Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14755, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926437

RESUMO

Streptococcus gallolyticus (Sg) is a non-motile, gram-positive bacterium that causes infective endocarditis (inflammation of the heart lining). Because Sg has gained resistance to existing antibiotics and there is currently no drug available, developing effective anti-Sg drugs is critical. This study combined core proteomics with a subtractive proteomics technique to identify potential therapeutic targets for Sg. Several bioinformatics approaches were used to eliminate non-essential and human-specific homologous sequences from the bacterial proteome. Then, virulence, druggability, subcellular localization, and functional analyses were carried out to specify the participation of significant bacterial proteins in various cellular processes. The pathogen's genome contained three druggable proteins, glucosamine-1phosphate N-acetyltransferase (GlmU), RNA polymerase sigma factor (RpoD), and pantetheine-phosphate adenylyltransferase (PPAT) which could serve as effective targets for developing novel drugs. 3D structures of target protein were modeled through Swiss Model. A natural product library containing 10,000 molecules from the LOTUS database was docked against therapeutic target proteins. Following an evaluation of the docking results using the glide gscore, the top 10 compounds docked against each protein receptor were chosen. LTS001632, LTS0243441, and LTS0236112 were the compounds that exhibited the highest binding affinities against GlmU, PPAT, and RpoD, respectively, among the compounds that were chosen. To augment the docking data, molecular dynamics simulations and MM-GBSA binding free energy were also utilized. More in-vitro research is necessary to transform these possible inhibitors into therapeutic drugs, though computer validations were employed in this study. This combination of computational techniques paves the way for targeted antibiotic development, which addresses the critical need for new therapeutic strategies against S. gallolyticus infections.


Assuntos
Antibacterianos , Proteínas de Bactérias , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteômica , Streptococcus gallolyticus , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Streptococcus gallolyticus/metabolismo , Humanos
2.
Front Cell Infect Microbiol ; 11: 740704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778104

RESUMO

Objective: The opportunistic pathogen Streptococcus gallolyticus is one of the few intestinal bacteria that has been consistently linked to colorectal cancer (CRC). This study aimed to identify novel S. gallolyticus-induced pathways in colon epithelial cells that could further explain how S. gallolyticus contributes to CRC development. Design and Results: Transcription profiling of in vitro cultured CRC cells that were exposed to S. gallolyticus revealed the specific induction of oxidoreductase pathways. Most prominently, CYP1A and ALDH1 genes that encode phase I biotransformation enzymes were responsible for the detoxification or bio-activation of toxic compounds. A common feature is that these enzymes are induced through the Aryl hydrocarbon receptor (AhR). Using the specific inhibitor CH223191, we showed that the induction of CYP1A was dependent on the AhR both in vitro using multiple CRC cell lines as in vivo using wild-type C57bl6 mice colonized with S. gallolyticus. Furthermore, we showed that CYP1 could also be induced by other intestinal bacteria and that a yet unidentified diffusible factor from the S. galloltyicus secretome (SGS) induces CYP1A enzyme activity in an AhR-dependent manner. Importantly, priming CRC cells with SGS increased the DNA damaging effect of the polycyclic aromatic hydrocarbon 3-methylcholanthrene. Conclusion: This study shows that gut bacteria have the potential to modulate the expression of biotransformation pathways in colonic epithelial cells in an AhR-dependent manner. This offers a novel theory on the contribution of intestinal bacteria to the etiology of CRC by modifying the capacity of intestinal epithelial or (pre-)cancerous cells to (de)toxify dietary components, which could alter intestinal susceptibility to DNA damaging events.


Assuntos
Neoplasias Colorretais , Streptococcus gallolyticus , Animais , Biotransformação , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Células Epiteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Streptococcus gallolyticus/metabolismo
3.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402539

RESUMO

Bacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus subsp. gallolyticus was recently shown to outcompete commensal enterococci of the murine microbiota under tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. Here, we identified four genes involved in the regulatory control of gallocin in S. gallolyticus subsp. gallolyticus UCN34 that encode a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP [gallocin-stimulating peptide]), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-amino-acid (aa) response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30 bp was found in all promoter regions regulated by BlpR and BlpS. Electrophoretic mobility shift assays (EMSA) and footprint assays showed direct and specific binding of BlpS and BlpR to various regulated promoter regions in a dose-dependent manner on this conserved sequence. Gallocin expression appears to be tightly controlled in S. gallolyticus subsp. gallolyticus by quorum sensing and antagonistic activity of 2 LytTR-containing proteins. Competition experiments in gut microbiota medium and 5% CO2 to mimic intestinal conditions demonstrate that gallocin is functional under these in vivo-like conditions.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus, formerly known as Streptococcus bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. Recent studies indicate that S. gallolyticus subsp. gallolyticus is both a driver and a passenger of colorectal cancer. We previously showed that S. gallolyticus subsp. gallolyticus produces a bacteriocin, termed gallocin, enabling colonization of the colon under tumoral conditions by outcompeting commensal members of the murine microbiota such as Enterococcus faecalis Here, we identified and extensively characterized a four-component system that regulates gallocin production. Gallocin gene transcription is activated by a secreted peptide pheromone (GSP) and a two-component signal transduction system composed of a transmembrane histidine kinase receptor (BlpH) and a cytosolic response regulator (BlpR). Finally, a DNA-binding protein (BlpS) was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent S. gallolyticus subsp. gallolyticus colon colonization under tumoral conditions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Regulação Bacteriana da Expressão Gênica , Streptococcus gallolyticus/genética , Streptococcus gallolyticus/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Genoma Bacteriano , Histidina Quinase/genética , Histidina Quinase/metabolismo , Percepção de Quorum , Infecções Estreptocócicas/microbiologia , Transcriptoma
4.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402540

RESUMO

Streptococcus gallolyticus subsp. gallolyticus is an emerging opportunistic pathogen responsible for septicemia and endocarditis in the elderly. Invasive infections by S. gallolyticus subsp. gallolyticus are strongly linked to the occurrence of colorectal cancer (CRC). It was previously shown that increased secondary bile salts under CRC conditions enhance the bactericidal activity of gallocin, a bacteriocin produced by S. gallolyticus subsp. gallolyticus, enabling it to colonize the mouse colon by outcompeting resident enterococci (L. Aymeric, F. Donnadieu, C. Mulet, L. du Merle, et al., Proc Natl Acad Sci U S A 115:E283-E291, 2018, https://doi.org/10.1073/pnas.1715112115). In a separate study, we showed that S. gallolyticus subsp. gallolyticus produces and secretes a 21-mer peptide that activates bacteriocin production (A. Proutière, L. du Merle, B. Périchon, H. Varet, et al., mBio 11:e03187-20, 2020, https://doi.org/10.1128/mBio.03187-20). This peptide was named CSP because of its sequence similarity with competence-stimulating peptides found in other streptococci. Here, we demonstrate that CSP is a bona fide quorum sensing peptide involved in activation of gallocin gene transcription. We therefore refer to CSP as GSP (gallocin-stimulating peptide). GSP displays some unique features, since its N-terminal amino acid lies three residues after the double glycine leader sequence. Here, we set out to investigate the processing and export pathway that leads to mature GSP. Heterologous expression in Lactococcus lactis of the genes encoding GSP and the BlpAB transporter is sufficient to produce the 21-mer form of GSP in the supernatant, indicating that S. gallolyticus subsp. gallolyticus BlpAB displays an atypical cleavage site. We also conducted the first comprehensive structure-activity relationship (SAR) analysis of S. gallolyticus subsp. gallolyticus GSP to identify its key structural features and found that unlike many other similar streptococci signaling peptides (such as CSPs), nearly half of the mature GSP sequence can be removed (residues 1 to 9) without significantly impacting the peptide activity.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus is an opportunistic pathogen associated with colorectal cancer (CRC) and endocarditis. S. gallolyticus subsp. gallolyticus utilizes quorum sensing (QS) to regulate the production of a bacteriocin (gallocin) and gain a selective advantage in colonizing the colon. In this article, we report (i) the first structure-activity relationship study of the S. gallolyticus subsp. gallolyticus QS pheromone that regulates gallocin production, (ii) evidence that the active QS pheromone is processed to its mature form by a unique ABC transporter and not processed by an extracellular protease, and (iii) supporting evidence of interspecies interactions between streptococcal pheromones. Our results revealed the minimal pheromone scaffold needed for gallocin activation and uncovered unique interactions between two streptococcal QS signals that warrant further study.


Assuntos
Bacteriocinas/metabolismo , Secreções Corporais/metabolismo , Peptídeos/metabolismo , Percepção de Quorum/fisiologia , Streptococcus gallolyticus/metabolismo , Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Peptídeo Hidrolases/metabolismo , Feromônios/metabolismo , Transdução de Sinais , Streptococcus gallolyticus/genética , Transcriptoma
5.
J Med Microbiol ; 69(4): 605-616, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125268

RESUMO

Introduction. Against the backdrop of increasing resistance to conventional antibiotics, bacteriocins represent an attractive alternative, given their potent activity, novel modes of action and perceived lack of issues with resistance.Aim. In this study, the nature of the antibacterial activity of a clinical isolate of Streptococcus gallolyticus was investigated.Methods. Optimization of the production of an inhibitor from strain AB39 was performed using different broth media and supplements. Purification was carried out using size exclusion, ion exchange and HPLC. Gel diffusion agar overlay, MS/MS, de novo peptide sequencing and genome mining were used in a proteogenomics approach to facilitate identification of the genetic basis for production of the inhibitor.Results. Strain AB39 was identified as representing Streptococcus gallolyticus subsp. pasteurianus and the successful production and purification of the AB39 peptide, named nisin P, with a mass of 3133.78 Da, was achieved using BHI broth with 10 % serum. Nisin P showed antibacterial activity towards clinical isolates of drug-resistant bacteria, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus and penicillin-resistant Streptococcus pneumoniae. In addition, the peptide exhibited significant stability towards high temperature, wide pH and certain proteolytic enzymes and displayed very low toxicity towards sheep red blood cells and Vero cells.Conclusion. To the best of our knowledge, this study represents the first production, purification and characterization of nisin P. Further study of nisin P may reveal its potential for treating or preventing infections caused by antibiotic-resistant Gram-positive bacteria, or those evading vaccination regimens.


Assuntos
Nisina/isolamento & purificação , Nisina/farmacologia , Streptococcus gallolyticus/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia , Cromatografia Líquida de Alta Pressão , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Estrutura Molecular , Nisina/química , Nisina/metabolismo , Ovinos , Streptococcus gallolyticus/química , Streptococcus gallolyticus/classificação , Streptococcus gallolyticus/genética , Espectrometria de Massas em Tandem
7.
Gut Microbes ; 7(6): 526-532, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27656949

RESUMO

Streptococcus gallolyticus is a commensal bacterium responsible for infectious endocarditis in the elderly, which has frequently been associated with colonic carcinoma. Whether this species is a cause or a consequence of colorectal cancer remains unknown. We recently demonstrated that S. gallolyticus Pil3 pilus is required for adhesion to colonic mucus and for colonization of mouse distal colon. We show here that Pil3 pilus binds equally well to human colonic mucins derived from HT29-MTX cells and to human stomach mucins from healthy donors. In addition, we have found that Pil3 also binds to human fibrinogen, which expands the repertoire of Pil3 host ligands.


Assuntos
Proteínas de Bactérias/metabolismo , Fibrinogênio/metabolismo , Proteínas de Fímbrias/metabolismo , Intestinos/microbiologia , Mucinas/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus gallolyticus/metabolismo , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Linhagem Celular , Proteínas de Fímbrias/genética , Humanos , Mucosa Intestinal/metabolismo , Camundongos , Streptococcus gallolyticus/genética
8.
Trop Anim Health Prod ; 48(7): 1513-6, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27465694

RESUMO

The effect of feeding tannin-degrading bacteria (Streptococcus gallolyticus strain TDGB 406) on carcass characteristics of goats fed with oak (Quercus semicarpifolia) leaves was studied on 18 male goats (4 months old, average body weight 9.50 ± 1.50 kg), distributed into three groups of six animals each. The animals of group 1 served as control, while the animals of groups 2 and 3 were given (at 5 ml/kg live weight) autoclaved and live culture of isolate TDGB 406 (10(6) cells/ml), respectively. The animals were fed with oak leaves as a basal roughage source and maize hay along with fixed quantity of concentrate mixture. After 4 months of feeding, the animals were slaughtered for carcass studies. The feeding of live culture of isolate TDGB 406 did not cause any effect (P > 0.05) on pre-slaughter weight, empty body weight, carcass weight, dressing percent, and yield of wholesale cuts (neck, rack, shoulder, breast, shank, loin, leg, and flank) of the goat meat. The chemical composition of longissimus dorsi muscle was comparable (P > 0.05) among the groups. The organoleptic evaluation of pressure-cooked meat in terms of tenderness and overall palatability was increased significantly (P < 0.05) in the meat of group 3 where live culture was supplemented. The other attributes were similar among the groups. It was concluded that supplementation of tannin-degrading bacteria S. gallolyticus strain TDGB 406 to goats fed with oak leaves did not affect the carcass characteristics and meat quality.


Assuntos
Ração Animal/análise , Dieta/veterinária , Cabras/fisiologia , Quercus , Streptococcus gallolyticus/metabolismo , Taninos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Índia , Masculino , Folhas de Planta , Carne Vermelha , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA