RESUMO
Chemical compounds that affect microbial interactions have attracted wide interest. In this study, Streptomyces griseus showed enhanced growth when cocultured with the rice blast fungus Pyricularia oryzae on potato dextrose agar (PDA) medium. An improvement in S. griseus growth was observed before contact with P. oryzae, and no growth-promoting effect was observed when the growth medium between the two microorganisms was separated. These results suggested that the chemicals produced by P. oryzae diffused through the medium and were not volatile. A PDA plate supplemented with phenol red showed that the pH of the area surrounding P. oryzae increased. The area with increased pH promoted S. griseus growth, suggesting that the alkaline compounds produced by P. oryzae were involved in this growth stimulation. In contrast, coculture with the soilborne plant pathogen Fusarium oxysporum and entomopathogenic fungus Cordyceps tenuipes did not promote S. griseus growth. Furthermore, DL-α-Difluoromethylornithine, a polyamine biosynthesis inhibitor, prevented the increase in pH and growth promotion of S. griseus by P. oryzae. These results indicated that P. oryzae increased pH by producing a polyamine.
Assuntos
Meios de Cultura , Fusarium , Streptomyces griseus , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/metabolismo , Concentração de Íons de Hidrogênio , Meios de Cultura/química , Meios de Cultura/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Interações Microbianas , Técnicas de Cocultura , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Planococáceas/crescimento & desenvolvimento , Planococáceas/metabolismo , Planococáceas/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , AscomicetosRESUMO
Phenazines are aromatic compounds with antifungal and cytotoxic activities. Phenazines incorporating phenazine 1-carboxylic acid have widespread applications in agriculture, medicine, and industry. Griseoluteic acid is a cytotoxic compound secreted by Streptomyces griseoluteus P510, displaying potential medical applications. However, the biosynthetic pathway of griseoluteic acid has not been elucidated, limiting its development and application. In this study, a conserved phenazine biosynthetic gene cluster of S. griseoluteus P510 was identified through genomic analysis. Subsequently, its was confirmed that the four essential modification enzymes SgpH, SgpI, SgpK, and SgpL convert phenazine-1,6-dicarboxylic acid into griseoluteic acid by heterologous expression in Escherichia coli. Moreover, the biosynthetic pathway of griseoluteic acid was established in Pseudomonas chlororaphis characterized by a high growth rate and synthesis efficiency of phenazines, laying the foundation for the efficient production of griseoluteic acid.
Assuntos
Fenazinas , Fenazinas/metabolismo , Fenazinas/química , Estrutura Molecular , Família Multigênica , Vias Biossintéticas , Streptomyces/metabolismo , Streptomyces/genética , Streptomyces griseus/metabolismo , Pseudomonas chlororaphis/metabolismo , Escherichia coli/metabolismoRESUMO
Some of the most metabolically diverse species of bacteria (e.g., Actinobacteria) have higher GC content in their DNA, differ substantially in codon usage, and have distinct protein folding environments compared to tractable expression hosts like Escherichia coli. Consequentially, expressing biosynthetic gene clusters (BGCs) from these bacteria in E. coli often results in a myriad of unpredictable issues with regard to protein expression and folding, delaying the biochemical characterization of new natural products. Current strategies to achieve soluble, active expression of these enzymes in tractable hosts can be a lengthy trial-and-error process. Cell-free expression (CFE) has emerged as a valuable expression platform as a testbed for rapid prototyping expression parameters. Here, we use a type III polyketide synthase from Streptomyces griseus, RppA, which catalyzes the formation of the red pigment flaviolin, as a reporter to investigate BGC refactoring techniques. We applied a library of constructs with different combinations of promoters and rppA coding sequences to investigate the synergies between promoter and codon usage. Subsequently, we assess the utility of cell-free systems for prototyping these refactoring tactics prior to their implementation in cells. Overall, codon harmonization improves natural product synthesis more than traditional codon optimization across cell-free and cellular environments. More importantly, the choice of coding sequences and promoters impact protein expression synergistically, which should be considered for future efforts to use CFE for high-yield protein expression. The promoter strategy when applied to RppA was not completely correlated with that observed with GFP, indicating that different promoter strategies should be applied for different proteins. In vivo experiments suggest that there is correlation, but not complete alignment between expressing in cell free and in vivo. Refactoring promoters and/or coding sequences via CFE can be a valuable strategy to rapidly screen for catalytically functional production of enzymes from BCGs, which advances CFE as a tool for natural product research.
Assuntos
Sistema Livre de Células , Regiões Promotoras Genéticas , Streptomyces griseus/enzimologia , Streptomyces griseus/genética , Streptomyces griseus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Família Multigênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Códon/genética , AciltransferasesRESUMO
Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.
Assuntos
Antibiose , Proteínas de Bactérias , Toxinas Bacterianas , Streptomyces , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Microscopia Crioeletrônica , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efeitos dos fármacos , Streptomyces griseus/genética , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/metabolismoRESUMO
Tetrapetalones make up a unique class of pentaketide ansamycins that feature a tetracyclic skeleton and exhibit potent inhibitory activities against soybean lipoxygenase. However, a detailed biosynthetic route to tetrapetalones has not been published. Herein we report the activation of the tetrapetalones' biosynthetic gene cluster (tpt) in Streptomyces sp. S10 by promoter engineering along with constitutive expression of pathway-specific regulator genes, leading to the discovery of seven new derivatives, tetrapetalones E-K (2-8), and the known tetrapetalone A (1). In vivo gene deletion experiments and heterologous expression of the minimized tpt cluster in Streptomyces albus J1074 suggest that the tetracyclic system of tetrapetalones is probably formed spontaneously, and the regioselective glycosylation of tetrapetalones at the C-9 hydroxy group with d-rhamnose or d-rhodinose was catalyzed by the glycosyltransferase Tpt14.
Assuntos
Streptomyces griseus , Streptomyces griseus/genética , Família Multigênica , Glicosilação , Glycine maxRESUMO
Amino acid-based surfactants are valuable compounds for cosmetic formulations. The chemical synthesis of acyl amino acids is conventionally performed by the Schotten-Baumann reaction using fatty acyl chlorides, but aminoacylases have also been investigated for use in biocatalytic synthesis with free fatty acids. Aminoacylases and their properties are diverse; they belong to different peptidase families and show differences in substrate specificity and biocatalytic potential. Bacterial aminoacylases capable of synthesis have been isolated from Burkholderia, Mycolicibacterium, and Streptomyces. Although several proteases and peptidases from S. griseus have been described, no aminoacylases from this species have been identified yet. In this study, we investigated two novel enzymes produced by S. griseus DSM 40236T . We identified and cloned the respective genes and recombinantly expressed an α-aminoacylase (EC3.5.1.14), designated SgAA, and an ε-lysine acylase (EC3.5.1.17), designated SgELA, in S. lividans TK23. The purified aminoacylase SgAA was biochemically characterized, focusing on its hydrolytic activity to determine temperature- and pH optima and stabilities. The aminoacylase could hydrolyze various acetyl amino acids at the Nα -position with a broad specificity regarding the sidechain. Substrates with longer acyl chains, like lauroyl amino acids, were hydrolyzed to a lesser extent. Purified aminoacylase SgELA specific for the hydrolysis of Nε -acetyl-l-lysine was unstable and lost its enzymatic activity upon storage for a longer period but could initially be characterized. The pH optimum of SgELA was pH 8.0. While synthesis of acyl amino acids was not observed with SgELA, SgAA catalyzed the synthesis of lauroyl-methionine.
Assuntos
Streptomyces griseus , Streptomyces , Humanos , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Streptomyces griseus/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Aminoácidos/química , LisinaRESUMO
Staurosporine is the most well-known member of the indolocarbazole alkaloid family; it can induce apoptosis of many types of cells as a strong protein kinase inhibitor, and is used as an important lead compound for the synthesis of the antitumor drugs. However, the low fermentation level of the native producer remains the bottleneck of staurosporine production. Herein, integration of multi-copy biosynthetic gene cluster (BGC) in well characterized heterologous host and optimization of the fermentation process were performed to enable high-level production of staurosporine. First, the 22.5 kb staurosporine BGC was captured by CRISPR/Cas9-mediated TAR (transformation-associated recombination) from the native producer (145 mg/L), and then introduced into three heterologous hosts Streptomyces avermitilis (ATCC 31267), Streptomyces lividans TK24 and Streptomyces albus J1074 to evaluate the staurosporine production capacity. The highest yield was achieved in S. albus J1074 (750 mg/L), which was used for further production improvement. Next, we integrated two additional staurosporine BGCs into the chromosome of strain S-STA via two different attB sites (vwb and TG1), leading to a double increase in the production of staurosporine. And finally, optimization of fermentation process by controlling the pH and glucose feeding could improve the yield of staurosporine to 4568 mg/L, which was approximately 30-fold higher than that of the native producer. This is the highest yield ever reported, paving the way for the industrial production of staurosporine. KEYPOINTS: ⢠Streptomyces albus J1074 was the most suitable heterologous host to express the biosynthetic gene cluster of staurosporine. ⢠Amplification of the biosynthetic gene cluster had obvious effect on improving the production of staurosporine. ⢠The highest yield of staurosporine was achieved to 4568 mg/L by stepwise increase strategy.
Assuntos
Inibidores de Proteínas Quinases , Streptomyces griseus , Estaurosporina , Fermentação , ApoptoseRESUMO
Two novel cinnamoyl-containing nonribosomal peptides (CCNPs) grisgenomycin A and B were identified in Streptomyces griseus NBRC 13350 (CGMCC 4.5718) and ATCC 12475, through genome mining using conserved adjacent LuxR family regulators as probes and activators. Notably, grisgenomycins represent a new group of bicyclic decapeptides featuring an unprecedented C-C bond between the tryptophan carbocycle and the cinnamoyl group. A plausible biosynthetic pathway for grisgenomycins was deduced by a bioinformatics analysis. Grisgenomycins exhibited activity against human coronaviruses at the micromolar level.
Assuntos
Streptomyces griseus , Streptomyces , Humanos , Streptomyces/genética , Streptomyces/metabolismo , Peptídeos/química , Genoma Bacteriano , Vias Biossintéticas/genética , Família MultigênicaRESUMO
Fidaxomicin (Dificid) is a commercial macrolide antibiotic for treating Clostridium difficile infection. Total synthesis of fidaxomicin and its aglycone had been achieved through different synthetic schemes. In this study, an alternative biological route to afford the unique 18-membered macrolactone aglycone of fidaxomicin was developed. The promoter refactored fidaxomicin biosynthetic gene cluster from Dactylosporangium aurantiacum was expressed in the commonly used host Streptomyces albus J1074, thereby delivering five structurally diverse fidaxomicin aglycones with the corresponding titers ranging from 4.9 to 15.0 mg L-1. In general, these results validated a biological strategy to construct and diversify fidaxomicin aglycones on the basis of promoter refactoring and heterologous expression.
Assuntos
Antibacterianos , Streptomyces griseus , Fidaxomicina , Macrolídeos/metabolismo , Streptomyces griseus/genética , Família Multigênica , AminoglicosídeosRESUMO
Neogrisemycin (1) was isolated from recombinant Streptomyces albus J1074 strain SB4061 expressing an engineered thioangucycline (TAC) biosynthetic gene cluster (BGC). The structure and absolute configuration of 1 were established by a combination of mass spectrometry, nuclear magnetic resonance, and single-crystal X-ray diffraction analyses. Like the TACs, 1 was also proposed to derive non-enzymatically from the common epoxide (8), the nascent product encoded by the tac BGC, mediated by endogenous hydrogen trisulfide.
Assuntos
Streptomyces griseus , Streptomyces , Streptomyces/genética , Família Multigênica , Espectroscopia de Ressonância MagnéticaRESUMO
BACKGROUND: Spinosad is a macrolide insecticide with the tetracyclic lactone backbone to which forosamine and tri-O-methylrhamnose are attached. Both the sugar moieties are essential for its insecticidal activity. In biosynthesis of spinosad, the amino group of forosamine is dimethylated by SpnS and then transferred onto the lactone backbone by SpnP. Because the spinosad native producer is difficult to genetically manipulate, we previously changed promoters, ribosome binding sites and start codons of 23 spinosad biosynthetic genes to construct an artificial gene cluster which resulted in a 328-fold yield improvement in the heterologous host Streptomyces albus J1074 compared with the native gene cluster. However, in fermentation of J1074 with the artificial gene cluster, the N-monodesmethyl spinosad with lower insecticidal activity was always produced with the same titer as spinosad. RESULTS: By tuning expression of SpnS with an inducible promotor, we found that the undesired less active byproduct N-monodesmethyl spinosad was produced when SpnS was expressed at low level. Although N-monodesmethyl spinosad can be almost fully eliminated with high SpnS expression level, the titer of desired product spinosad was only increased by less than 38%. When the forosaminyl transferase SpnP was further overexpressed together with SpnS, the titer of spinosad was improved by 5.3 folds and the content of N-desmethyl derivatives was decreased by ~ 90%. CONCLUSION: N-monodesmethyl spinosad was produced due to unbalanced expression of spnS and upstream biosynthetic genes in the refactored artificial gene cluster. The accumulated N-desmethyl forosamine was transferred onto the lactone backbone by SpnP. This study suggested that balanced expression of biosynthetic genes should be considered in the refactoring strategy to avoid accumulation of undesired intermediates or analogues which may affect optimal production of desired compounds.
Assuntos
Streptomyces griseus , Transferases , Transferases/genética , Metiltransferases/genética , Streptomyces griseus/metabolismo , Macrolídeos/metabolismo , Família MultigênicaRESUMO
Changes in mass and viscoelasticity of chitin layers in fungal cell walls during chitinase attack are vital for understanding bacterial invasion of and human defense against fungi. In this work, regenerated chitin (RChitin) thin films mimicked the fungal chitin layers and facilitated studies of degradation by family 18 chitinases from Trichoderma viride (T. viride) and family 19 chitinases from Streptomyces griseus (S. griseus) that possessed chitin-binding domains (CBDs) that were absent in the family 18 chitinases. Degradation was monitored via a quartz crystal microbalance with dissipation monitoring (QCM-D) in real time at various pH and temperatures. Compared to substrates of colloidal chitin or dissolved chitin derivatives and analogues, the degradation of RChitin films was deeply affected by chitinase adsorption. While the family 18 chitinases had greater solution activity on chitin oligosaccharides, the family 19 chitinases exhibited greater surface activity on RChitin films, illustrating the importance of CBDs for insoluble substrates.
Assuntos
Quitina , Quitinases , Streptomyces griseus , Humanos , Quitina/química , Quitina/metabolismo , Quitinases/química , Quitinases/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Streptomyces griseus/metabolismoRESUMO
A type II polyketide synthase biosynthetic gene cluster (amd) containing three P450 genes was identified from a soil metagenomic library, and novel benz[h]isoquinoline-desferrioxamine B conjugated compound amodesmycins were isolated from Streptomyces albus J1074 harboring the amd gene cluster. Genetic evidence showed that the benz[h]isoquinoline part and desferrioxamine B part in amodesmycins were derived from the amd gene cluster and S. albus J1074, respectively, while P450 enzymes played critical roles in the conjunction of these two parts.
Assuntos
Policetídeos , Streptomyces griseus , Sideróforos , Desferroxamina , Família MultigênicaRESUMO
Following the discovery of streptomycin from Streptomyces griseus in the 1940s by Selman Waksman and colleagues, aminoglycosides were first used to treat tuberculosis and then numerous derivatives have since been used to combat a wide variety of bacterial infections. These bactericidal antibiotics were used as first-line treatments for several decades but were largely replaced by ß-lactams and fluoroquinolones in the 1980s, although widespread emergence of antibiotic-resistance has led to renewed interest in aminoglycosides. The primary site of action for aminoglycosides is the 30 S ribosomal subunit where they disrupt protein translation, which contributes to widespread cellular damage through a number of secondary effects including rapid uptake of aminoglycosides via elevated proton-motive force (PMF), membrane damage and breakdown, oxidative stress, and hyperpolarisation of the membrane. Several factors associated with aminoglycoside entry have been shown to impact upon bacterial killing, and more recent work has revealed a complex relationship between metabolic states and the efficacy of different aminoglycosides. Hence, it is imperative to consider the environmental conditions and bacterial physiology and how this can impact upon aminoglycoside entry and potency. This mini-review seeks to discuss recent advances in this area and how this might affect the future use of aminoglycosides.
Assuntos
Aminoglicosídeos , Streptomyces griseus , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , BactériasRESUMO
Biofilm formation is a major issue in healthcare settings as 75% of nosocomial infection arises due to biofilm residing bacteria. Exopolysaccharides (EPS), a key component of the biofilm matrix, contribute to the persistence of cells in a complex milieu and defends greatly from exogenous stress and demolition. It has been shown to be vital for biofilm scaffold and pathogenic features. The present study was aimed to investigate the effectiveness of four domain-containing α-amylase from Streptomyces griseus (SGAmy) in disrupting the EPS of multidrug-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In vitro analysis of preformed biofilm unveiled the antibiofilm efficacy of SGAmy against MRSA (85%, p < 0.05) and P. aeruginosa (82%, p < 0.05). The total carbohydrate content in the EPS matrix of MRSA and P. aeruginosa was significantly reduced to 71.75% (p < 0.01) and 74.09% (p < 0.01), respectively. The findings inferred from in vitro analysis were further corroborated through in vivo studies using an experimental model organism, Danio rerio. Remarkably, the survival rate was extended to 88.8% (p < 0.05) and 74.2% (p < 0.05) in MRSA and P. aeruginosa infected fishes, respectively. An examination of gills, kidneys, and intestines of D. rerio organs depicted the reduced level of microbial colonization in SGAmy-treated cohorts and these findings were congruent with bacterial enumeration results.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Streptomyces griseus , Animais , Antibacterianos/farmacologia , Bactérias , Biofilmes , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Peixe-Zebra , alfa-AmilasesRESUMO
The sugars streptose and dihydrohydroxystreptose (DHHS) are unique to the bacteria Streptomyces griseus and Coxiella burnetii, respectively. Streptose forms the central moiety of the antibiotic streptomycin, while DHHS is found in the O-antigen of the zoonotic pathogen C. burnetii. Biosynthesis of these sugars has been proposed to follow a similar path to that of TDP-rhamnose, catalyzed by the enzymes RmlA, RmlB, RmlC, and RmlD, but the exact mechanism is unclear. Streptose and DHHS biosynthesis unusually requires a ring contraction step that could be performed by orthologs of RmlC or RmlD. Genome sequencing of S. griseus and C. burnetii has identified StrM and CBU1838 proteins as RmlC orthologs in these respective species. Here, we demonstrate that both enzymes can perform the RmlC 3'',5'' double epimerization activity necessary to support TDP-rhamnose biosynthesis in vivo. This is consistent with the ring contraction step being performed on a double epimerized substrate. We further demonstrate that proton exchange is faster at the 3''-position than the 5''-position, in contrast to a previously studied ortholog. We additionally solved the crystal structures of CBU1838 and StrM in complex with TDP and show that they form an active site highly similar to those of the previously characterized enzymes RmlC, EvaD, and ChmJ. These results support the hypothesis that streptose and DHHS are biosynthesized using the TDP pathway and that an RmlD paralog most likely performs ring contraction following double epimerization. This work will support the elucidation of the full pathways for biosynthesis of these unique sugars.
Assuntos
Antígenos de Bactérias/biossíntese , Carboidratos Epimerases , Coxiella burnetii/enzimologia , Streptomyces griseus/enzimologia , Carboidratos Epimerases/genética , Açúcares de Nucleosídeo Difosfato/biossíntese , Nucleotídeos de Timina/biossínteseRESUMO
Septacidin is an adenine nucleoside antibiotic with antifungal and antitumor activities. During the efforts to construct a better septacidin producer, we obtained a high yield strain S. albus 1597 by putting the biosynthetic gene cluster (BGC) of septacidin under the control of the constitutive strong promoter ermE*. S. albus 1597 could produce new septacidin congeners SEP-538 and SEP-552 with shorter fatty acyl chains. Moreover, SEP-624 with an unprecedented hydroxylated fatty acyl chain was also isolated from this titre improved strain, enriching the diversity of septacidins. SEP-552 showed moderate inhibitory effects against Epidermophyton floccosum 57312 with MIC value 62.5 µM, while SEP-538 and SEP-624 only exhibited weak antifungal activities. The structure-activity relationship investigation revealed that the antifungal activity of septacidins is significantly influenced by the length of and the decoration on their fatty acyl chains.
Assuntos
Streptomyces/genética , Antibacterianos/biossíntese , Epidermophyton/genética , Família Multigênica/genética , Nucleosídeos de Purina/genética , Streptomyces griseus/genéticaRESUMO
Indolizidine alkaloids, which have versatile bioactivities, are produced by various organisms. Although the biosynthesis of some indolizidine alkaloids has been studied, the enzymatic machinery for their biosynthesis in Streptomyces remains elusive. Here, we report the identification and analysis of the biosynthetic gene cluster for iminimycin, an indolizidine alkaloid with a 6-5-3 tricyclic system containing an iminium cation from Streptomyces griseus. The gene cluster has 22 genes, including four genes encoding polyketide synthases (PKSs), which consist of eight modules in total. Inâ vitro analysis of the first module revealed that its acyltransferase domain selects malonyl-CoA, although predicted to select methylmalonyl-CoA. Inactivation of seven tailoring enzyme-encoding genes and structural elucidation of four compounds accumulated in mutants provided important insights into iminimycin biosynthesis, although some of these compounds appeared to be shunt products. This study expands our knowledge of the biosynthetic machinery of indolizidine alkaloids and the enzymatic chemistry of PKS.
Assuntos
Alcaloides/biossíntese , Família Multigênica , Streptomyces griseus/química , Streptomyces griseus/genética , Alcaloides/química , Indolizidinas/química , Conformação Molecular , Streptomyces griseus/metabolismoRESUMO
BACKGROUND: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate KJ623766, a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. METHODS: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. RESULTS: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as ß- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. CONCLUSIONS: This is the first report about the production of ß- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus.