSIONS AND CLINICAL RELEVANCE: Staphylococcus haemolyticus may be an under-recognised pathogen in companion animals, and its demonstrated potential for multidrug-resistance, meticillin-resistance, and high-level mupirocin tolerance may create a therapeutic challenge. Further studies should evaluate the prior antimicrobial use and immunocompromised status as risk factors for infection with S. haemolyticus.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções Estafilocócicas , Gatos , Cães , Animais , Estados Unidos/epidemiologia , Mupirocina/farmacologia , Mupirocina/uso terapêutico , Staphylococcus haemolyticus/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Meticilina , Doenças do Gato/tratamento farmacológico , Doenças do Gato/microbiologia , Estudos Retrospectivos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana/veterinária , Doenças do Cão/tratamento farmacológico , Doenças do Cão/microbiologia , Genômica
17.
Arch Virol ; 168(2): 41, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609576

RESUMO

The presence of a novel functional prophage, IME1365_01, was predicted from bacterial high-throughput sequencing data and then successfully induced from Staphylococcus haemolyticus by mitomycin C treatment. Transmission electron microscopy showed that phage IME1365_01 has an icosahedral head (43 nm in diameter) and a long tail (172 nm long). This phage possesses a double-stranded DNA genome of 44,875 bp with a G+C content of 35.35%. A total of 63 putative open reading frames (ORFs) were identified in its genome. BLASTn analysis revealed that IME1365_01 is similar to Staphylococcus phage vB_SepS_E72, but with a genome homology coverage of only 26%. The phage genome does not have fixed termini. In ORF24 of phage IME1365_01, a conserved Toll-interleukin-1 receptor domain of the TIR_2 superfamily (accession no. c123749) is located at its N-terminus, and this might serve as a component of an anti-bacterial system. In conclusion, we developed a platform to obtain active temperate phage from prediction, identification, and induction from its bacterial host. After mass screening using this platform, numerous temperate phages and their innate anti-bacterial elements can provide extensive opportunities for therapy against bacterial (especially drug-resistant bacterial) infections.


Assuntos
Bacteriófagos , Siphoviridae , Staphylococcus haemolyticus/genética , DNA Viral/genética , Genoma Viral , Análise de Sequência de DNA , Siphoviridae/genética , Bacteriófagos/genética , Fagos de Staphylococcus/genética , Fases de Leitura Aberta
18.
Biomed Res Int ; 2023: 3775142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644166

RESUMO

Background: The present study is aimed at surveying the antibiotics resistance profile, biofilm formation ability, staphylococcal cassette chromosome mec (SCCmec) types, and molecular epidemiology of Staphylococcus epidermidis and Staphylococcus haemolyticus isolated from hospitalized patients and healthcare workers in four teaching hospitals in Iran. Methods: In total, 43 Staphylococcus epidermidis and 12 Staphylococcus haemolyticus were isolated from hospitalized patients, and 19 Staphylococcus epidermidis and 7 Staphylococcus haemolyticus isolated from healthcare workers were included in the present study. The antimicrobial resistance profile of isolates was determined using the disk diffusion method. Moreover, the resistance of isolates to methicillin was identified using the cefoxitin disk diffusion test. The microtiter-plate test was used for quantifying biofilm formation. Moreover, the frequency of icaA and icaD genes was determined using PCR assay. The molecular epidemiology of methicillin-resistant isolates was determined using SCCmec typing and pulsed-field gel electrophoresis methods. Results: Among all coagulase-negative staphylococci isolates, the highest resistance rate (81.5%) was seen for cefoxitin and cotrimoxazole. All of the isolates were susceptible to linezolid. Out of the 66 mecA-positive isolates, the most common SCCmec type was the type I (n = 23; 34.8%) followed by type IV (n = 13; 19.7%). Using pulsed-field gel electrophoresis (PFGE) assay, 27 PFGE types including 14 common types and 13 singletons were obtained among 51 methicillin-resistant S. epidermidis (MRSE) isolates. Moreover, among 12 methicillin-resistant S. haemolyticus (MRSH) isolates, 8 PFGE types were detected, of which 5 PFGE types were singletons. Conclusion: The high rate of resistance to antibiotics as well as the possibility of cross-infection shows the importance of a pattern shift in the management and controlling programs of coagulase-negative staphylococci, especially in healthcare centers. Clinical trial registration. The present study is not a clinical trial study. Thus, a registration number is not required.


Assuntos
Infecções Estafilocócicas , Staphylococcus epidermidis , Humanos , Staphylococcus epidermidis/genética , Staphylococcus haemolyticus/genética , Cefoxitina , Coagulase , Irã (Geográfico)/epidemiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Staphylococcus , Pessoal de Saúde , Testes de Sensibilidade Microbiana
19.
Microbiol Spectr ; 10(6): e0245222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36314976

RESUMO

Staphylococcus haemolyticus is a major cause of late-onset sepsis in neonates, and endemic clones are often multidrug-resistant. The bacteria can also act as a genetic reservoir for more pathogenic bacteria. Molecular epidemiology is important in understanding bacterial pathogenicity and preventing infection. To describe the molecular epidemiology of S. haemolyticus isolated from neonatal blood cultures at a Swedish neonatal intensive care unit (NICU) over 4 decades, including antibiotic resistance genes (ARGs), virulence factors, and comparison to international isolates. Isolates were whole-genome sequenced, and single nucleotide polymorphisms in the core genome were used to map the relatedness. The occurrence of previously described ARGs and virulence genes were investigated. Disc diffusion and gradient tests were used to determine phenotypic resistance. The results revealed a clonal outbreak of S. haemolyticus at this NICU during the 1990s. Multidrug resistance was present in 28 (82%) of all isolates and concomitant resistance to aminoglycoside and methicillin occurred in 27 (79%). No isolates were vancomycin resistant. Genes encoding ARGs and virulence factors occurred frequently. The isolates in the outbreak were more homogenous in their genotypic and phenotypic patterns. Genotypic and phenotypic resistance combinations were consistent. Pathogenic traits previously described in S. haemolyticus occurred frequently in the present isolates, perhaps due to the hospital selection pressure resulting in epidemiological success. The clonal outbreak revealed by this study emphasizes the importance of adhering to hygiene procedures in order to prevent future endemic outbreaks. IMPORTANCE This study investigated the relatedness of Staphylococcus haemolyticus isolated from neonatal blood and revealed a clonal outbreak in the 1990s at a Swedish neonatal intensive care unit. The outbreak clone has earlier been isolated in Japan and Norway. Virulence and antibiotic resistance genes previously associated with clinical S. haemolyticus were frequently occuring in the present study as well. The majority of the isolates were multidrug-resistant. These traits should be considered important for S. haemolyticus epidemiological success and are probably caused by the hospital selection pressure. Thus, this study emphasizes the importance of restrictive antibiotic use and following the hygiene procedures, to prevent further antibiotic resistance spread and future endemic outbreaks.


Assuntos
Infecções Estafilocócicas , Staphylococcus haemolyticus , Recém-Nascido , Humanos , Staphylococcus haemolyticus/genética , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Epidemiologia Molecular , Antibacterianos/farmacologia , Surtos de Doenças , Fatores de Virulência/genética , Testes de Sensibilidade Microbiana
20.
Microbiol Spectr ; 10(4): e0099722, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862947

RESUMO

Staphylococcus haemolyticus and Staphylococcus hominis subsp. hominis are common coagulase-negative staphylococcus opportunistic pathogens. In Thailand, the clinical strains S. haemolyticus 1864 and 48 and S. hominis subsp. hominis 384 and 371 have been recovered from sick dogs. These strains were methicillin resistant with the nontypeable staphylococcal cassette chromosome mec (NT-SCCmec). The SCCmec element distribution in the clinical isolates from dogs was analyzed using whole-genome sequencing, which revealed the presence of different SCCmec composite islands (CIs) and gene structure. The SCCmec-CIs of ψSCCmec1864 (13 kb) and ψSCC1864 (11 kb) with a class C1 mec complex but no ccr gene were discovered in S. haemolyticus 1864. The CIs of ψSCCmec48 with a C1 mec complex (28 kb), SCC48 with ccrA4B4 (23 kb), and ψSCC48 (2.6 kb) were discovered in S. haemolyticus 48. In SCC48, insertion sequence IS256 contained an aminoglycoside-resistant gene [aph(2″)-Ia]. Two copies of IS431 containing the tetracycline-resistant gene tet(K) were found downstream of ψSCC48. In S. hominis subsp. hominis, the SCCmec-CI in strain 384 had two separate sections: ψSCCmec384 (20 kb) and SCCars (23 kb). ψSCCmec384 lacked the ccr gene complex but carried the class A mec complex. Trimethoprim-resistant dihydrofolate reductase (dfrC) was discovered on ψSCCmec384 between two copies of IS257. In strain 371, SCCmec VIII (4A) (37 kb) lacking a direct repeat at the chromosomal end was identified. This study found SCCmec elements in clinical isolates from dogs that were structurally complex and varied in their genetic content, with novel organization. IMPORTANCE In Thailand, the staphylococcal cassette chromosome mec (SCCmec) element, which causes methicillin resistance through acquisition of the mec gene, has been studied in clinical coagulase-negative Staphylococcus isolates from various companion animals, and Staphylococcus haemolyticus and Staphylococcus hominis subsp. hominis were found to have the most nontypeable (NT)-SCCmec elements. These species are more prone to causing illness and more resistant to a variety of antimicrobials than other coagulase-negative staphylococci. However, full characterization of NT-SCCmec in clinical S. haemolyticus and S. hominis subsp. hominis isolates from such animals has been limited. Our findings support the use of full nucleotide sequencing rather than PCR designed for Staphylococcus aureus in further research of novel SCCmec elements. Moreover, several antimicrobial resistance and heavy metal resistance genes were identified on the SCCmec elements; these are important as they could limit the therapeutic options available in veterinary medicine.


Assuntos
Infecções Estafilocócicas , Staphylococcus haemolyticus , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Cromossomos/química , Cromossomos Bacterianos/química , Cromossomos Bacterianos/genética , Coagulase/genética , Cães , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Staphylococcus haemolyticus/genética , Staphylococcus hominis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA