Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.059
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38690700

RESUMO

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Assuntos
Biofilmes , Óleo de Coco , Lacticaseibacillus casei , Testes de Sensibilidade Microbiana , Azeite de Oliva , Streptococcus mutans , Streptococcus sanguis , Azeite de Oliva/farmacologia , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Óleo de Coco/farmacologia , Técnicas In Vitro , Streptococcus sanguis/efeitos dos fármacos , Lacticaseibacillus casei/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos
2.
J Oleo Sci ; 73(5): 709-716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38692893

RESUMO

Epigallocatechin-3-gallate (EGCG), a polyphenol derived from Green Tea, is one of the sources of natural bioactive compounds which are currently being developed as medicinal ingredients. Besides other biological activities, this natural compound exhibits anti-cariogenic effects. However, EGCG has low physical-chemical stability and poor bioavailability. Thus, the purpose of this study was to develop and characterize lipid-chitosan hybrid nanoparticle with EGCG and to evaluate its in vitro activity against cariogenic planktonic microorganisms. Lipid-chitosan hybrid nanoparticle (LCHNP-EGCG) were prepared by emulsion and sonication method in one step and characterized according to diameter, polydispersity index (PdI), zeta potential (ZP), encapsulation efficiency (EE), mucoadhesion capacity and morphology. Strains of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus casei were treated with LCHNP- EGCG, and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated. LCHNP-EGCG exhibited a size of 217.3 ± 5.1 nm with a low polydispersity index (0.17) and positive zeta potential indicating the presence of chitosan on the lipid nanoparticle surface (+33.7 mV). The LCHNP-EGCG showed a spherical morphology, high stability and a mucoadhesive property due to the presence of chitosan coating. In addition, the EGCG encapsulation efficiency was 96%. A reduction of almost 15-fold in the MIC and MBC against the strains was observed when EGCG was encapsulated in LCHNP, indicating the potential of EGCG encapsulation in lipid-polymer hybrid nanoparticles. Taking the results together, the LCHNP-EGCG could be an interesting system to use in dental care due to their nanometric size, mucoadhesive properties high antibacterial activity against relevant planktonic microorganisms.


Assuntos
Antibacterianos , Catequina , Catequina/análogos & derivados , Quitosana , Testes de Sensibilidade Microbiana , Nanopartículas , Streptococcus mutans , Catequina/farmacologia , Catequina/química , Quitosana/química , Quitosana/farmacologia , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Streptococcus sobrinus/efeitos dos fármacos , Lacticaseibacillus casei/efeitos dos fármacos , Lipídeos/química , Plâncton/efeitos dos fármacos , Cárie Dentária/microbiologia , Cárie Dentária/prevenção & controle , Portadores de Fármacos/química , Tamanho da Partícula , Emulsões , Sonicação
3.
Sci Rep ; 14(1): 10882, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740792

RESUMO

The aim of this study was to evaluate the antimicrobial efficacy of an air gas soft jet CAP for its potential use in removing oral biofilms, given that plasma-based technologies have emerged as promising methods in periodontology. Two types of biofilms were developed, one by Streptococcus mutans UA 159 bacterial strain and the other by a complex mixture of saliva microorganisms isolated from a patient with periodontitis. This latter biofilm was characterized via Next Generation Sequencing to determine the main bacterial phyla. The CAP source was applied at a distance of 6 mm for different time points. A statistically significant reduction of both CFU count and XTT was already detected after 60 s of CAP treatment. CLSM analysis supported CAP effectiveness in killing the microorganisms inside the biofilm and in reducing the thickness of the biofilm matrix. Cytotoxicity tests demonstrated the possible use of CAP without important side effects towards human gingival fibroblasts cell line. The current study showed that CAP treatment was able to significantly reduce preformed biofilms developed by both S. mutans and microorganisms isolated by a saliva sample. Further studies should be conducted on biofilms developed by additional saliva donors to support the potential of this innovative strategy to counteract oral pathogens responsible for periodontal diseases.


Assuntos
Biofilmes , Gases em Plasma , Saliva , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Gases em Plasma/farmacologia , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia , Saliva/microbiologia , Fibroblastos/microbiologia , Fibroblastos/efeitos dos fármacos , Periodontite/microbiologia , Periodontite/terapia , Linhagem Celular , Boca/microbiologia
4.
Acta Odontol Scand ; 83: 327-333, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801222

RESUMO

OBJECTIVE: Toothpastes are widely used to protect oral and teeth health. This study aims to examine the cytotoxic and antimicrobial effects of whitening toothpastes. METHODS: In this study, extracts were prepared according to ISO 10993-12:2021 standard (0.2 g/mL) using whitening and conventional toothpastes. The prepared extracts were added to human gingival fibroblast cell lines (HGF-1) in different dilutions (1:1, 1:2, 1:4, 1:8, 1:16, and 1:32) and a cytotoxicity test was performed. Antimicrobial analysis of toothpastes was performed on Streptococcus mutans, Staphylococcus aureus, and Candida albicans using the hole-plate diffusion method. Cell viability and microbial analysis data were examined using two-way analysis of variance (ANOVA) and Tukey post-hoc test (p < 0.05). RESULTS: Toothpastes with sodium lauryl sulfate (SLS) in their composition showed statistically more toxic effects (p < 0.05). The activated carbon toothpastes without SLS showed over 90% cell viability after dilution. Although the dilution rate of toothpastes containing SLS increased, cell viability remained below 70%. All toothpastes used in the study showed antimicrobial effects on S. mutans, S. aureus, and C. albicans. Toothpaste containing hydrogen peroxide and SLS produced more antibacterial effects than activated carbon, blue covarine, microparticles, and conventional toothpaste. CONCLUSIONS: SLS-containing toothpastes showed more toxicity on HGF-1 cells. Toothpaste containing hydroxyapatite did not show toxic effects on HGF-1 cells. SLS, sodium lauryl sarcosinate and hydrogen peroxide in toothpastes increase antimicrobial effects.


Assuntos
Anti-Infecciosos , Candida albicans , Staphylococcus aureus , Streptococcus mutans , Cremes Dentais , Cremes Dentais/farmacologia , Humanos , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Técnicas In Vitro , Fibroblastos/efeitos dos fármacos , Clareadores Dentários/toxicidade , Clareadores Dentários/farmacologia
5.
BMC Oral Health ; 24(1): 633, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811903

RESUMO

BACKGROUND: In this study, the antimicrobial activity of three different cleanser tablets on S. mutans and C. albicans adhesion to PMMA, polyamide and 3D printed resin was investigated. METHODS: 40 samples were prepared for PMMA (SR Triplex Hot), polyamide (Deflex) and 3D printed resin (PowerResins Denture) materials and divided into four subgroups for cleansers (Aktident™, Protefix™, Corega™ tablets and distilled water) (n = 5). After the surface preparations were completed, the samples were immersed separately in tubes containing the prepared microorganism suspension and incubated at 37˚C for 24 h. After the incubation, the samples were kept in the cleanser solutions. The samples were then transferred to sterile saline tubes. All the tubes were vortexed and 10 µl was taken from each of them. Sheep blood agar was inoculated for colony counting. The inoculated plates were incubated for 48 h for S. mutans and 24 h for C. albicans. After incubation, colonies observed on all plates were counted. Statistical analyses were done with three-way ANOVA and Tukey's multiple comparison test. RESULTS: Polyamide material registered the highest colony count of S. mutans, whereas PMMA registered the lowest. Significant differences in S. mutans adherence (p = 0.002) were found between the three denture base materials, but no such difference in C. albicans adherence (p = 0.221) was identified between the specimens. All three cleanser tablets eliminated 98% of S. mutans from all the material groups. In all these groups, as well, the antifungal effect of Corega™ on C. albicans was significantly higher than those of the other two cleanser tablets. CONCLUSIONS: According to the study's results, it may be better to pay attention to surface smoothness when using polyamide material to prevent microorganism retention. Cleanser tablets are clinically recommended to help maintain hygiene in removable denture users, especially Corega tablets that are more effective on C. albicans.


Assuntos
Candida albicans , Bases de Dentadura , Higienizadores de Dentadura , Polimetil Metacrilato , Streptococcus mutans , Candida albicans/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Bases de Dentadura/microbiologia , Higienizadores de Dentadura/farmacologia , Polimetil Metacrilato/química , Nylons/farmacologia , Comprimidos , Contagem de Colônia Microbiana , Materiais Dentários/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Teste de Materiais
6.
BMC Microbiol ; 24(1): 151, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702601

RESUMO

BACKGROUND: Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear. OBJECTIVE: This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans. MATERIALS AND METHODS: Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ). RESULTS: Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway. CONCLUSIONS: The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.


Assuntos
Farmacorresistência Bacteriana , Fluoretos , Frutosedifosfatos , Metabolômica , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Metabolômica/métodos , Fluoretos/metabolismo , Fluoretos/farmacologia , Frutosedifosfatos/metabolismo , Humanos , Metaboloma/efeitos dos fármacos , Cárie Dentária/microbiologia , Cromatografia Líquida
7.
PLoS One ; 19(5): e0302717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718045

RESUMO

Bacterial pathogens have remained a major public health concern for several decades. This study investigated the antibacterial activities of Miang extracts (at non-neutral and neutral pH) against Bacillus cereus TISTR 747, Escherichia coli ATCC 22595, Salmonella enterica serovar Typhimurium TISTR 292 and Streptococcus mutans DMST 18777. The potential of Polyvinylpolypyrrolidone (PVPP)-precipitated tannin-free Miang extracts in growth-inhibition of the cariogenic Streptococcus mutans DMST 18777 and its biofilms was also evaluated. The tannin-rich fermented extracts had the best bacterial growth inhibition against S. mutans DMST 18777 with an MIC of 0.29 and 0.72 mg/mL for nonfilamentous fungi (NFP) Miang and filamentous-fungi-processed (FFP) Miang respectively. This observed anti-streptococcal activity still remained after PVPP-mediated precipitation of bioactive tannins especially, in NFP and FFP Miang. Characterization of the PVPP-treated extracts using High performance liquid chromatography quadrupole-time of flight-mass spectrometry (HPLC-QToF-MS) analysis, also offered an insight into probable compound classes responsible for the activities. In addition, Crystal violet-staining also showed better IC50 values for NFP Miang (4.30 ± 0.66 mg/mL) and FFP Miang (12.73 ± 0.11 mg/mL) against S. mutans DMST 18777 biofilms in vitro. Homology modeling and molecular docking analysis using HPLC-MS identified ligands in tannin-free Miang supernatants, was performed against modelled S. mutans DMST 18777 sortase A enzyme. The in silico analysis suggested that the inhibition by NFP and FFP Miang might be attributed to the presence of ellagic acid, flavonoid aglycones, and glycosides. Thus, these Miang extracts could be optimized and explored as natural active pharmaceutical ingredients (NAPIs) for applications in oral hygienic products.


Assuntos
Antibacterianos , Biofilmes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Extratos Vegetais , Streptococcus mutans , Taninos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Taninos/farmacologia , Taninos/química , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas de Bactérias/metabolismo
8.
J Appl Oral Sci ; 32: e20230397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38695444

RESUMO

Specific products containing natural resources can contribute to the innovation of complete denture hygiene. OBJECTIVE: To conduct an in vitro evaluation of experimental dentifrices containing essential oils of Bowdichia virgilioides Kunth (BvK), Copaifera officinalis (Co), Eucalyptus citriodora (Ec), Melaleuca alternifolia (Ma) and Pinus strobus (Ps) at 1%. METHODOLOGY: The variables evaluated were organoleptic and physicochemical characteristics, abrasiveness (mechanical brushing machine) simulating 2.5 years, and microbial load (Colony Forming Units - CFU/mL), metabolic activity (XTT assay) and cell viability (Live/Dead® BacLight™ kit) of the multispecies biofilm (Streptococcus mutans: Sm, Staphylococcus aureus: Sa, Candida albicans: Ca and Candida glabrata: Cg). Specimens of heat-polymerized acrylic resins (n=256) (n=96 specimens for abrasiveness, n=72 for microbial load count, n=72 for biofilm metabolic activity, n=16 for cell viability and total biofilm quantification) with formed biofilm were divided into eight groups for manual brushing (20 seconds) with a dental brush and distilled water (NC: negative control), Trihydral (PC: positive control), placebo (Pl), BvK, Co, Ec, Ma or Ps. After brushing, the specimens were washed with PBS and immersed in Letheen Broth medium, and the suspension was sown in solid specific medium. The organoleptic characteristics were presented by descriptive analysis. The values of density, pH, consistency and viscosity were presented in a table. The data were analyzed with the Wald test in a generalized linear model, followed by the Kruskal-Wallis test, Dunn's test (mass change) and the Bonferroni test (UFC and XTT). The Wald test in Generalized Estimating Equations and the Bonferroni test were used to analyze cell viability. RESULTS: All dentifrices showed stable organoleptic characteristics and adequate physicochemical properties. CN, Ec, Ps, Pl and PC showed low abrasiveness. There was a significant difference between the groups (p<0.001) for microbial load, metabolic activity and biofilm viability. CONCLUSIONS: It was concluded that the BvK, Ec and Ps dentifrices are useful for cleaning complete dentures, as they have antimicrobial activity against biofilm. The dentifrices containing Bowdichia virgilioides Kunth showed medium abrasiveness and should be used with caution.


Assuntos
Biofilmes , Dentifrícios , Prótese Total , Teste de Materiais , Óleos Voláteis , Biofilmes/efeitos dos fármacos , Dentifrícios/farmacologia , Dentifrícios/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Prótese Total/microbiologia , Fatores de Tempo , Reprodutibilidade dos Testes , Escovação Dentária , Contagem de Colônia Microbiana , Staphylococcus aureus/efeitos dos fármacos , Estatísticas não Paramétricas , Streptococcus mutans/efeitos dos fármacos , Análise de Variância , Viabilidade Microbiana/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Valores de Referência , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia
9.
World J Microbiol Biotechnol ; 40(7): 201, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736020

RESUMO

Cariogenic biofilms have a matrix rich in exopolysaccharides (EPS), mutans and dextrans, that contribute to caries development. Although several physical and chemical treatments can be employed to remove oral biofilms, those are only partly efficient and use of biofilm-degrading enzymes represents an exciting opportunity to improve the performance of oral hygiene products. In the present study, a member of a glycosyl hydrolase family 66 from Flavobacterium johnsoniae (FjGH66) was heterologously expressed and biochemically characterized. The recombinant FjGH66 showed a hydrolytic activity against an early EPS-containing S. mutans biofilm, and, when associated with a α-(1,3)-glucosyl hydrolase (mutanase) from GH87 family, displayed outstanding performance, removing more than 80% of the plate-adhered biofilm. The mixture containing FjGH66 and Prevotella melaninogenica GH87 α-1,3-mutanase was added to a commercial mouthwash liquid to synergistically remove the biofilm. Dental floss and polyethylene disks coated with biofilm-degrading enzymes also degraded plate-adhered biofilm with a high efficiency. The results presented in this study might be valuable for future development of novel oral hygiene products.


Assuntos
Biofilmes , Dextranase , Flavobacterium , Glicosídeo Hidrolases , Streptococcus mutans , Biofilmes/crescimento & desenvolvimento , Dextranase/metabolismo , Dextranase/genética , Flavobacterium/enzimologia , Flavobacterium/genética , Streptococcus mutans/enzimologia , Streptococcus mutans/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Hidrólise , Biotecnologia/métodos
10.
Clin Oral Investig ; 28(6): 324, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761225

RESUMO

OBJECTIVES: To assess the growth of a multispecies biofilm on root canal dentin under different radiotherapy regimens. MATERIALS AND METHODS: Sixty-three human root dentin cylinders were distributed into six groups. In three groups, no biofilm was formed (n = 3): NoRT) non-irradiated dentin; RT55) 55 Gy; and RT70) 70 Gy. In the other three groups (n = 18), a 21-day multispecies biofilm (Enterococcus faecalis, Streptococcus mutans, and Candida albicans) was formed in the canal: NoRT + Bio) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. The biofilm was quantified (CFUs/mL). Biofilm microstructure was assessed under SEM. Microbial penetration into dentinal tubules was assessed under CLSM. For the biofilm biomass and dentin microhardness pre- and after biofilm growth assessments, 45 bovine dentin specimens were distributed into three groups (n = 15): NoRT) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. RESULTS: Irradiated specimens (70 Gy) had higher quantity of microorganisms than non-irradiated (p = .010). There was gradual increase in biofilm biomass from non-irradiated to 55 Gy and 70 Gy (p < .001). Irradiated specimens had greater reduction in microhardness after biofilm growth. Irradiated dentin led to the growth of a more complex and irregular biofilm. There was microbial penetration into the dentinal tubules, regardless of the radiation regimen. CONCLUSION: Radiotherapy increased the number of microorganisms and biofilm biomass and reduced dentin microhardness. Microbial penetration into dentinal tubules was noticeable. CLINICAL RELEVANCE: Cumulative and potentially irreversible side effects of radiotherapy affect biofilm growth on root dentin. These changes could compromise the success of endodontic treatment in oncological patients undergoing head and neck radiotherapy.


Assuntos
Biofilmes , Candida albicans , Cavidade Pulpar , Dentina , Enterococcus faecalis , Streptococcus mutans , Biofilmes/efeitos da radiação , Dentina/microbiologia , Dentina/efeitos da radiação , Humanos , Cavidade Pulpar/microbiologia , Cavidade Pulpar/efeitos da radiação , Candida albicans/efeitos da radiação , Animais , Enterococcus faecalis/efeitos da radiação , Streptococcus mutans/efeitos da radiação , Bovinos , Microscopia Eletrônica de Varredura , Dureza , Microscopia Confocal , Dosagem Radioterapêutica
11.
J Microbiol Methods ; 221: 106942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704038

RESUMO

Methylation analysis was performed on methylated alditol acetate standards and Streptococcus mutans extracellular polymeric substances (EPS) produced from wild-type and Gtf knockout strains (∆GtfB, ∆GtfB, and ∆GtfD). The methylated alditol acetate standards were representative of glycosidic linkages found in S. mutans EPS and were used to calibrate the GC-MS system for an FID detector and MS (TIC) and produce molar response factor, a necessary step in quantitative analysis. FID response factors were consistent with literature values (Sweet et al., 1975) and found to be the superior option for quantitative results, although the TIC response factors now give researchers without access to an FID detector a needed option for molar response factor correction. The GC-MS analysis is then used to deliver the ratio of the linkage types within a biofilm.


Assuntos
Biofilmes , Cromatografia Gasosa-Espectrometria de Massas , Polissacarídeos Bacterianos , Streptococcus mutans , Biofilmes/crescimento & desenvolvimento , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polissacarídeos Bacterianos/metabolismo , Glicosídeos/metabolismo , Metilação , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Polissacarídeos/metabolismo
12.
Clin Oral Investig ; 28(6): 323, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761310

RESUMO

OBJECTIVES: White spot lesions are the most common iatrogenic effect observed during orthodontic treatment. This study aimed to compare the surface characteristics and antibacterial action of uncoated and coated orthodontic brackets. MATERIALS AND METHODS: Sixty commercially available stainless steel brackets were coated with TiO2 nanotubes and methacryloyloxyethylphosphorylcholine. The sample was divided into Group 1: uncoated orthodontic brackets, Group 2: Stainless steel brackets with TiO2 nanotubes coating, Group 3: Stainless steel brackets with methacryloyloxyethylphosphorylcholine coating, and Group 4: Stainless steel brackets with TiO2 nanotubes combined with methacryloyloxyethylphosphorylcholine coating. Surface characterization was assessed using atomic force microscopy and scanning electron microscopy. Streptococcus mutans was selected to test the antibacterial ability of the orthodontic brackets, total bacterial adhesion and bacterial viability were assessed. The brackets were subjected to scanning electron microscopy to detect the presence of biofilm. RESULTS: The surface roughness was the greatest in Group 1 and least in Group 2 followed by Group 4 and Group 3 coated brackets. The optical density values were highest in Group 1 and lowest in Group 4. Comparison of colony counts revealed high counts in Group 1 and low counts in Group 4. A positive correlation between surface roughness and colony counts was obtained, however, was not statistically significant. CONCLUSIONS: The coated orthodontic brackets exhibited less surface roughness than the uncoated orthodontic brackets. Group 4 coated orthodontic brackets showed the best antibacterial properties. CLINICAL RELEVANCE: Coated orthodontic brackets prevent adhesion of streptococcus mutans and reduces plaque accumulation around the brackets thereby preventing formation of white spot lesions during orthodontic treatment.


Assuntos
Antibacterianos , Aderência Bacteriana , Microscopia Eletrônica de Varredura , Nanotubos , Braquetes Ortodônticos , Fosforilcolina , Streptococcus mutans , Propriedades de Superfície , Titânio , Titânio/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Fosforilcolina/química , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Nanotubos/química , Aderência Bacteriana/efeitos dos fármacos , Microscopia de Força Atômica , Teste de Materiais , Aço Inoxidável/química , Metacrilatos/farmacologia , Metacrilatos/química , Biofilmes/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
13.
Hum Vaccin Immunother ; 20(1): 2345943, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38757492

RESUMO

Dental caries is a prevalent oral disease that mainly results from Streptococcus mutans. Susceptibility to S. mutans decreased rapidly after weaning in a well-known rat model. However, owing to the lack of time to establish protective immunity ahead of challenge, the weaning rat model is suboptimal for assessing prophylactic vaccines against S. mutans infection. In this study, we found that, in adult rats, S. mutans cultured under air-restricted conditions showed dramatically increased colonization efficacy and accelerated development of dental caries compared with those cultured under air-unrestricted conditions. We propose that S. mutans cultured under air-restricted conditions can be used to develop an optimal caries model, especially for the evaluation of prophylactic efficacy against S. mutans. Therefore, we used the anti-caries vaccine, KFD2-rPAc, to reevaluate the protection against the challenge of S. mutans. In immunized rats, rPAc-specific protective antibodies were robustly elicited by KFD2-rPAc before the challenge. In addition to inhibiting the initial and long-term colonization of S. mutans in vivo, KFD2-rPAc immunization showed an 83% inhibitory efficacy against the development of caries, similar to that previously evaluated in a weaning rat model. These results demonstrate that culturing under air-restricted conditions can promote S. mutans infection in adult rats, thereby helping establish a rat infection model to evaluate the prophylactic efficacy of vaccines and anti-caries drugs.


Assuntos
Anticorpos Antibacterianos , Cárie Dentária , Modelos Animais de Doenças , Streptococcus mutans , Animais , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Cárie Dentária/imunologia , Streptococcus mutans/imunologia , Ratos , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Feminino , Ratos Sprague-Dawley
14.
BMC Oral Health ; 24(1): 525, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702623

RESUMO

OBJECTIVE: To evaluate the antibacterial effectiveness of a combination of ε-poly-L-lysine (ε-PL), funme peptide (FP) as well as domiphen against oral pathogens, and assess the efficacy of a BOP® mouthwash supplemented with this combination in reducing halitosis and supragingival plaque in a clinical trial. MATERIALS AND METHODS: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the compound against Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Aggregatibacter actinomycetemcomitans were determined by the gradient dilution method. Subsequently, the CCK-8 assay was used to detect the toxicity of mouthwash on human gingival fibroblastst, and the effectiveness in reducing halitosis and supragingival plaque of the mouthwash supplemented with the combination was analyzed by a randomized, double-blind, parallel-controlled clinical trial. RESULTS: The combination exhibited significant inhibitory effects on tested oral pathogens with the MIC < 1.56% (v/v) and the MBC < 3.13% (v/v), and the mouthwash containing this combination did not inhibit the viability of human gingival fibroblasts at the test concentrations. The clinical trial showed that the test group displayed notably lower volatile sulfur compounds (VSCs) at 0, 10, 24 h, and 7 d post-mouthwash (P < 0.05), compared with the baseline. After 7 days, the VSC levels of the and control groups were reduced by 50.27% and 32.12%, respectively, and notably cutting severe halitosis by 57.03% in the test group. Additionally, the Plaque Index (PLI) of the test and control group decreased by 54.55% and 8.38%, respectively, and there was a significant difference in PLI between the two groups after 7 days (P < 0.01). CONCLUSIONS: The combination of ε-PL, FP and domiphen demonstrated potent inhibitory and bactericidal effects against the tested oral pathogens, and the newly formulated mouthwash added with the combination exhibited anti-dental plaque and anti-halitosis properties in a clinical trial and was safe. TRIAL REGISTRATION: The randomized controlled clinical trial was registered on Chinese Clinical Trial Registry (No. ChiCTR2300073816, Date: 21/07/2023).


Assuntos
Placa Dentária , Halitose , Antissépticos Bucais , Polilisina , Humanos , Halitose/prevenção & controle , Halitose/tratamento farmacológico , Halitose/microbiologia , Antissépticos Bucais/uso terapêutico , Placa Dentária/microbiologia , Placa Dentária/prevenção & controle , Método Duplo-Cego , Masculino , Feminino , Polilisina/uso terapêutico , Adulto , Testes de Sensibilidade Microbiana , Adulto Jovem , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Peptídeos/uso terapêutico , Peptídeos/farmacologia , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos
15.
Int J Biol Macromol ; 269(Pt 1): 131974, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692546

RESUMO

Dental implant success is threatened by peri-implantitis, an inflammation leading to implant failure. Conventional treatments struggle with the intricate microbial and host factors involved. Antibacterial membranes, acting as barriers and delivering antimicrobials, may offer a promising solution. Thus, this study highlights the potential of developing antibacterial membranes of poly-3-hydroxybutyrate and silver nanoparticles (Ag Nps) to address peri-implantitis challenges, discussing design and efficacy against potential pathogens. Electrospun membranes composed of PHB microfibers and Ag Nps were synthesized in a blend of DMF/chloroform at three different concentrations. Various studies were conducted on the characterization and antimicrobial activity of the membranes. The synthesized Ag Nps ranged from 4 to 8 nm in size. Furthermore, Young's modulus decreased, reducing from 13.308 MPa in PHB membranes without Ag Nps to 0.983 MPa in PHB membranes containing higher concentrations of Ag Nps. This demonstrates that adding Ag Nps results in a less stiff membrane. An increase in elongation at break was noted with the rise in Ag Nps concentration, from 23.597 % in PHB membranes to 60.136 % in PHB membranes loaded with Ag Nps. The antibiotic and antibiofilm activity of the membranes were evaluated against Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus mutans, and Candida albicans. The results indicated that all PHB membranes containing Ag Nps exhibited potent antibacterial activity by inhibiting the growth of biofilms and planktonic bacteria. However, inhibition of C. albicans occurred only with the PHB-Ag Nps C membrane. These findings emphasize the versatility and potential of Ag Nps-incorporated membranes as a multifunctional approach for preventing and addressing microbial infections associated with peri-implantitis. The combination of antibacterial and antibiofilm properties in these membranes holds promise for improving the management and treatment of peri-implantitis-related complications.


Assuntos
Antibacterianos , Biofilmes , Hidroxibutiratos , Membranas Artificiais , Nanopartículas Metálicas , Peri-Implantite , Prata , Prata/química , Prata/farmacologia , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Peri-Implantite/tratamento farmacológico , Peri-Implantite/microbiologia , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , Poliésteres/química , Testes de Sensibilidade Microbiana , Humanos , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Poli-Hidroxibutiratos
16.
ACS Nano ; 18(21): 13528-13537, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747549

RESUMO

Dental caries is a widespread oral disease that poses a significant medical challenge. Traditional caries prevention methods, primarily the application of fluoride, often fall short in effectively destroying biofilms and preventing enamel demineralization, thereby providing limited efficacy in halting the progression of caries over time. To address this issue, we have developed a green and cost-effective synergistic strategy for the prevention of dental caries. By combining natural sodium phytate and chitosan, we have created chitosan-sodium phytate nanoparticles that offer both the antimicrobial properties of chitosan and the enamel demineralization-inhibiting capabilities of sodium phytate. In an ex vivo biofilm model of human teeth, we found that these nanoparticles effectively prevent biofilm buildup and acid damage to the mineralized tissue. Additionally, topical treatment of dental caries in rodent models has shown that these nanoparticles effectively suppress disease progression without negatively impacting oral microbiota diversity or causing harm to the gingival-mucosal tissues, unlike traditional prevention methods.


Assuntos
Biofilmes , Quitosana , Cárie Dentária , Nanopartículas , Ácido Fítico , Cárie Dentária/prevenção & controle , Quitosana/química , Quitosana/farmacologia , Humanos , Nanopartículas/química , Ácido Fítico/química , Ácido Fítico/farmacologia , Ácido Fítico/administração & dosagem , Animais , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Camundongos
17.
Carbohydr Polym ; 337: 122164, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710558

RESUMO

Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.


Assuntos
Glucanos , Glicosiltransferases , Água , Glucanos/química , Água/química , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Streptococcus/enzimologia , Solubilidade , Streptococcus mutans/enzimologia
18.
Bioorg Med Chem Lett ; 105: 129737, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38599297

RESUMO

A new monoterpenoid, neoroseoside (1), along with two previously reported compounds, 2″-O-α-l-rhamnosyl-6-C-fucosylluteolin (2) and farobin A (3) were isolated from the Zea mays. The structure of compound 1 was determined through the analysis spectroscopic data, including mass spectrometry (MS), infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR) data. The absolute configurations of 1 were deduced from the comparing the values of optical rotations and from the interpretation of electronic circular dichroism (ECD) spectra. Compounds 2 and 3 displayed moderate antibacterial activity against Streptococcus mutans ATCC 25175 (inhibition rates 24 % and 28 %, respectively) and Streptococcus sobrinus ATCC 33478 (inhibition rate of 26 %), at a concentration of 100 µg/mL, whereas compound 1 did not have any significant antibacterial activities. The compounds 1-3 also showed anti-inflammatory activity on cytokine IL-6 and TNF-α.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Monoterpenos , Zea mays , Zea mays/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Monoterpenos/farmacologia , Monoterpenos/química , Monoterpenos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Estrutura-Atividade , Estrutura Molecular , Streptococcus mutans/efeitos dos fármacos , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Descoberta de Drogas , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Relação Dose-Resposta a Droga , Streptococcus/efeitos dos fármacos
20.
Arch Oral Biol ; 163: 105976, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640776

RESUMO

OBJECTIVE: The present study investigated the effects of 4-hydroxy-3-methoxybenzaldehyde (4-H-3-MB) against Streptococcus mutans (S. mutans) using an in vitro cariogenic biofilm model. DESIGN: The antimicrobial susceptibility of biofilm-forming S. mutans was evaluated by disc diffusion method. In vitro investigations were performed using crystal violet staining assay (biofilm assay), exopolysaccharide (EPS) assay, acid production, growth curve analysis, optical microscopic, and FE-SEM analyses to determine the antibiofilm activity of 4-H-3-MB. RESULTS: S. mutans (SDC-05) was resistant to ampicillin, piperacillin/tazobactam and ceftriaxone, whereas the other strains of S. mutans (SDC-01, 02, 03 and SDC-04) were sensitive to all the antibiotics tested. 4-H-3-MB showed promising antibiofilm activity on S. mutans UA159 (79.81 %, 67.76 % and 56.31 %) and S. mutans SDC-05 (77.00 %, 59.48 % and 48.22 %) at the lowest concentration of 0.2, 0.1, 0.05 mg/ml. 4-H-3-MB did not inhibit bacterial growth even at concentrations 0.2 mg/ml. Similarly, 4-H-3-MB led to significant attrition in exopolysaccharide (EPS) and acid production by S. mutans UA159 and S. mutans (SDC-05) at the concentration of 0.2, 0.1 mg/ml, respectively. Optical microscopy and FE-SEM analysis 4-H-3-MB reduced the biofilm thickness of S. mutans UA159 and S. mutans SDC-05 relative to the untreated specimens. CONCLUSION: 4-H-3-MB significantly inhibited biofilm formation by S. mutans in a dose-dependent manner. Hence, our findings indicate that the active principle of 4-H-3-MB could be used as a biofilm inhibiting agent against S. mutans.


Assuntos
Antibacterianos , Benzaldeídos , Biofilmes , Testes de Sensibilidade Microbiana , Percepção de Quorum , Streptococcus mutans , Fatores de Virulência , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Benzaldeídos/farmacologia , Antibacterianos/farmacologia , Polissacarídeos Bacterianos/farmacologia , Microscopia Eletrônica de Varredura , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA