Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
PLoS One ; 19(7): e0306829, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38980893

RESUMO

An unambiguous identification of dermatophytes causing dermatophytoses is necessary for accurate clinical diagnosis and epidemiological implications. In the current taxonomy of the Arthrodermataceae, the etiological agents of dermatophytoses consist of seven genera and members of the genera Trichophyton are the most prevalent etiological agents at present. The genera Trichophyton consists of 16 species that are grouped as clades, but the species borderlines are not clearly delimited. The aim of the present study was to determine the discriminative power of subtilisin gene variants (SUB1-SUB12) in family Arthrodermataceae, particularly in Trichophyton. Partial and complete reads from 288 subtilisin gene sequences of 12 species were retrieved and a stringent filtering following two different approaches for analysis (probability of correct identification (PCI) and gene gap analysis) conducted to determine the uniqueness of the subtilisin gene subtypes. SUB1 with mean PCI value of 60% was the most suitable subtilisin subtype for specific detection of T.rubrum complex, however this subtype is not reported in members of T. mentagrophytes complex which is one of the most prevalent etiological agent at present. Hence, SUB7 with 40% PCI value was selected for testing its discriminative power in Trichophyton species. SUB7 specific PCR based detection of dermatophytes was tested for sensitivity and specificity. Sequences of SUB7 from 42 isolates and comparison with the ITS region showed that differences within the subtilisin gene can further be used to differentiate members of the T. mentagrophytes complex. Further, subtilisin cannot be used for the differentiation of T. benhamiae complex since all SUB subtypes show low PCI scores. Studies on the efficiency and limitations of the subtilisin gene as a diagnostic tool are currently limited. Our study provides information that will guide researchers in considering this gene for identifying dermatophytes causing dermatophytoses in human and animals.


Assuntos
Arthrodermataceae , Arthrodermataceae/genética , Arthrodermataceae/isolamento & purificação , Humanos , Tinha/microbiologia , Tinha/diagnóstico , Subtilisina/genética , Trichophyton/genética , Trichophyton/isolamento & purificação , Filogenia , Proteínas Fúngicas/genética
2.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338741

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) is a protein that plays a key role in the metabolism of low-density lipoprotein (LDL) cholesterol. The gain-of-function mutations of the PCSK9 gene lead to a reduced number of surface LDL receptors by binding to them, eventually leading to endosomal degradation. This, in turn, is the culprit of hypercholesterolemia, resulting in accelerated atherogenesis. The modern treatment for hypercholesterolemia encompasses the use of biological drugs against PCSK9, like monoclonal antibodies and gene expression modulators such as inclisiran-a short, interfering RNA (siRNA). Peptide nucleic acid (PNA) is a synthetic analog of nucleic acid that possesses a synthetic peptide skeleton instead of a phosphate-sugar one. This different structure determines the unique properties of PNA (e.g., neutral charge, enzymatic resistance, and an enormously high affinity with complementary DNA and RNA). Therefore, it might be possible to use PNA against PCSK9 in the treatment of hypercholesterolemia. We sought to explore the impact of three selected PNA oligomers on PCSK9 gene expression. Using a cell-free transcription/translation system, we showed that one of the tested PNA strands was able to reduce the PCSK9 gene expression down to 74%, 64%, and 68%, as measured by RT-real-time PCR, Western blot, and HPLC, respectively. This preliminary study shows the high applicability of a cell-free enzymatic environment as an efficient tool in the initial evaluation of biologically active PNA molecules in the field of hypercholesterolemia research. This cell-free approach allows for the omission of the hurdles associated with transmembrane PNA transportation at the early stage of PNA selection.


Assuntos
Hipercolesterolemia , Inibidores de PCSK9 , Ácidos Nucleicos Peptídicos , Humanos , Expressão Gênica , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Ácidos Nucleicos Peptídicos/farmacologia , Pró-Proteína Convertase 9/efeitos dos fármacos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertases/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Subtilisina/genética , Inibidores de PCSK9/farmacologia
3.
Int J Mol Sci ; 24(23)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069302

RESUMO

Bariatric surgery improves dyslipidaemia and reduces body weight, but it remains unclear how bariatric surgery modulates gene expression in fat cells to influence the proprotein convertase subtilisin/kexin type 9 (PCSK-9) and low-density lipoprotein receptor (LDLR) gene expression. The expression of the PCSK9/LDLR/tumor necrosis factor-alpha (TNFα) gene in adipose tissue was measured in two groups of Zucker Diabetic Sprague Dawley (ZDSD) rats after Roux-en-Y gastric bypass (RYGB) surgery or 'SHAM' operation. There was lower PCSK9 (p = 0.02) and higher LDLR gene expression (p = 0.02) in adipose tissue in rats after RYGB. Weight change did not correlate with PCSK9 gene expression (r = -0.5, p = 0.08) or TNFα gene expression (r = -0.4, p = 0.1). TNFα gene expression was positively correlated with PCSK9 gene expression (r = 0.7, p = 0.001) but not correlated with LDLR expression (r = -0.3, p = 0.3). Circulating triglyceride levels were lower in RYGB compared to the SHAM group (1.1 (0.8-1.4) vs. 1.5 (1.0-4.2), p = 0.038) mmol/L with no difference in cholesterol levels. LDLR gene expression was increased post-bariatric surgery with the potential to reduce the number of circulating LDL particles. PCSK9 gene expression and TNFα gene expression were positively correlated after RYGB in ZDSD rats, suggesting that the modulation of pro-inflammatory pathways in adipose tissue after RYGB may partly relate to PCSK9 and LDLR gene expression.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Experimental , Animais , Ratos , Tecido Adiposo/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/cirurgia , Expressão Gênica , Inflamação/genética , Obesidade/genética , Obesidade/cirurgia , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertases/genética , Ratos Sprague-Dawley , Ratos Zucker , Receptores de LDL/genética , Receptores de LDL/metabolismo , Serina Endopeptidases/metabolismo , Subtilisina/genética , Fator de Necrose Tumoral alfa/genética
4.
Biochemistry ; 62(20): 2952-2969, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37796763

RESUMO

Subtilases play a significant role in microbial pathogen infections by degrading the host proteins. Subtilisin inhibitors are crucial in fighting against these harmful microorganisms. LL-TIL, from skin secretions of Lepidobatrachus laevis, is a cysteine-rich peptide belonging to the I8 family of inhibitors. Protease inhibitory assays demonstrated that LL-TIL acts as a slow-tight binding inhibitor of subtilisin Carlsberg and proteinase K with inhibition constants of 91 pM and 2.4 nM, respectively. The solution structures of LL-TIL and a mutant peptide reveal that they adopt a typical TIL-type fold with a canonical conformation of a reactive site loop (RSL). The structure of the LL-TIL-subtilisin complex and molecular dynamics (MD) simulations provided an in-depth view of the structural basis of inhibition. NMR relaxation data and molecular dynamics simulations indicated a rigid conformation of RSL, which does not alter significantly upon subtilisin binding. The energy calculation for subtilisin inhibition predicted Ile31 as the highest contributor to the binding energy, which was confirmed experimentally by site-directed mutagenesis. A chimeric mutant of LL-TIL broadened the inhibitory profile and attenuated subtilisin inhibition by 2 orders of magnitude. These results provide a template to engineer more specific and potent TIL-type subtilisin inhibitors.


Assuntos
Subtilisina , Subtilisinas , Animais , Subtilisina/genética , Subtilisina/metabolismo , Sequência de Aminoácidos , Subtilisinas/genética , Subtilisinas/metabolismo , Anuros/metabolismo , Peptídeos , Simulação de Dinâmica Molecular , Domínio Catalítico
5.
PLoS Genet ; 19(9): e1010944, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721936

RESUMO

Some types of collagens, including transmembrane MACIT collagens and C. elegans cuticle collagens, are N-terminally cleaved at a dibasic site that resembles the consensus for furin or other proprotein convertases of the subtilisin/kexin (PCSK) family. Such cleavage may release transmembrane collagens from the plasma membrane and affect extracellular matrix assembly or structure. However, the functional consequences of such cleavage are unclear and evidence for the role of specific PCSKs is lacking. Here, we used endogenous collagen fusions to fluorescent proteins to visualize the secretion and assembly of the first collagen-based cuticle in C. elegans and then tested the role of the PCSK BLI-4 in these processes. Unexpectedly, we found that cuticle collagens SQT-3 and DPY-17 are secreted into the extraembryonic space several hours before cuticle matrix assembly. Furthermore, this early secretion depends on BLI-4/PCSK; in bli-4 and cleavage-site mutants, SQT-3 and DPY-17 are not efficiently secreted and instead form large intracellular puncta. Their later assembly into cuticle matrix is reduced but not entirely blocked. These data reveal a role for collagen N-terminal processing in intracellular trafficking and the control of matrix assembly in vivo. Our observations also prompt a revision of the classic model for C. elegans cuticle matrix assembly and the pre-cuticle-to-cuticle transition, suggesting that cuticle layer assembly proceeds via a series of regulated steps and not simply by sequential secretion and deposition.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Subtilisina , Animais , Sequência de Aminoácidos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colágeno/genética , Colágeno/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo , Subtilisina/genética , Subtilisina/metabolismo
6.
Int J Biol Macromol ; 249: 125960, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37517759

RESUMO

This study investigated the multifunctional attributes such as, antibacterial, antioxidant and anticancer potential of recombinant subtilisin. A codon-optimized subtilisin gene was synthesized from Bacillus subtilis and was successfully transformed into E. coli DH5α cells which was further induced for high level expression in E. coli BL21 (DE3). An affinity purified ~40 kDa recombinant subtilisin was obtained that revealed to be highly alkali-thermostable based on the thermodynamic parameters. The kinetic parameters were deduced that indicated higher affinity of N-Suc-F-A-A-F-pNA substrate towards subtilisin. Recombinant subtilisin demonstrated strong antibacterial activity against several pathogens and showed minimum inhibitory concentration of 0.06 µg/mL against B. licheniformis and also revealed high stability under the influence of several biochemical factors. It also displayed antioxidant potential in a dose dependent manner and exhibited cell cytotoxicity against A549 and MCF-7 cancerous cell lines with IC50 of 5 µM and 12 µM respectively. The identity of recombinant subtilisin was established by MALDI-TOF mass spectrum depicting desired mass peaks and N-terminal sequence as MRSK by MALDI-TOF-MS. The deduced N- terminal amino acid sequence by Edman degradation revealed high sequence similarity with subtilisins from Bacillus strains. The structural and functional analysis of recombinant antibacterial subtilisin was elucidated by Raman, circular dichroism and nuclear magnetic resonance spectroscopy and thermogravimetric analysis. The results contribute to the development of highly efficient subtilisin with enhanced catalytic properties making it a promising candidate for therapeutic applications in healthcare industries.


Assuntos
Bacillus subtilis , Subtilisina , Subtilisina/genética , Subtilisina/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Clonagem Molecular , Sequência de Aminoácidos , Subtilisinas/metabolismo , Expressão Gênica
7.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834740

RESUMO

Familial hypercholesterolaemia (FH) is an autosomal dominant dyslipidaemia, characterised by elevated LDL cholesterol (LDL-C) levels in the blood. Three main genes are involved in FH diagnosis: LDL receptor (LDLr), Apolipoprotein B (APOB) and Protein convertase subtilisin/kexin type 9 (PCSK9) with genetic mutations that led to reduced plasma LDL-C clearance. To date, several PCSK9 gain-of-function (GOF) variants causing FH have been described based on their increased ability to degrade LDLr. On the other hand, mutations that reduce the activity of PCSK9 on LDLr degradation have been described as loss-of-function (LOF) variants. It is therefore important to functionally characterise PCSK9 variants in order to support the genetic diagnosis of FH. The aim of this work is to functionally characterise the p.(Arg160Gln) PCSK9 variant found in a subject suspected to have FH. Different techniques have been combined to determine efficiency of the autocatalytic cleavage, protein expression, effect of the variant on LDLr activity and affinity of the PCSK9 variant for the LDLr. Expression and processing of the p.(Arg160Gln) variant had a result similar to that of WT PCSK9. The effect of p.(Arg160Gln) PCSK9 on LDLr activity is lower than WT PCSK9, with higher values of LDL internalisation (13%) and p.(Arg160Gln) PCSK9 affinity for the LDLr is lower than WT, EC50 8.6 ± 0.8 and 25.9 ± 0.7, respectively. The p.(Arg160Gln) PCSK9 variant is a LOF PCSK9 whose loss of activity is caused by a displacement of the PCSK9 P' helix, which reduces the stability of the LDLr-PCSK9 complex.


Assuntos
Hiperlipoproteinemia Tipo II , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , LDL-Colesterol , Subtilisina/genética , Mutação , Hiperlipoproteinemia Tipo II/genética , Proteínas Mutantes/genética , Receptores de LDL/genética
8.
Biomacromolecules ; 24(3): 1141-1154, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780360

RESUMO

Enzymatic recycling of poly-l-lactic acid (PLLA) plastic has recently become an area of interest; however, investigation of enzymatic mechanisms and engineering strategies to improve activity remains limited. In this study, we have identified a subtilisin from Bacillus pumilus that has the ability to depolymerize high-molecular-weight PLLA. We performed a comparative, mutational analysis of this enzyme with a less active homologue from Bacillus subtilis to determine residues favored for activity. Our results demonstrate that both enzymes contain residues favored for PLLA depolymerization, with the generation of several hyperactive variants. In silico modeling suggests that increases in activity are due to opening of the binding pockets and increased surface hydrophobicity. Combinations of hyperactive mutations have synergistic effects with the generation of subtilisin variants with 830- and 184-fold increases in activity for B. subtilis and B. pumilus subtilisins, respectively. One B. pumilus subtilisin variant can visibly dissolve high-molecular-weight PLLA films.


Assuntos
Bacillus , Subtilisina/genética , Bacillus subtilis , Mutação
9.
Ann Hum Biol ; 50(1): 56-62, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36695028

RESUMO

BACKGROUND: Cardiovascular disease (CVD) has emerged as the most prevalent cause of death in India. Pro-protein Convertase Subtilisin/Kexin Type 9 (PCSK9) gene has been found to be associated with lipid levels and a biomarker for susceptibility of CVD. AIM: To study the association of PCSK9 SNPs rs505151 & rs562556 and their haplotypes with CVDs in the Indian population. SUBJECTS & METHODS: The present study comprised of 102 angiographically proven CVD patients & 100 healthy subjects. To study polymorphism, Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) method was used. Biochemical parameters were analysed by enzymatic methods or automated analysers. Haplotype analysis was done using SHEsis software. RESULTS: The dominant genetic model with an odds ratio (confidence interval) of 4.71 (2.59 - 8.5), (p value = .0001), shows the risk of CVDs. However, rs562556 (I474V) variant was not found to be associated with clinical parameters and risk of CVDs (p value >.05). Out of four haplotypes, H3 (G-A) was found to be associated with the CVDs (OR- 3.137, p value = .0001). CONCLUSION: This study concludes that G allele of rs505151 SNP (PCSK9) and the H3 (G-A) haplotype of rs505151 & rs562556 were found to be risk factors for CVDs in the Indian population.


Assuntos
Doenças Cardiovasculares , Pró-Proteína Convertase 9 , Humanos , Pró-Proteína Convertase 9/genética , Haplótipos , Polimorfismo de Nucleotídeo Único , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Subtilisina/genética , LDL-Colesterol
10.
J Adv Res ; 42: 273-287, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36513418

RESUMO

INTRODUCTION: Panicle abortion is a severe physiological defect and causes a reduction in grain yield. OBJECTIVES: In this study, we aim to provide the characterization and functional analysis of a mutant apa1331 (apical panicle abortion1331). METHODS: The isolated mutant from an EMS-mutagenized population was subjected to SSR analysis and Mutmap assay for candidate gene mapping. We performed phenotypic analysis, anthers cross-sections morphology, wax and cutin profiling, biochemical assays and phylogenetic analysis for characterization and evaluation of apa1331. We used CRISPR/Cas9 disruption for functional validation of its candidate gene. Furthermore, comparative RNA-seq and relative expression analysis were performed to get further insights into mechanistic role of the candidate gene. RESULTS: The anthers from the apical spikelets of apa1331 were degenerated, pollen-less and showed defects in cuticle formation. Transverse sections of apa1331 anthers showed defects in post-meiotic microspore development at stage 8-9. Gas Chromatography showed a significant reduction of wax and cutin in anthers of apa1331 compared to Wildtype (WT). Quantification of H2O2 and MDA has indicated the excessive ROS (reactive oxygen species) in apa1331. Trypan blue staining and TUNEL assay revealed cell death and excessive DNA fragmentation in apa1331. Map-based cloning and Mutmap analysis revealed that LOC_Os04g40720, encoding a putative SUBTILISIN-LIKE SERINE PROTEASE (OsSUBSrP1), harbored an SNP (A > G) in apa1331. Phenotypic defects were only seen in apical spikelets due to highest expression of OsSUBSrP1 in upper panicle portion. CRISPR-mediated knock-out lines of OsSUBSrP1 displayed spikelet abortion comparable to apa1331. Global gene expression analysis revealed a significant downregulation of wax and cutin biosynthesis genes. CONCLUSIONS: Our study reports the novel role of SUBSrP1 in anther cuticle biosynthesis by ROS-mediated programmed cell death in rice.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo , Filogenia , Subtilisina/genética , Subtilisina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina/genética , Serina/metabolismo , Peróxido de Hidrogênio/metabolismo
11.
Front Cell Infect Microbiol ; 12: 897509, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046739

RESUMO

Microsporidia are obligate intracellular parasites and possess a unique way of invading hosts, namely germination. Microsporidia are able to infect almost all animal cells by germination. During the process, the polar tube extrudes from the spores within, thus injecting infectious sporoplasm into the host cells. Previous studies indicated that subtilisin-like protease 1 (NbSLP1) of microsporidia Nosema bombycis were located at the polar cap of germinated spores where the polar tube extrusion. We hypothesized that NbSLP1 is an essential player in the germination process. Normally, SLP need to be activated by autoproteolysis under conditions. In this study, we found that the signal peptide of NbSLP1 affected the activation of protease, two self-cleavage sites were involved in NbSLP1 maturation between Ala104Asp105 and Ala124Asp125 respectively. Mutants at catalytic triad of NbSLP1 confirmed the decreasing of autoproteolysis. This study demonstrates that intramolecular proteolysis is required for NbSLP1 maturation. The protease undergoes a series of sequential N-terminal cleavage events to generate the mature enzyme. Like other subtilisin-like enzymes, catalytic triad of NbSLP1 are significant for the self-activation of NbSLP1. In conclusion, clarifying the maturation of NbSLP1 will be valuable for understanding the polar tube ejection mechanism of germination.


Assuntos
Proteínas Fúngicas , Nosema , Animais , Proteínas Fúngicas/genética , Nosema/genética , Esporos Fúngicos , Subtilisina/genética
12.
Biotechnol Appl Biochem ; 69(6): 2599-2616, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35019178

RESUMO

Due to its thermostability and high pH compatibility, subtilisin is most known for its role as an additive for detergents in which it is categorized as a serine protease according to MEROPS database. Subtilisin is typically isolated from various bacterial species of the Bacillus genus such as Bacillus subtilis, B. amyloliquefaciens, B. licheniformis, and various other organisms. It is composed of 268-275 amino acid residues and is initially secreted in the precursor form, preprosubtilisin, which is composed of 29-residues signal peptide, 77-residues propeptide, and 275-residues active subtilisin. Subtilisin is known for the presence of high and low affinity calcium binding sites in its structure. Native subtilisin has general properties of thermostability, tolerance to neutral to high pH, broad specificity, and calcium-dependent stability, which contribute to the versatility of subtilisin applicability. Through protein engineering and immobilization technologies, many variants of subtilisin have been generated, which increase the applicability of subtilisin in various industries including detergent, food processing and packaging, synthesis of inhibitory peptides, therapeutic, and waste management applications.


Assuntos
Bacillus , Subtilisina , Subtilisina/genética , Cálcio , Sequência de Aminoácidos , Clonagem Molecular , Bacillus/genética
13.
Res Microbiol ; 172(6): 103877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34487843

RESUMO

The two-component system DegSU of Bacillus subtilis controls more than one hundred genes involved in several different cellular behaviours. Over the last four decades, the degU32Hy allele, supposedly encoding a constitutively active mutant of the response regulator DegU, was exploited to define the impact of this system on cell physiology. Those studies concluded that phosphorylated DegU (DegU∼P) induced degradative enzyme expression while repressing flagellar motility and competence. Recent experiments, however, demonstrated that flagella expression is enhanced by DegU∼P if SwrA, a protein only encoded by wild strains, is present. Yet, to promote motility, SwrA must interact with DegU∼P produced by a wild-type degU allele, as it cannot correctly cooperate with the mutant DegU32Hy protein. In this work, the impact of DegSU was reanalysed in the presence or absence of SwrA employing a DegS kinase mutant, degS200Hy, to force the activation of the TCS. Our results demonstrate that the role of SwrA in B. subtilis physiology is wider than expected and affects several other DegSU targets. SwrA reduces subtilisin, cellulases and xylanases production while, besides motility, it also positively modulates competence for DNA uptake, remarkably relieving the inhibition caused by DegU∼P alone and restoring transformability in degS200Hy strains.


Assuntos
Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Proteínas de Bactérias/genética , Celulase/metabolismo , Genes Bacterianos , Histidina Quinase/genética , Movimento , Mutação , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/biossíntese , Transdução de Sinais , Subtilisina/genética , Subtilisina/metabolismo , Transformação Bacteriana , Xilosidases/metabolismo
14.
Commun Biol ; 4(1): 299, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674772

RESUMO

We describe the design, kinetic properties, and structures of engineered subtilisin proteases that degrade the active form of RAS by cleaving a conserved sequence in switch 2. RAS is a signaling protein that, when mutated, drives a third of human cancers. To generate high specificity for the RAS target sequence, the active site was modified to be dependent on a cofactor (imidazole or nitrite) and protease sub-sites were engineered to create a linkage between substrate and cofactor binding. Selective proteolysis of active RAS arises from a 2-step process wherein sub-site interactions promote productive binding of the cofactor, enabling cleavage. Proteases engineered in this way specifically cleave active RAS in vitro, deplete the level of RAS in a bacterial reporter system, and also degrade RAS in human cell culture. Although these proteases target active RAS, the underlying design principles are fundamental and will be adaptable to many target proteins.


Assuntos
Engenharia de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Subtilisina/metabolismo , Células HEK293 , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteólise , Proteínas Proto-Oncogênicas p21(ras)/genética , Especificidade por Substrato , Subtilisina/genética
15.
Biotechnol Lett ; 43(2): 479-494, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33047274

RESUMO

Here we report heterologous expression, enzymatic characterization and structure homology modeling of a subtilisin-like alkaline serine protease (ASP) from Bacillus halodurans C-125. Encoding gene was successfully obtained by PCR and cloned into pMA0911 shuttle vector under the control of strong HpaII promoter and expressed extracellularly. ASP enzyme was successfully expressed in B. subtilis WB800 cell line lacking eight extracellular proteases and produced extracellularly in the culture medium. Km, Vmax and specific activity parameters of the recombinantly produced ASP were identified as 0.2899 mg/ml, 76.12 U/ml and 9500 U/mg, respectively. The purified enzyme revealed remarkable proteolytic activity at highly alkaline conditions with a pH optimum 12.0 and notable thermostability with temperature optimum at 60 °C. Furthermore, substrate-free enzyme revealed remarkable pH stability at pH 12.0 and maintained 93% of its initial activity when incubated at 37 °C for 24 h and 60% of its initial activity upon incubation at 60 °C for 1 h. Theoretically calculated molecular mass of ASP protein was confirmed through SDS-PAGE and western blot analysis (Mw: 28.3 kDa). The secondary and tertiary structures of ASP protein were also identified through homology modeling and further examined in detail. ASP harbors a typical S8/S53 peptidase domain comprising 17 ß-sheets and 9 α-helixes within its secondary structure. The structure dynamics analysis of modeled 3D structure further revealed that transient inactivating propeptide chain is the most dynamic region of ASP enzyme with 8.52 Å2 ß-Factor value. Additional residue-dependent fluctuation plot analysis also confirmed the elevated structure dynamics patterning of ASP N-terminus which could be the potential prerequisite for the autonomous propeptide removal of alkaline serine peptidases. Yet the functional domain of ASP becomes quite stable after autonomous exclusion of its propeptide. Although the sequence homology between ASP and commercial detergent additive B. lentus protease (PDB ID:1GCI) was moderate (65.4% sequence similarity), their overlaid 3D structures revealed much higher similarity (98.14%) within 0.80 Å RMSD. In conclusions, with remarkable pH stability, notable thermostability and particularly high specific activity at extreme alkaline conditions, the unveiled ASP protein stands out as a novel protease candidate for various industrial sectors such as textile, detergent, leather, feed, waste, pharmaceutical and others.


Assuntos
Bacillus/ultraestrutura , Modelos Moleculares , Serina Proteases/ultraestrutura , Subtilisina/genética , Bacillus/química , Bacillus subtilis/genética , Bacillus subtilis/ultraestrutura , Clonagem Molecular , Estabilidade Enzimática/genética , Regulação Bacteriana da Expressão Gênica/genética , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Proteólise , Serina Proteases/química , Especificidade por Substrato , Subtilisina/química , Temperatura
16.
J Appl Microbiol ; 131(1): 300-306, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33245823

RESUMO

AIMS: Keratin is a fibrous and recalcitrant structural protein and the third most abundant polymer in nature after cellulose and chitin. Subtilisin-like proteases (SUB) are a group of serine endoproteases, coded by seven genes (SUB1-7), which decompose keratin structures and have been isolated from dermatophytes. Herein, we identified the SUB genes in 30 clinical isolates of Trichophyton verrucosum obtained from human and animal dermatophytosis as well as asymptomatic animal carriers. METHODS AND RESULTS: We designed and proposed a two-stage multiplex PCR technique to detect all seven genes encoding serine proteases in dermatophytes. The analysis revealed the presence SUB1 and SUB2 amplicons in all strains regardless of the host. In the group of isolates obtained from humans, all seven subtilisin genes were shown in 40% of the strains. In T. verrucosum from asymptomatic animals, none of the isolates showed the presence of all seven subtilisin genes, and only 30% had six genes. In turn, 10% of the isolates from symptomatic animals demonstrated all seven subtilisins amplicons. CONCLUSIONS: In conclusion, the severity of infection and ability of T. verrucosum to cause dermatophytosis in humans may not be related to specific genes but their accumulation and synergistic effects of their products. SIGNIFICANCE AND IMPACT OF THE STUDY: Dermatophytes are pathogenic filamentous fungi with capacity to attack keratinized structures such as skin, hair and nails, causing cutaneous superficial infections. Indeed, a biological characteristic of dermatophytes is their ability to invade keratin-rich tissues by producing enzymes. Various degrees of inflammatory responses can be induced exactly by the enzymes. Subtilisin-like proteases are endoproteases, which decompose keratin structures. Our study identifies SUB genes in clinical isolates of T. verrucosum obtained from human and animal dermatophytosis as well as asymptomatic animal carriers.


Assuntos
Arthrodermataceae/genética , Genes Fúngicos , Pele/microbiologia , Subtilisina/genética , Tinha/microbiologia , Animais , Arthrodermataceae/isolamento & purificação , Arthrodermataceae/metabolismo , Humanos , Queratinas/metabolismo , Reação em Cadeia da Polimerase Multiplex , Subtilisina/metabolismo , Tinha/diagnóstico , Tinha/veterinária
17.
Int J Biol Macromol ; 170: 343-353, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33383075

RESUMO

Homologous proteins differ in their amino acid sequences at several positions. Generally, conserved sites are recognized as not suitable for amino acid substitution, and thus in evolutionary protein engineering, non-conserved sites are often selected as mutation sites. However, there have also been reports of possible mutations in conserved sites. In this study, we explored mutable conserved sites and immutable non-conserved sites by testing random mutations of two thermostable proteins, an esterase from Sulfolobus tokodaii (Sto-Est) and a subtilisin from Thermococcus kodakarensis (Tko-Sub). The subtilisin domain of Tko-Sub needs Ca2+ ions and the propeptide domain for stability, folding and maturation. The results from the two proteins showed that about one-third of the mutable sites were detected in conserved sites and some non-conserved sites lost enzymatic activity at high temperatures due to mutation. Of the conserved sites in Sto-Est, the sites on the loop, on the surface, and far from the active site are more resistant to mutation. In Tko-Sub, the sites flanking Ca2+-binding sites and propeptide were undesirable for mutation. The results presented here serve as an index for selecting mutation sites and contribute to the expansion of available sequence range by introducing mutations at conserved sites.


Assuntos
Esterases/genética , Subtilisina/genética , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Sequência Conservada/genética , Modelos Moleculares , Mutação/genética , Homologia de Sequência do Ácido Nucleico , Sulfolobus/genética , Thermococcus/genética
18.
Med Mycol ; 59(3): 305-308, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33085766

RESUMO

Trichophyton (T.) verrucosum is a highly pathogenic dermatophyte causing zoonotic bovine ringworm that is transmissible to humans. The virulence factors subtilisin (Sub)3 and Sub6 are discussed to contribute to disease manifestation but no protein expression study is available for T. verrucosum. We used customized antibodies (against Trichophyton-species, Sub3 and Sub6) to examine skin biopsies of infected cattle via immunofluorescence stainings. Both virulence factors Sub3 and 6 were solely expressed by conidia and not only found in epidermal but also in dermal and hair structures. The anti-T-antibody reliably detected the fungus and proved more sensitive compared to histological stains. LAY SUMMARY: We examined the zoonotic dermatophyte Trichophyton (T.) verrucosum in bovine skin and studied two important virulence factors called subtilisin (Sub)3 and Sub6 that T. verrucosum produces and secretes using immunolabeling.


Assuntos
Doenças dos Bovinos/microbiologia , Pele/microbiologia , Subtilisina/genética , Tinha/veterinária , Trichophyton/genética , Trichophyton/patogenicidade , Animais , Biópsia/veterinária , Bovinos , Doenças dos Bovinos/diagnóstico , Imunofluorescência , Pele/patologia , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Subtilisina/classificação , Tinha/microbiologia , Fatores de Virulência/genética , Zoonoses/microbiologia
19.
FEBS Lett ; 595(4): 452-461, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314039

RESUMO

The serine protease Tk-subtilisin from the hyperthermophilic archaeon Thermococcus kodakarensis possesses three insertion loops (IS1-IS3) on its surface, as compared to its mesophilic counterparts. Although IS1 and IS2 are required for maturation of Tk-subtilisin at high temperatures, the role of IS3 remains unknown. Here, CD spectroscopy revealed that IS3 deletion arrested Tk-subtilisin folding at an intermediate state, in which the central nucleus was formed, but the subsequent folding propagation into terminal subdomains did not occur. Alanine substitution of the aspartate residue in IS3 disturbed the intraloop hydrogen-bonding network, as evidenced by crystallographic analysis, resulting in compromised folding at high temperatures. Taking into account the high conservation of IS3 across hyperthermophilic homologues, we propose that the presence of IS3 is important for folding of hyperthermophilic subtilisins in high-temperature environments.


Assuntos
Alanina/química , Ácido Aspártico/química , Proteínas de Bactérias/química , Subtilisina/química , Thermococcus/química , Alanina/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Compostos Cromogênicos/química , Compostos Cromogênicos/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Subtilisina/genética , Subtilisina/metabolismo , Thermococcus/enzimologia
20.
FEMS Microbiol Lett ; 367(19)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33016320

RESUMO

We used error-prone PCR to generate mutations in a subtilisin protease-encoding gene, and screened for recombinants that expressed temperature-sensitive (TS) variants. From the dozens of mutations that we detected in the recombinant genes we found that those mutations that affected aspartate-75 had the most profound effect on temperature stability. We thus focused our analysis on two variants of subtilisin C, the more heat-sensitive variant 24 (V24), with amino acid changes D75G, L234M and Q274P; and variant 25 (V25), with a single amino acid change, D75A. For V24 a two log-fold reduction in activity occurs in under 10 min at 50°C. For V25, a two log-fold reduction occurs at 60°C, a temperature that reduces the activity of the wild type enzyme by about 30%. The V24 variant fully inactivates enzymes commonly used in molecular biology research and in molecular diagnostics, and is stabilized against autolysis with propylene glycol concentrations of 10% or greater. The subtilisin variants are produced by a strain of Bacillus subtilis that lacks expression of its native secreted proteases, and the variants can be isolated from the supernatants using nickel affinity chromatography.


Assuntos
Enzimas/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Subtilisina/farmacologia , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Ativação Enzimática , Proteínas Recombinantes/genética , Subtilisina/genética , Subtilisina/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA