Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.503
Filtrar
1.
Elife ; 122024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133827

RESUMO

Pavlovian fear conditioning research suggests that the interaction between the dorsal periaqueductal gray (dPAG) and basolateral amygdala (BLA) acts as a prediction error mechanism in the formation of associative fear memories. However, their roles in responding to naturalistic predatory threats, characterized by less explicit cues and the absence of reiterative trial-and-error learning events, remain unexplored. In this study, we conducted single-unit recordings in rats during an 'approach food-avoid predator' task, focusing on the responsiveness of dPAG and BLA neurons to a rapidly approaching robot predator. Optogenetic stimulation of the dPAG triggered fleeing behaviors and increased BLA activity in naive rats. Notably, BLA neurons activated by dPAG stimulation displayed immediate responses to the robot, demonstrating heightened synchronous activity compared to BLA neurons that did not respond to dPAG stimulation. Additionally, the use of anterograde and retrograde tracer injections into the dPAG and BLA, respectively, coupled with c-Fos activation in response to predatory threats, indicates that the midline thalamus may play an intermediary role in innate antipredatory-defensive functioning.


Assuntos
Optogenética , Substância Cinzenta Periaquedutal , Animais , Substância Cinzenta Periaquedutal/fisiologia , Ratos , Masculino , Neurônios/fisiologia , Tonsila do Cerebelo/fisiologia , Comportamento Predatório/fisiologia , Medo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia
2.
Mol Brain ; 17(1): 46, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049098

RESUMO

The ventrolateral periaqueductal gray (vlPAG) serves as a central hub for descending pain modulation. It receives upstream projections from the medial prefrontal cortex (mPFC) and the ventrolateral orbitofrontal cortex (vlOFC), and projects downstream to the locus coeruleus (LC) and the rostroventral medulla (RVM). While much research has focused on upstream circuits and the LC-RVM connection, less is known about the PAG-LC circuit and its involvement in neuropathic pain. Here we examined the intrinsic electrophysiological properties of vlPAG-LC projecting neurons in Sham and spared nerve injury (SNI) operated mice. Injection of the retrotracer Cholera Toxin Subunit B (CTB-488) into the LC allowed the identification of LC-projecting neurons in the vlPAG. Electrophysiological recordings from CTB-488 positive cells revealed that both GABAergic and glutamatergic cells that project to the LC exhibited reduced intrinsic excitability after peripheral nerve injury. By contrast, CTB-488 negative cells did not exhibit alterations in firing properties after SNI surgery. An SNI-induced reduction of LC projecting cells was confirmed with c-fos labeling. Hence, SNI induces plasticity changes in the vlPAG that are consistent with a reduction in the descending modulation of pain signals.


Assuntos
Locus Cerúleo , Camundongos Endogâmicos C57BL , Neurônios , Substância Cinzenta Periaquedutal , Animais , Substância Cinzenta Periaquedutal/fisiopatologia , Substância Cinzenta Periaquedutal/fisiologia , Locus Cerúleo/fisiopatologia , Locus Cerúleo/patologia , Locus Cerúleo/fisiologia , Neurônios/fisiologia , Masculino , Camundongos , Potenciais de Ação/fisiologia , Vias Neurais/fisiopatologia , Neuralgia/fisiopatologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
Curr Biol ; 34(13): R625-R628, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981427

RESUMO

The dorsal periaqueductal gray (dPAG) contains a tonically GABAergic network controlling defensive responses. Determining how this intrinsic dPAG inhibitory circuit functions might provide critical insights into how anti-predatory responses are organized.


Assuntos
Substância Cinzenta Periaquedutal , Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Reação de Fuga/fisiologia
4.
Neuropharmacology ; 258: 110059, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38992791

RESUMO

Stimulation of the dorsal half of the rat periaqueductal gray (DPAG) with 60-Hz pulses of increasing intensity, 30-µA pulses of increasing frequency, or increasing doses of an excitatory amino acid elicits sequential defensive responses of exophthalmia, immobility, trotting, galloping, and jumping. These responses may be controlled by voltage-gated calcium channel-specific firing patterns. Indeed, a previous study showed that microinjection of the DPAG with 15 nmol of verapamil, a putative blocker of L-type calcium channels, attenuated all defensive responses to electrical stimulation at the same site as the injection. Accordingly, here we investigated the effects of microinjection of lower doses (0.7 and 7 nmol) of both verapamil and mibefradil, a preferential blocker of T-type calcium channels, on DPAG-evoked defensive behaviors of the male rat. Behaviors were recorded either 24 h before or 10 min, 24 h, and 48 h after microinjection. Effects were analyzed by both threshold logistic analysis and repeated measures analysis of variance for treatment by session interactions. Data showed that the electrodes were all located within the dorsolateral PAG. Compared to the effects of saline, verapamil significantly attenuated exophthalmia, immobility, and trotting. Mibefradil significantly attenuated exophthalmia and marginally attenuated immobility while facilitating trotting. While galloping was not attenuated by either antagonist, jumping was unexpectedly attenuated by 0.7 nmol verapamil only. These results suggest that T-type calcium channels are involved in the low-threshold freezing responses of exophthalmia and immobility, whereas L-type calcium channels are involved in the trotting response that precedes the full-fledged escape responses of galloping and jumping.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo L , Canais de Cálcio Tipo T , Estimulação Elétrica , Mibefradil , Substância Cinzenta Periaquedutal , Verapamil , Animais , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiologia , Masculino , Canais de Cálcio Tipo T/fisiologia , Canais de Cálcio Tipo T/efeitos dos fármacos , Canais de Cálcio Tipo T/metabolismo , Canais de Cálcio Tipo L/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Mibefradil/farmacologia , Verapamil/farmacologia , Ratos , Ratos Wistar , Microinjeções , Relação Dose-Resposta a Droga
5.
Neuroscience ; 554: 118-127, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39019393

RESUMO

Despite significant advances in the study of fear and fear memory formation, little is known about fear learning and expression in females. This omission has been proven surprising, as normal and pathological behaviors are highly influenced by ovarian hormones, particularly estradiol and progesterone. In the current study, we investigated the joint influence of serotonin (5-HT) neurotransmission and estrous cycle phases (low or high levels of estradiol and progesterone) on the expression of conditioned fear in a group of female rats that were previously divided according to their response to stressful stimuli into low or high anxiety-like subjects. The baseline amplitude of the unconditioned acoustic startle responses was high in high-anxiety female rats, with no effect on the estrous cycle observed. Data collected during the proestrus-estrus phase revealed that low-anxiety rats had startle amplitudes similar to those of high-anxiety rats. It is supposed that high-anxiety female rats benefit from increased estradiol and progesterone levels to achieve comparable potentiated startle amplitudes. In contrast, female rats experienced a significant decrease in hormone levels during the Diestrus phase. This decrease is believed to play a role in preventing them from displaying a heightened startle response when faced with strongly aversive stimuli. Data collected after 5-HT and 8-OH-DPAT were administered into the basolateral nuclei and dorsal periaqueductal gray suggest that 5-HT neurotransmission works with progesterone and estrogen to reduce startle potentiation, most likely by activating the serotonin-1A receptor subtype.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Estradiol , Medo , Substância Cinzenta Periaquedutal , Progesterona , Receptor 5-HT1A de Serotonina , Reflexo de Sobressalto , Animais , Feminino , Ratos , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Estradiol/farmacologia , Estradiol/metabolismo , Ciclo Estral/fisiologia , Medo/fisiologia , Medo/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Progesterona/farmacologia , Progesterona/metabolismo , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Reflexo de Sobressalto/fisiologia , Reflexo de Sobressalto/efeitos dos fármacos , Serotonina/metabolismo
6.
J Neurosci ; 44(34)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39019613

RESUMO

Although anesthesia provides favorable conditions for surgical procedures, recent studies have revealed that the brain remains active in processing noxious signals even during anesthesia. However, whether and how these responses affect the anesthesia effect remains unclear. The ventrolateral periaqueductal gray (vlPAG), a crucial hub for pain regulation, also plays an essential role in controlling general anesthesia. Hence, it was hypothesized that the vlPAG may be involved in the regulation of general anesthesia by noxious stimuli. Here, we found that acute noxious stimuli, including capsaicin-induced inflammatory pain, acetic acid-induced visceral pain, and incision-induced surgical pain, significantly delayed recovery from sevoflurane anesthesia in male mice, whereas this effect was absent in the spared nerve injury-induced chronic pain. Pretreatment with peripheral analgesics could prevent the delayed recovery induced by acute nociception. Furthermore, we found that acute noxious stimuli, induced by the injection of capsaicin under sevoflurane anesthesia, increased c-Fos expression and activity in the GABAergic neurons of the ventrolateral periaqueductal gray. Specific reactivation of capsaicin-activated vlPAGGABA neurons mimicked the effect of capsaicin and its chemogenetic inhibition prevented the delayed recovery from anesthesia induced by capsaicin. Finally, we revealed that the vlPAGGABA neurons regulated the recovery from anesthesia through the inhibition of ventral tegmental area dopaminergic neuronal activity, thus decreasing dopamine (DA) release and activation of DA D1-like receptors in the brain. These findings reveal a novel, cell- and circuit-based mechanism for regulating anesthesia recovery by nociception, and it is important to provide new insights for guiding the management of the anesthesia recovery period.


Assuntos
Anestésicos Inalatórios , Camundongos Endogâmicos C57BL , Nociceptividade , Substância Cinzenta Periaquedutal , Sevoflurano , Sevoflurano/farmacologia , Animais , Masculino , Camundongos , Anestésicos Inalatórios/farmacologia , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Mesencéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Estado de Consciência/fisiologia , Período de Recuperação da Anestesia , Capsaicina/farmacologia , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia
7.
Curr Biol ; 34(16): 3654-3664.e6, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39053464

RESUMO

Social play is pervasive in juvenile mammals, yet it is poorly understood in terms of its underlying brain mechanisms. Specifically, we do not know why young animals are most playful and why most adults cease to social play. Here, we analyze the synaptic mechanisms underlying social play. We found that blocking the rat periaqueductal gray (PAG) interfered with social play. Furthermore, an age-related decrease of neural firing in the PAG is associated with a decrease in synaptic release of glycine. Most importantly, modulation of glycine concentration-apparently acting on the glycinergic binding site of the N-methyl-D-aspartate (NMDA) receptor-not only strongly modulates social play but can also reverse the age-related decline in social play. In conclusion, we demonstrate that social play critically depends on the neurotransmitter glycine within the PAG.


Assuntos
Glicina , Substância Cinzenta Periaquedutal , Comportamento Social , Animais , Glicina/metabolismo , Ratos , Substância Cinzenta Periaquedutal/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo
8.
Curr Biol ; 34(13): 3031-3039.e7, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38936364

RESUMO

Escape behavior is a set of locomotor actions that move an animal away from threat. While these actions can be stereotyped, it is advantageous for survival that they are flexible.1,2,3 For example, escape probability depends on predation risk and competing motivations,4,5,6,7,8,9,10,11 and flight to safety requires continuous adjustments of trajectory and must terminate at the appropriate place and time.12,13,14,15,16 This degree of flexibility suggests that modulatory components, like inhibitory networks, act on the neural circuits controlling instinctive escape.17,18,19,20,21,22 In mice, the decision to escape from imminent threats is implemented by a feedforward circuit in the midbrain, where excitatory vesicular glutamate transporter 2-positive (VGluT2+) neurons in the dorsal periaqueductal gray (dPAG) compute escape initiation and escape vigor.23,24,25 Here we tested the hypothesis that local GABAergic neurons within the dPAG control escape behavior by setting the excitability of the dPAG escape network. Using in vitro patch-clamp and in vivo neural activity recordings, we found that vesicular GABA transporter-positive (VGAT+) dPAG neurons fire action potentials tonically in the absence of synaptic inputs and are a major source of inhibition to VGluT2+ dPAG neurons. Activity in VGAT+ dPAG cells transiently decreases at escape onset and increases during escape, peaking at escape termination. Optogenetically increasing or decreasing VGAT+ dPAG activity changes the probability of escape when the stimulation is delivered at threat onset and the duration of escape when delivered after escape initiation. We conclude that the activity of tonically firing VGAT+ dPAG neurons sets a threshold for escape initiation and controls the execution of the flight action.


Assuntos
Reação de Fuga , Neurônios GABAérgicos , Substância Cinzenta Periaquedutal , Animais , Substância Cinzenta Periaquedutal/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Camundongos , Reação de Fuga/fisiologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Feminino
9.
Pflugers Arch ; 476(8): 1235-1247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38856775

RESUMO

To assess the possible interactions between the dorsolateral periaqueductal gray matter (dlPAG) and the different domains of the nucleus ambiguus (nA), we have examined the pattern of double-staining c-Fos/FoxP2 protein immunoreactivity (c-Fos-ir/FoxP2-ir) and tyrosine hydroxylase (TH) throughout the rostrocaudal extent of nA in spontaneously breathing anaesthetised male Sprague-Dawley rats during dlPAG electrical stimulation. Activation of the dlPAG elicited a selective increase in c-Fos-ir with an ipsilateral predominance in the somatas of the loose (p < 0.05) and compact formation (p < 0.01) within the nA and confirmed the expression of FoxP2 bilaterally in all the domains within the nA. A second group of experiments was made to examine the importance of the dlPAG in modulating the laryngeal response evoked after electrical or chemical (glutamate) dlPAG stimulations. Both electrical and chemical stimulations evoked a significant decrease in laryngeal resistance (subglottal pressure) (p < 0.001) accompanied with an increase in respiratory rate together with a pressor and tachycardic response. The results of our study contribute to new data on the role of the mesencephalic neuronal circuits in the control mechanisms of subglottic pressure and laryngeal activity.


Assuntos
Estimulação Elétrica , Laringe , Substância Cinzenta Periaquedutal , Proteínas Proto-Oncogênicas c-fos , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Estimulação Elétrica/métodos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Laringe/fisiologia , Laringe/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Pressão , Bulbo/metabolismo , Bulbo/fisiologia , Ácido Glutâmico/metabolismo
10.
PLoS Biol ; 22(6): e3002624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941452

RESUMO

Comparative research suggests that the hypothalamus is critical in switching between survival behaviors, yet it is unclear if this is the case in humans. Here, we investigate the role of the human hypothalamus in survival switching by introducing a paradigm where volunteers switch between hunting and escape in response to encounters with a virtual predator or prey. Given the small size and low tissue contrast of the hypothalamus, we used deep learning-based segmentation to identify the individual-specific hypothalamus and its subnuclei as well as an imaging sequence optimized for hypothalamic signal acquisition. Across 2 experiments, we employed computational models with identical structures to explain internal movement generation processes associated with hunting and escaping. Despite the shared structure, the models exhibited significantly different parameter values where escaping or hunting were accurately decodable just by computing the parameters of internal movement generation processes. In experiment 2, multi-voxel pattern analyses (MVPA) showed that the hypothalamus, hippocampus, and periaqueductal gray encode switching of survival behaviors while not encoding simple motor switching outside of the survival context. Furthermore, multi-voxel connectivity analyses revealed a network including the hypothalamus as encoding survival switching and how the hypothalamus is connected to other regions in this network. Finally, model-based fMRI analyses showed that a strong hypothalamic multi-voxel pattern of switching is predictive of optimal behavioral coordination after switching, especially when this signal was synchronized with the multi-voxel pattern of switching in the amygdala. Our study is the first to identify the role of the human hypothalamus in switching between survival behaviors and action organization after switching.


Assuntos
Hipotálamo , Imageamento por Ressonância Magnética , Humanos , Hipotálamo/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Feminino , Adulto Jovem , Hipocampo/fisiologia , Reação de Fuga/fisiologia , Aprendizado Profundo , Mapeamento Encefálico/métodos , Substância Cinzenta Periaquedutal/fisiologia
11.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38755004

RESUMO

The olfactory tubercle (TUB), also called the tubular striatum, receives direct input from the olfactory bulb and, along with the nucleus accumbens, is one of the two principal components of the ventral striatum. As a key component of the reward system, the ventral striatum is involved in feeding behavior, but the vast majority of research on this structure has focused on the nucleus accumbens, leaving the TUB's role in feeding behavior understudied. Given the importance of olfaction in food seeking and consumption, olfactory input to the striatum should be an important contributor to motivated feeding behavior. Yet the TUB is vastly understudied in humans, with very little understanding of its structural organization and connectivity. In this study, we analyzed macrostructural variations between the TUB and the whole brain and explored the relationship between TUB structural pathways and feeding behavior, using body mass index (BMI) as a proxy in females and males. We identified a unique structural covariance between the TUB and the periaqueductal gray (PAG), which has recently been implicated in the suppression of feeding. We further show that the integrity of the white matter tract between the two regions is negatively correlated with BMI. Our findings highlight a potential role for the TUB-PAG pathway in the regulation of feeding behavior in humans.


Assuntos
Comportamento Alimentar , Tubérculo Olfatório , Substância Cinzenta Periaquedutal , Humanos , Masculino , Feminino , Comportamento Alimentar/fisiologia , Adulto , Substância Cinzenta Periaquedutal/fisiologia , Tubérculo Olfatório/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Vias Neurais/fisiologia
12.
Behav Brain Res ; 471: 115075, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38815698

RESUMO

BACKGROUND: The periaqueductal gray (PAG) plays a well-established pivotal role in the descending pain modulatory circuit. The objective of this study was to investigate morphological changes in the astroglia in models that are commonly used in pain and itch studies. METHODS: Five different mouse models of pain, as well as two models of chronic itch, were established using complete Freund's adjuvant (CFA), spared nerve injury (SNI), bone cancer pain (BCP), cisplatin (CIS), and paclitaxel (PTX) for pain, and diphenylcyclopropenone (DCP) and acetone and diethyl ether followed by water (AEW) for chronic itch. von Frey tests and video recordings were employed to assess pain and itching behaviors. The immunofluorescence of S100ß, pSTAT3, and glial fibrillary acidic protein (GFAP) was examined. Two- and three-dimensional studies were used to evaluate changes in astrocyte morphology. RESULTS: Significant scratching was caused by DCP and AEW, whereas the administration of CFA, SNI, BCP, CIS, and PTX produced clear mechanical allodynia. The expression of GFAP in the lPAG/vlPAG was upregulated in CFA, SNI, BCP, CIS, PTX, and DCP mice but decreased in AEW mice. According to Sholl analysis, CFA, SNI, PTX, and BCP mice showed substantially higher astrocyte intersections in the vlPAG, whereas CFA, SNI, BCP, CIS, and DCP mice presented longer peak lengths. In three-dimensional analysis, CFA, SNI, PTX, and DCP mice showed increased astrocyte surface areas, while CIS and AEW mice showed both reduced surface areas and/or volumes of astrocytes. CONCLUSION: The findings showed that different pain and itching conditions have different astrocyte morphologies, and these variations in morphological changes help to explain the pathophysiology of these conditions.


Assuntos
Astrócitos , Modelos Animais de Doenças , Dor , Substância Cinzenta Periaquedutal , Prurido , Animais , Astrócitos/patologia , Astrócitos/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/patologia , Prurido/patologia , Prurido/fisiopatologia , Masculino , Dor/patologia , Dor/fisiopatologia , Dor/metabolismo , Camundongos , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos Endogâmicos C57BL , Hiperalgesia/patologia , Hiperalgesia/fisiopatologia
13.
Neurobiol Aging ; 140: 1-11, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38691941

RESUMO

Growing evidence suggests that aging is associated with impaired endogenous pain modulation, and that this likely underlies the increased transition from acute to chronic pain in older individuals. Resting-state functional connectivity (rsFC) offers a valuable tool to examine the neural mechanisms behind these age-related changes in pain modulation. RsFC studies generally observe decreased within-network connectivity due to aging, but its relevance for pain modulation remains unknown. We compared rsFC within a set of brain regions involved in pain modulation between young and older adults and explored the relationship with the efficacy of distraction from pain. This revealed several age-related increases and decreases in connectivity strength. Importantly, we found a significant association between lower pain relief and decreased strength of three connections in older adults, namely between the periaqueductal gray and right insula, between the anterior cingulate cortex (ACC) and right insula, and between the ACC and left amygdala. These findings suggest that the functional integrity of the pain control system is critical for effective pain modulation, and that its function is compromised by aging.


Assuntos
Envelhecimento , Giro do Cíngulo , Imageamento por Ressonância Magnética , Dor , Humanos , Envelhecimento/fisiologia , Masculino , Idoso , Feminino , Adulto , Adulto Jovem , Dor/fisiopatologia , Pessoa de Meia-Idade , Giro do Cíngulo/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Tonsila do Cerebelo/fisiopatologia , Tonsila do Cerebelo/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta Periaquedutal/fisiopatologia , Substância Cinzenta Periaquedutal/diagnóstico por imagem , Córtex Insular/diagnóstico por imagem , Córtex Insular/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
14.
Biochem Biophys Res Commun ; 720: 150073, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754161

RESUMO

Astrocytes in the central nervous system play a vital role in modulating synaptic transmission and neuronal activation by releasing gliotransmitters. The 5-HTergic neurons in the ventrolateral periaqueductal gray (vlPAG) are important in anxiety processing. However, it remains uncertain whether the regulation of astrocytic activity on vlPAG 5-HTergic neurons is involved in anxiety processing. Here, through chemogenetic manipulation, we explored the impact of astrocytic activity in the PAG on the regulation of anxiety. To determine the role of astrocytes in the control of anxiety, we induced anxiety-like behaviors in mice through foot shock and investigated their effects on synaptic transmission and neuronal excitability in vlPAG 5-HTergic neurons. Foot shock caused anxiety-like behaviors, which were accompanied with the increase of the amplitude and frequency of miniature excitatory postsynaptic currents (mEPSCs), the area of slow inward currents (SICs), and the spike frequency of action potentials (AP) in vlPAG 5-HTergic neurons. The chemogenetic inhibition of vlPAG astrocytes was found to attenuate stress-induced anxiety-like behaviors and decrease the heightened synaptic transmission and neuronal excitability of vlPAG 5-HTergic neurons. Conversely, chemogenetic activation of vlPAG astrocytes triggered anxiety-like behaviors, enhanced synaptic transmission, and increased the excitability of vlPAG 5-HTergic neurons in unstressed mice. In summary, this study has provided initial insights into the pathway by which astrocytes influence behavior through the rapid regulation of associated neurons. This offers a new perspective for the investigation of the biological mechanisms underlying anxiety.


Assuntos
Ansiedade , Astrócitos , Substância Cinzenta Periaquedutal , Animais , Substância Cinzenta Periaquedutal/fisiologia , Astrócitos/metabolismo , Ansiedade/fisiopatologia , Camundongos , Masculino , Transmissão Sináptica/fisiologia , Comportamento Animal/fisiologia , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos Excitadores/fisiologia , Estresse Psicológico/fisiopatologia , Neurônios/fisiologia
15.
Curr Biol ; 34(11): 2448-2459.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38754425

RESUMO

Adaptive behavioral responses to stressors are critical for survival. However, which brain areas orchestrate switching the appropriate stress responses to distinct contexts is an open question. This study aimed to identify the cell-type-specific brain circuitry governing the selection of distinct behavioral strategies in response to stressors. Through novel mouse behavior paradigms, we observed distinct stressor-evoked behaviors in two psycho-spatially distinct contexts characterized by stressors inside or outside the safe zone. The identification of brain regions activated in both conditions revealed the involvement of the dorsomedial hypothalamus (DMH). Further investigation using optogenetics, chemogenetics, and photometry revealed that glutamatergic projections from the DMH to periaqueductal gray (PAG) mediated responses to inside stressors, while GABAergic projections, particularly from tachykinin1-expressing neurons, played a crucial role in coping with outside stressors. These findings elucidate the role of cell-type-specific circuitry from the DMH to the PAG in shaping behavioral strategies in response to stressors. These findings have the potential to advance our understanding of fundamental neurobiological processes and inform the development of novel approaches for managing context-dependent and anxiety-associated pathological conditions such as agoraphobia and claustrophobia.


Assuntos
Tronco Encefálico , Estresse Psicológico , Animais , Camundongos , Masculino , Tronco Encefálico/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais/fisiologia , Optogenética , Hipotálamo/fisiologia , Neurônios/fisiologia
16.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R66-R78, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708545

RESUMO

The stress-induced cardiovascular response is based on the defensive reaction in mammals. It has been shown that the sympathetic vasomotor pathway of acute psychological stress is indirectly mediated via neurons in the rostroventral medulla (RVM) from the hypothalamic stress center. In this study, direct projections to the RVM and distribution of neuroexcitatory marker c-Fos-expressed neurons were investigated during social defeat stress (SDS) in conscious rats. The experimental rat that was injected with a neural tracer, FluoroGold (FG) into the unilateral RVM, was exposed to the SDS. Double-positive neurons of both c-Fos and FG were locally distributed in the lateral/ventrolateral periaqueductal gray matter (l/vl PAG) in the midbrain. These results suggest that the neurons in the l/vl PAG contribute to the defensive reaction evoked by acute psychological stress, such as the SDS. During the SDS period, arterial pressure (AP) and heart rate (HR) showed sustained increases in the rat. Therefore, we performed chemical stimulation by excitatory amino acid microinjection within the l/vl PAG and measured cardiovascular response and sympathetic nerve activity in some anesthetized rats. The chemical stimulation of neurons in the l/vl PAG caused significant increases in arterial pressure and renal sympathetic nerve activity. Taken together, our results suggest that neurons in the l/vl PAG are a possible candidate for the cardiovascular descending pathway that modulates sympathetic vascular resistance evoked by acute psychological stress, like the SDS.NEW & NOTEWORTHY The sympathetic vasomotor pathway of an acute psychological stress-induced cardiovascular response is mediated via neurons in the RVM indirectly from the hypothalamus. In this study, we showed the relaying area of the efferent sympathetic vasomotor pathway from the hypothalamus to the RVM. The results suggested that the pressor response during psychological stress is mediated via neurons in the lateral/ventrolateral PAG to the RVM.


Assuntos
Bulbo , Substância Cinzenta Periaquedutal , Derrota Social , Estresse Psicológico , Sistema Vasomotor , Animais , Estresse Psicológico/fisiopatologia , Masculino , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/fisiopatologia , Bulbo/fisiopatologia , Bulbo/metabolismo , Sistema Vasomotor/fisiopatologia , Ratos , Frequência Cardíaca , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Wistar , Sistema Nervoso Simpático/fisiopatologia , Ratos Sprague-Dawley , Pressão Arterial , Comportamento Animal
17.
Nat Commun ; 15(1): 3746, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702319

RESUMO

The neural basis of fear of heights remains largely unknown. In this study, we investigated the fear response to heights in male mice and observed characteristic aversive behaviors resembling human height vertigo. We identified visual input as a critical factor in mouse reactions to heights, while peripheral vestibular input was found to be nonessential for fear of heights. Unexpectedly, we found that fear of heights in naïve mice does not rely on image-forming visual processing by the primary visual cortex. Instead, a subset of neurons in the ventral lateral geniculate nucleus (vLGN), which connects to the lateral/ventrolateral periaqueductal gray (l/vlPAG), drives the expression of fear associated with heights. Additionally, we observed that a subcortical visual pathway linking the superior colliculus to the lateral posterior thalamic nucleus inhibits the defensive response to height threats. These findings highlight a rapid fear response to height threats through a subcortical visual and defensive pathway from the vLGN to the l/vlPAG.


Assuntos
Medo , Corpos Geniculados , Camundongos Endogâmicos C57BL , Colículos Superiores , Vias Visuais , Animais , Masculino , Medo/fisiologia , Camundongos , Corpos Geniculados/fisiologia , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/fisiologia , Córtex Visual Primário/fisiologia , Percepção Visual/fisiologia , Comportamento Animal/fisiologia
18.
Sci Rep ; 14(1): 11103, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750093

RESUMO

Safe and effective pain management is a critical healthcare and societal need. The potential for acute liver injury from paracetamol (ApAP) overdose; nephrotoxicity and gastrointestinal damage from chronic non-steroidal anti-inflammatory drug (NSAID) use; and opioids' addiction are unresolved challenges. We developed SRP-001, a non-opioid and non-hepatotoxic small molecule that, unlike ApAP, does not produce the hepatotoxic metabolite N-acetyl-p-benzoquinone-imine (NAPQI) and preserves hepatic tight junction integrity at high doses. CD-1 mice exposed to SRP-001 showed no mortality, unlike a 70% mortality observed with increasing equimolar doses of ApAP within 72 h. SRP-001 and ApAP have comparable antinociceptive effects, including the complete Freund's adjuvant-induced inflammatory von Frey model. Both induce analgesia via N-arachidonoylphenolamine (AM404) formation in the midbrain periaqueductal grey (PAG) nociception region, with SRP-001 generating higher amounts of AM404 than ApAP. Single-cell transcriptomics of PAG uncovered that SRP-001 and ApAP also share modulation of pain-related gene expression and cell signaling pathways/networks, including endocannabinoid signaling, genes pertaining to mechanical nociception, and fatty acid amide hydrolase (FAAH). Both regulate the expression of key genes encoding FAAH, 2-arachidonoylglycerol (2-AG), cannabinoid receptor 1 (CNR1), CNR2, transient receptor potential vanilloid type 4 (TRPV4), and voltage-gated Ca2+ channel. Phase 1 trial (NCT05484414) (02/08/2022) demonstrates SRP-001's safety, tolerability, and favorable pharmacokinetics, including a half-life from 4.9 to 9.8 h. Given its non-hepatotoxicity and clinically validated analgesic mechanisms, SRP-001 offers a promising alternative to ApAP, NSAIDs, and opioids for safer pain treatment.


Assuntos
Acetaminofen , Analgésicos , Ácidos Araquidônicos , Substância Cinzenta Periaquedutal , Transcriptoma , Animais , Masculino , Camundongos , Acetaminofen/efeitos adversos , Amidoidrolases/metabolismo , Amidoidrolases/genética , Analgésicos/farmacologia , Ácidos Araquidônicos/farmacologia , Benzoquinonas/farmacologia , Glicerídeos , Substância Cinzenta Periaquedutal/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos
19.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664013

RESUMO

The periaqueductal gray (PAG) is a small midbrain structure that surrounds the cerebral aqueduct, regulates brain-body communication, and is often studied for its role in "fight-or-flight" and "freezing" responses to threat. We used ultra-high-field 7 T fMRI to resolve the PAG in humans and distinguish it from the cerebral aqueduct, examining its in vivo function during a working memory task (N = 87). Both mild and moderate cognitive demands elicited spatially similar patterns of whole-brain blood oxygenation level-dependent (BOLD) response, and moderate cognitive demand elicited widespread BOLD increases above baseline in the brainstem. Notably, these brainstem increases were not significantly greater than those in the mild demand condition, suggesting that a subthreshold brainstem BOLD increase occurred for mild cognitive demand as well. Subject-specific masks were group aligned to examine PAG response. In PAG, both mild and moderate demands elicited a well-defined response in ventrolateral PAG, a region thought to be functionally related to anticipated painful threat in humans and nonhuman animals-yet, the present task posed only the most minimal (if any) "threat," with the cognitive tasks used being approximately as challenging as remembering a phone number. These findings suggest that the PAG may play a more general role in visceromotor regulation, even in the absence of threat.


Assuntos
Imageamento por Ressonância Magnética , Memória de Curto Prazo , Substância Cinzenta Periaquedutal , Humanos , Substância Cinzenta Periaquedutal/fisiologia , Masculino , Feminino , Memória de Curto Prazo/fisiologia , Adulto , Imageamento por Ressonância Magnética/métodos , Adulto Jovem , Mapeamento Encefálico
20.
Curr Opin Neurobiol ; 86: 102878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663047

RESUMO

Instinctive behaviours have evolved across animal phyla and ensure the survival of both the individual and species. They include behaviours that achieve defence, feeding, aggression, sexual reproduction, or parental care. Within the vertebrate subphylum, the brain circuits that support instinctive behaviour output are evolutionarily conserved, being present in the oldest group of living vertebrates, the lamprey. Here, I will provide an evolutionary and comparative perspective on the function of a conserved brainstem region central to the initiation and execution of virtually all instinctive behaviours-the periaqueductal gray. In particular, I will focus on recent advances on the neural mechanisms in the periaqueductal gray that underlie the production of different instinctive behaviours within and across species.


Assuntos
Substância Cinzenta Periaquedutal , Animais , Substância Cinzenta Periaquedutal/fisiologia , Evolução Biológica , Vertebrados/fisiologia , Comportamento Animal/fisiologia , Instinto , Tronco Encefálico/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA