Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 692
Filtrar
1.
Neurosci Lett ; 755: 135938, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33915226

RESUMO

Receptors to glutamate of the AMPA type (AMPARs) serve as the major gates of excitation in the human brain, where they participate in fundamental processes underlying perception, cognition and movement. Due to their central role in brain function, dysregulation of these receptors has been implicated in neuropathological states associated with a large variety of diseases that manifest with abnormal behaviors. The participation of functional abnormalities of AMPARs in brain disorders is strongly supported by genomic, transcriptomic and proteomic studies. Most of these studies have focused on the expression and function of the subunits that make up the channel and define AMPARs (GRIA1-GRIA4), as well of some accessory proteins. However, it is increasingly evident that native AMPARs are composed of a complex array of accessory proteins that regulate their trafficking, localization, kinetics and pharmacology, and a better understanding of the diversity and regional expression of these accessory proteins is largely needed. In this review we will provide an update on the state of current knowledge of AMPA receptors subunits in the context of their accessory proteins at the transcriptome level. We also summarize the regional expression in the human brain and its correlation with the channel forming subunits. Finally, we discuss some of the current limitations of transcriptomic analysis and propose potential ways to overcome them.


Assuntos
Encéfalo/metabolismo , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Receptores de AMPA/biossíntese , Receptores de AMPA/genética , Transcriptoma/fisiologia , Expressão Gênica , Humanos
2.
Methods Mol Biol ; 2247: 3-16, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33301109

RESUMO

Membrane proteins constitute an important class of proteins for medical, pharmaceutical, and biotechnological reasons. Understanding the structure and function of membrane proteins and their complexes is of key importance, but the progress in this area is slow because of the difficulties to produce them in sufficient quality and quantity. Overexpression of membrane proteins is often restricted by the limited capability of translocation systems to integrate proteins into the membrane and to fold them properly. Purification of membrane proteins requires their isolation from the membrane, which is a further challenge. The choice of expression system, detergents, and purification tags is therefore an important decision. Here, we present a protocol for expression in bacteria and isolation of a seven-subunit membrane protein complex, the bacterial holo-translocon, which can serve as a starting point for the production of other membrane protein complexes for structural and functional studies.


Assuntos
Proteínas de Membrana/biossíntese , Proteínas de Membrana/isolamento & purificação , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/isolamento & purificação , Subunidades Proteicas/biossíntese , Subunidades Proteicas/isolamento & purificação , Proteínas Recombinantes , Cromatografia de Afinidade , Cromatografia em Gel , Escherichia coli/genética , Expressão Gênica , Proteínas de Membrana/química , Plasmídeos , Regiões Promotoras Genéticas , Multimerização Proteica , Subunidades Proteicas/química
3.
Psychopharmacology (Berl) ; 237(10): 3007-3020, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32564114

RESUMO

RATIONALE: Previous studies suggested that methionine (Met) levels are decreased in depressed patients. However, whether the decrease in this amino acid is important for phenotypic behaviors associated with depression has not been deciphered. OBJECTIVE: The response of individuals to chronic stress is variable, with some individuals developing depression and others becoming resilient to stress. In this study, our objective was to examine the effect of Met on susceptibility to stress. METHODS: Male C57BL/6J mice were subjected to daily defeat sessions by a CD1 aggressor, for 10 days. On day 11, the behavior of mice was assessed using social interaction and open-field tests. Mice received Met 4 h before each defeat session. Epigenetic targets were assessed either through real-rime RTPCR or through Western Blots. RESULTS: Met did not modulate anxiety-like behaviors, but rather promoted resilience to chronic stress, rescued social avoidance behaviors and reversed the increase in the cortical expression levels of N-methyl-D-aspartate receptor (NMDAR) subunits. Activating NMDAR activity abolished the ability of Met to promote resilience to stress and to rescue social avoidance behavior, whereas inhibiting NMDAR did not show any synergistic or additive protective effects. Indeed, Met increased the cortical levels of the histone methyltransferase SETDB1, and in turn, the levels of the repressive histone H3 lysine (K9) trimethylation (me3). CONCLUSIONS: Our data indicate that Met rescues susceptibility to stress by inactivating cortical NMDAR activity through an epigenetic mechanism involving histone methylation.


Assuntos
Epigênese Genética/efeitos dos fármacos , Metionina/uso terapêutico , Receptores de N-Metil-D-Aspartato/biossíntese , Resiliência Psicológica/efeitos dos fármacos , Derrota Social , Estresse Psicológico/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/psicologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Epigênese Genética/fisiologia , Expressão Gênica , Masculino , Metionina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Receptores de N-Metil-D-Aspartato/genética , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/genética
4.
J Comp Neurol ; 528(15): 2551-2568, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32220012

RESUMO

GABAA receptors are composed of five subunits arranged around a central chloride channel. Their subunits originate from different genes or gene families. The majority of GABAA receptors in the mammalian brain consist of two α-, two ß- and one γ- or δ-subunit. This subunit organization crucially determines the physiological and pharmacological properties of the GABAA receptors. Using immunohistochemistry, we investigated the distribution of 10 GABAA receptor subunits (α1, α2, α3, α4, α5, ß1, ß2, ß3, γ2, and δ) in the fore brain of three female rhesus monkeys (Macaca mulatta). Within the cerebral cortex, subunits α1, α5, ß2, ß3, and γ2 were found in all layers, α2, α3, and ß1 were more concentrated in the inner and outer layers. The caudate/putamen was rich in α1, α2, α5, all three ß-subunits, γ2, and δ. Subunits α3 and α5 were more concentrated in the caudate than in the putamen. In contrast, α1, α2, ß1, ß2, γ2, and δ were highest in the pallidum. Most dorsal thalamic nuclei contained subunits α1, α2, α4, ß2, ß3, and γ2, whereas α1, α3, ß1, and γ2 were most abundant in the reticular nucleus. Within the amygdala, subunits α1, α2, α5, ß1, ß3, γ2, and δ were concentrated in the cortical nucleus, whereas in the lateral and basolateral amygdala α1, α2, α5, ß1, ß3, and δ, and in the central amygdala α1, α2, ß3, and γ2 were most abundant. Interestingly, subunit α3-IR outlined the intercalated nuclei of the amygdala. In the hippocampus, subunits α1, α2, α5, ß2, ß3, γ2, and δ were highly expressed in the dentate molecular layer, whereas α1, α2, α3, α5, ß1, ß2, ß3, and γ2 were concentrated in sector CA1 and the subiculum. The distribution of GABAA receptor subunits in the rhesus monkey was highly heterogeneous indicating a high number of differently assembled receptors. In most areas investigated, notably in the striatum/pallidum, amygdaloid nuclei and in the hippocampus it was more diverse than in the rat and mouse indicating a more heterogeneous and less defined receptor assembly in the monkey than in rodent brain.


Assuntos
Prosencéfalo/química , Prosencéfalo/metabolismo , Subunidades Proteicas/biossíntese , Receptores de GABA-A/biossíntese , Fatores Etários , Sequência de Aminoácidos , Animais , Feminino , Imuno-Histoquímica , Macaca mulatta , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Receptores de GABA-A/análise , Receptores de GABA-A/genética
5.
Neuropharmacology ; 168: 108012, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32067988

RESUMO

Although the lateral habenula (LHb) is involved in the regulation of multiple brain functions and this region expresses abundant M-type potassium channel (M-channel) subunits Kv7.2 and Kv7.3, the role of M-channels in regulating working memory is unclear, particularly in Parkinson's disease (PD). Here we tested the effects of activation and blockade of LHb M-channels on working memory by the T-maze rewarded alternation test in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra compacta (SNc). The SNc lesion induced working memory impairment, increased the firing rate of LHb neurons, decreased dopamine (DA) level in the ventral medial prefrontal cortex (vmPFC) and reduced the expression of Kv7.2 subunit in the LHb. Intra-LHb injection of M-channel activator retigabine induced enhancement of working memory in SNc sham-lesioned and SNc-lesioned rats; conversely, the injection of M-channel blocker XE-991 impaired working memory in the two groups of rats. However, doses producing significant effects in SNc-lesioned rats were higher than those in SNc sham-lesioned rats. Further, intra-LHb injection of retigabine decreased the firing rate of LHb neurons and increased release of DA and serotonin (5-HT) in the vmPFC, while XE-991 increased the firing rate and decreased DA and 5-HT release in the two groups of rats. Compared with SNc sham-lesioned rats, the duration of M-channel activation and blockade action on the firing rate of the neurons and release of DA and 5-HT was significantly shortened in SNc-lesioned rats, which was consistent with reduced expression of Kv7.2 subunit in the LHb after lesioning the SNc. Collectively, these findings suggest involvement of LHb Kv7.2 subunit-containing M-channels in working memory impairment in SNc-lesioned rats, and that enhanced or impaired working memory after activation or blockade of M-channels in the LHb is related to the changes in the firing activity of LHb neurons and DA and 5-HT release in the vmPFC.


Assuntos
Habenula/metabolismo , Canal de Potássio KCNQ2/biossíntese , Memória de Curto Prazo/fisiologia , Transtornos Parkinsonianos/metabolismo , Animais , Habenula/efeitos dos fármacos , Canal de Potássio KCNQ2/agonistas , Canal de Potássio KCNQ2/antagonistas & inibidores , Masculino , Moduladores de Transporte de Membrana/farmacologia , Memória de Curto Prazo/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Bloqueadores dos Canais de Potássio/farmacologia , Subunidades Proteicas/biossíntese , Ratos , Ratos Sprague-Dawley
6.
Plant Mol Biol ; 102(1-2): 225-237, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31820284

RESUMO

KEY MESSAGE: The specific and high-level expression of 1Ax1 is determined by different promoter regions. HMW-GS synthesis occurs in aleurone layer cells. Heterologous proteins can be stored in protein bodies. High-molecular-weight glutenin subunit (HMW-GS) is highly expressed in the endosperm of wheat and relative species, where their expression level and allelic variation affect the bread-making quality and nutrient quality of flour. However, the mechanism regulating HMW-GS expression remains elusive. In this study, we analyzed the distribution of cis-acting elements in the 2659-bp promoter region of the HMW-GS gene 1Ax1, which can be divided into five element-enriched regions. Fragments derived from progressive 5' deletions were used to drive GUS gene expression in transgenic wheat, which was confirmed in aleurone layer cells, inner starchy endosperm cells, starchy endosperm transfer cells, and aleurone transfer cells by histochemical staining. The promoter region ranging from - 297 to - 1 was responsible for tissue-specific expression, while fragments from - 1724 to - 618 and from - 618 to - 297 were responsible for high-level expression. Under the control of the 1Ax1 promoter, heterologous protein could be stored in the form of protein bodies in inner starchy endosperm cells, even without a special location signal. Our findings not only deepen our understanding of glutenin expression regulation, trafficking, and accumulation but also provide a strategy for the utilization of wheat endosperm as a bioreactor for the production of nutrients and metabolic products.


Assuntos
Evolução Biológica , Regulação da Expressão Gênica de Plantas , Glutens/biossíntese , Glutens/genética , Regiões Promotoras Genéticas/genética , Triticum/genética , Pão , Endosperma/metabolismo , Farinha , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Amido/metabolismo
8.
Neurochem Int ; 128: 163-174, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31009649

RESUMO

The sodium potassium ATPase (Na+/K+ ATPase) is essential for the maintenance of a low intracellular Na+ and a high intracellular K+ concentration. Loss of function of the Na+/K+ ATPase due to mutations in Na+/K+ ATPase genes, anoxic conditions, depletion of ATP or inhibition of the Na+/K+ ATPase function using cardiac glycosides such as digitalis, causes a depolarization of the resting membrane potential. While in non-excitable cells, the uptake of glucose and amino acids is decreased if the function of the Na+/K+ ATPase is compromised, in excitable cells the symptoms range from local hyper-excitability to inactivating depolarization. Although several studies have demonstrated the differential expression of the various Na+/K+ ATPase alpha and beta isoforms in the brain tissue of rodents, their expression profile during development has yet to be thoroughly investigated. An immunohistochemical analysis of postnatal day 19 mouse brain showed ubiquitous expression of Na+/K+ ATPase isoforms α1, ß1 and ß2 in both neurons and glial cells, whereas α2 was expressed mostly in glial cells and the α3 and ß3 isoforms were expressed in neurons. Furthermore, we examined potential changes in the relative expression of the different Na+/K+ ATPase isoforms in different brain areas of postnatal day 6 and in adult 9 months old animals using immunoblot analysis. Our results show a significant up-regulation of the α1 isoform in cortex, hippocampus and cerebellum, whereas, the α2 isoform was significantly up-regulated in midbrain. The ß3 isoform showed a significant up-regulation in all brain areas investigated. The up-regulation of the α3 isoform matched that of the ß2 isoform which were both significantly up-regulated in cortex, hippocampus and midbrain, suggesting that the increased maturation of the neuronal network is accompanied by an increase in expression of α3/ß2 complexes in these brain structures.


Assuntos
Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Regulação Enzimológica da Expressão Gênica , ATPase Trocadora de Sódio-Potássio/biossíntese , Fatores Etários , Animais , Animais Recém-Nascidos , Isoenzimas/biossíntese , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos C57BL , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , ATPase Trocadora de Sódio-Potássio/genética
9.
Biochem Pharmacol ; 165: 240-248, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30885765

RESUMO

The four core members of the Interleukin-12 (IL-12) family of cytokines, IL-12, IL-23, IL-27 and IL-35 are heterodimers which share α- and ß-cytokine subunits. All four cytokines are immune modulators and have been proposed to play divergent roles in inflammatory arthritis. In recent years additional combinations of α- and ß-cytokine subunits belonging to the IL-12 family have been proposed to form novel cytokines such as IL-39. However, the actual extent of the combinatorial potential of the cytokine subunits in the human IL-12 family is not known. Here, we identify several combinations of subunits that form secreted heterodimeric assemblies based on a systematic orthogonal approach. The heterodimers are detected in the conditioned media harvested from mammalian cell cultures transfected with unfused pairs of cytokine subunits. While certain previously reported subunit combinations could not be recapitulated, our approach showed robustly that all four of the canonical members could be secreted. Furthermore, we provide evidence for the interaction between Cytokine Receptor Like Factor 1 (CRLF1) and Interleukin-12 subunit alpha (p35). Similar to IL-27 and IL-35 this novel heterodimer is not abundantly secreted rendering isolation from the conditioned medium very challenging, unlike IL-12 and IL-23. Our findings set the stage for fine-tuning approaches towards the biochemical reconstitution of IL-12 family cytokines for biochemical, cellular, and structural studies.


Assuntos
Interleucina-12/química , Interleucina-23/biossíntese , Interleucinas/química , Proteínas Recombinantes de Fusão/química , Células HEK293 , Humanos , Interleucina-12/biossíntese , Interleucina-23/química , Interleucinas/biossíntese , Multimerização Proteica , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , Proteínas Recombinantes de Fusão/biossíntese
10.
Neurochem Res ; 44(4): 978-993, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30747310

RESUMO

Cognitive impairment in diabetes (CID) is a severe chronic complication of diabetes mellitus (DM). It has been hypothesized that diabetes can lead to cognitive dysfunction due to expression changes of excitatory neurotransmission mediated by N-methyl-D-aspartate receptors (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR); however, the pathogenesis involved in this has not been fully understood, especially at early phase of DM. Here, we sought to determine the cognitive changes and aim to correlate this with the expression changes of NMDAR and AMPAR of glutamate signaling pathways in the rat hippocampus from early phase of DM and in the course of the disease progression. By Western blot analysis and immunofluorescence labeling, the hippocampus in diabetic rats showed a significant increase in protein expression NMDAR subunits NR1, NR2A and NR2B and AMPAR subunit GluR1. Along with this, behavioral test by Morris water maze showed a significant decline in their performance when compared with the control rats. It is suggested that NR1, NR2A, NR2B and GluR1are involved in learning and memory and that their expression alterations maybe correlated with the occurrence and development of CID in diabetic rats induced by streptozotocin.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Receptores de AMPA/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Diabetes Mellitus Experimental/patologia , Expressão Gênica , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/patologia , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Receptores de N-Metil-D-Aspartato/genética
11.
Neurochem Int ; 125: 91-98, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794847

RESUMO

The Ih is a mixed depolarizing current present in neurons which, upon activation by hyperpolarization, modulates neuronal excitability in the mesocorticolimbic (MCL) system, an area which regulates emotions such as pleasure, reward, and motivation. Its biophysical properties are determined by HCN protein expression profiles, specifically HCN subunits 1-4. Previously, we reported that cocaine-induced behavioral sensitization increases HCN2 protein expression in all MCL areas with the Ventral Tegmental Area (VTA) showing the most significant increase. Recent evidence suggests that HCN4 also has an important expression in the MCL system. Although there is a significant expression of HCN channels in the MCL system their role in addictive processes is largely unknown. Thus, in this study we aim to compare HCN2 and HCN4 expression profiles and their cellular compartmental distribution in the MCL system, before and after cocaine sensitization. Surface/intracellular (S/I) ratio analysis indicates that VTA HCN2 subunits are mostly expressed in the cell surface in contrast to other areas tested. Our findings demonstrate that after cocaine sensitization, the HCN2 S/I ratio in the VTA was decreased whereas in the Prefrontal Cortex it was increased. In addition, HCN4 total expression in the VTA was decreased after cocaine sensitization, although the S/I ratio was not altered. Together, these results demonstrate differential cocaine effects on HCN2 and HCN4 protein expression profiles and therefore suggest a diverse Ih modulation of cellular activity during cocaine addictive processes.


Assuntos
Córtex Cerebral/metabolismo , Cocaína/farmacologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/biossíntese , Sistema Límbico/metabolismo , Canais de Potássio/biossíntese , Animais , Córtex Cerebral/efeitos dos fármacos , Expressão Gênica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Sistema Límbico/efeitos dos fármacos , Masculino , Canais de Potássio/genética , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
12.
J Neurosci ; 39(14): 2581-2605, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30683685

RESUMO

Presynaptic α2δ subunits of voltage-gated calcium channels regulate channel abundance and are involved in glutamatergic synapse formation. However, little is known about the specific functions of the individual α2δ isoforms and their role in GABAergic synapses. Using primary neuronal cultures of embryonic mice of both sexes, we here report that presynaptic overexpression of α2δ-2 in GABAergic synapses strongly increases clustering of postsynaptic GABAARs. Strikingly, presynaptic α2δ-2 exerts the same effect in glutamatergic synapses, leading to a mismatched localization of GABAARs. This mismatching is caused by an aberrant wiring of glutamatergic presynaptic boutons with GABAergic postsynaptic positions. The trans-synaptic effect of α2δ-2 is independent of the prototypical cell-adhesion molecules α-neurexins (α-Nrxns); however, α-Nrxns together with α2δ-2 can modulate postsynaptic GABAAR abundance. Finally, exclusion of the alternatively spliced exon 23 of α2δ-2 is essential for the trans-synaptic mechanism. The novel function of α2δ-2 identified here may explain how abnormal α2δ subunit expression can cause excitatory-inhibitory imbalance often associated with neuropsychiatric disorders.SIGNIFICANCE STATEMENT Voltage-gated calcium channels regulate important neuronal functions such as synaptic transmission. α2δ subunits modulate calcium channels and are emerging as regulators of brain connectivity. However, little is known about how individual α2δ subunits contribute to synapse specificity. Here, we show that presynaptic expression of a single α2δ variant can modulate synaptic connectivity and the localization of inhibitory postsynaptic receptors. Our findings provide basic insights into the development of specific synaptic connections between nerve cells and contribute to our understanding of normal nerve cell functions. Furthermore, the identified mechanism may explain how an altered expression of calcium channel subunits can result in aberrant neuronal wiring often associated with neuropsychiatric disorders such as autism or schizophrenia.


Assuntos
Axônios/metabolismo , Canais de Cálcio/biossíntese , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-A/metabolismo , Potenciais Sinápticos/fisiologia , Animais , Axônios/química , Encéfalo/citologia , Encéfalo/fisiologia , Canais de Cálcio/análise , Células Cultivadas , Técnicas de Cocultura , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terminações Pré-Sinápticas/química , Subunidades Proteicas/análise , Subunidades Proteicas/biossíntese , Receptores de GABA-A/análise
13.
Neurochem Res ; 44(1): 78-88, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29307084

RESUMO

The glutamatergic system plays a central role in both the acute and chronic effects of ethanol. Among all the glutamate receptors the ionotropic NMDA receptors are crucial because of their role in synaptic plasticity. A large body of evidences suggests that short-term and long-term effects of ethanol may change synaptic plasticity via an alteration of the expression of the GluN2B subunit, one constitutive element of the NMDA receptor. The present review is focusing on the role of the GluN2B subunit after ethanol exposure during early life (in utero and adolescence) and also at adulthood. The roles of other NMDA subunits are also discussed in the context of the increasing evidence that the ratio of the different subunits, such as GluN2A-to-GluN2B, seems to better reflect the effects of ethanol and to explain how ethanol exposure can have short lasting and long lasting effects on synaptic plasticity, cognitive processes and some of the ethanol-related behaviors.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Etanol/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Animais , Encéfalo/efeitos dos fármacos , Etanol/administração & dosagem , Etanol/toxicidade , Feminino , Humanos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Subunidades Proteicas/biossíntese
14.
Neurochem Res ; 44(1): 61-77, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29651654

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the brain with high concentrations in the telencephalon where they modulate synaptic plasticity, working memory, and other functions. While the actions of the predominate GluN2 NMDAR subunits, GluN2A and GluN2B are relatively well understood, the function of GluN2C and GluN2D subunits in the telencephalon is largely unknown. To better understand the possible role of GluN2C subunits, we used fluorescence in situ hybridization (FISH) together with multiple cell markers to define the distribution and type of cells expressing GluN2C mRNA. Using a GluN2C-KO mouse as a negative control, GluN2C mRNA expression was only found in non-neuronal cells (NeuN-negative cells) in the hippocampus, striatum, amygdala, and cerebral cortex. For these regions, a significant fraction of GFAP-positive cells also expressed GluN2C mRNA. Overall, for the telencephalon, the globus pallidus and olfactory bulb were the only regions where GluN2C was expressed in neurons. In contrast to GluN2C, GluN2D subunit mRNA colocalized with neuronal and not astrocyte markers or GluN2C mRNA in the telencephalon (except for the globus pallidus). GluN2C mRNA did, however, colocalize with GluN2D in the thalamus where neuronal GluN2C expression is found. These findings strongly suggest that GluN2C has a very distinct function in the telencephalon compared to its role in other brain regions and compared to other GluN2-containing NMDARs. NMDARs containing GluN2C may have a specific role in regulating L-glutamate or D-serine release from astrocytes in response to L-glutamate spillover from synaptic activity.


Assuntos
Interneurônios/metabolismo , Neuroglia/metabolismo , RNA Mensageiro/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Telencéfalo/metabolismo , Animais , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , RNA Mensageiro/genética , Receptores de N-Metil-D-Aspartato/genética
15.
Hum Pathol ; 83: 90-99, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171988

RESUMO

Phosphatidylinositol glycan anchor biosynthesis class U (PIGU), which is a critical subunit of the glycosylphosphatidylinositol transamidase (GPI-T) complex, has been reported to be an oncogene in bladder cancer. However, the expression and prognostic significance of PIGU in hepatocellular carcinoma (HCC) remain unclear. In this study, we conducted bioinformatics, quantitative real-time polymerase chain reaction, and immunohistochemistry analysis to investigate the expression profile of GPI-T subunits in HCC tissues, finding that PIGU was the most significantly overexpressed GPI-T subunit in HCC tissues at both the RNA and protein levels. Using Kaplan-Meier analysis and Cox proportional hazards regression models, we then comprehensively explored the prognostic impact of overexpressed PIGU in HCC patients in 2 independent HCC cohorts, and the results showed that overexpressed PIGU was an independent predictor for poor survival in HCC patients. Furthermore, based on the constructed nomogram, we proposed a risk score combining PIGU expression with the standard TNM staging system and provided a more powerful tool for the prognostic stratification of HCC patients. We also investigated the potential functional role of PIGU in HCC by performing bioinformatic analysis, indicating that PIGU might be involved in cell cycle-related biological processes in HCC. In conclusion, our findings suggest that PIGU overexpression provides independent and complementary prognostic information in HCC patients and that incorporation of this information with the traditional TNM staging system can improve prognostic stratification.


Assuntos
Aciltransferases/biossíntese , Biomarcadores Tumorais/análise , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Aciltransferases/análise , Adulto , Idoso , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias/métodos , Prognóstico , Subunidades Proteicas/análise , Subunidades Proteicas/biossíntese
16.
Iran Biomed J ; 23(4): 246-52, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30368233

RESUMO

Background: Cystic echinococcosis (CE) is a helminthic disease caused by the larval form of Echinococcus granulosus. In the present study, the B8/2 subunit of antigen B (AgB) of E. granulosus was expressed in E. coli host and then applied in a diagnostic ELISA set up. Methods: The DNA sequence of AgB8/2 subunit from E. granulosus was extracted from the GenBank and codon-optimized according to E. coli codon usage. The target sequence was cloned in an expression vector (pGEX-4T-1). The produced antigen was used in an ELISA system, and its performance for the diagnosis of human hydatid cyst was evaluated, using sera from CE and non-CE patients, along with the sera from healthy subjects. Moreover, the diagnostic value of the recombinant protein was compared with native AgB, as well as with a commercial kit. Results: Antibodies to hydatid cyst were detected in 27 out of 30 patients corresponding to a sensitivity of 90% (95% CI: 73-98%). Cross-reaction with sera of non-CE subjects was seen in two cases resulted in a specificity of 93.5% (95% CI: 82-98%) for the test. A sensitivity of 87% and specificity of 90% were found for the native form of the antigen, while the ELISA commercial kit had a sensitivity of 97% and specificity of 95%. Conclusion: Our data show that rEgAgB8/2 is an appropriate source of antigen for the serological diagnosis of human hydatid cyst. Co-expression of the rEgAgB/2 along with other subunits of AgB may enhance the performances of these antigens for the serodiagnosis of human CE.


Assuntos
Antígenos de Helmintos/imunologia , Equinococose/diagnóstico , Equinococose/parasitologia , Echinococcus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Subunidades Proteicas/metabolismo , Kit de Reagentes para Diagnóstico , Proteínas Recombinantes/metabolismo , Animais , Antígenos de Helmintos/biossíntese , Equinococose/imunologia , Humanos , Subunidades Proteicas/biossíntese , Subunidades Proteicas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
17.
Nature ; 561(7722): 268-272, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30158700

RESUMO

The folding of newly synthesized proteins to the native state is a major challenge within the crowded cellular environment, as non-productive interactions can lead to misfolding, aggregation and degradation1. Cells cope with this challenge by coupling synthesis with polypeptide folding and by using molecular chaperones to safeguard folding cotranslationally2. However, although most of the cellular proteome forms oligomeric assemblies3, little is known about the final step of folding: the assembly of polypeptides into complexes. In prokaryotes, a proof-of-concept study showed that the assembly of heterodimeric luciferase is an organized cotranslational process that is facilitated by spatially confined translation of the subunits encoded on a polycistronic mRNA4. In eukaryotes, however, fundamental differences-such as the rarity of polycistronic mRNAs and different chaperone constellations-raise the question of whether assembly is also coordinated with translation. Here we provide a systematic and mechanistic analysis of the assembly of protein complexes in eukaryotes using ribosome profiling. We determined the in vivo interactions of the nascent subunits from twelve hetero-oligomeric protein complexes of Saccharomyces cerevisiae at near-residue resolution. We find nine complexes assemble cotranslationally; the three complexes that do not show cotranslational interactions are regulated by dedicated assembly chaperones5-7. Cotranslational assembly often occurs uni-directionally, with one fully synthesized subunit engaging its nascent partner subunit, thereby counteracting its propensity for aggregation. The onset of cotranslational subunit association coincides directly with the full exposure of the nascent interaction domain at the ribosomal tunnel exit. The action of the ribosome-associated Hsp70 chaperone Ssb8 is coordinated with assembly. Ssb transiently engages partially synthesized interaction domains and then dissociates before the onset of partner subunit association, presumably to prevent premature assembly interactions. Our study shows that cotranslational subunit association is a prevalent mechanism for the assembly of hetero-oligomers in yeast and indicates that translation, folding and the assembly of protein complexes are integrated processes in eukaryotes.


Assuntos
Aminoacil-tRNA Sintetases/biossíntese , Ácido Graxo Sintases/biossíntese , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Ácido Graxo Sintases/química , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Biochemistry (Mosc) ; 83(5): 562-573, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29738690

RESUMO

Voltage-gated potassium channel Kv7.1 plays an important role in the excitability of cardiac muscle. The α-subunit of Kv7.1 (KCNQ1) is the main structural element of this channel. Tetramerization of KCNQ1 in the membrane results in formation of an ion channel, which comprises a pore and four voltage-sensing domains. Mutations in the human KCNQ1 gene are one of the major causes of inherited arrhythmias, long QT syndrome in particular. The construct encoding full-length human KCNQ1 protein was synthesized in this work, and an expression system in the Pichia pastoris yeast cells was developed. The membrane fraction of the yeast cells containing the recombinant protein (rKCNQ1) was solubilized with CHAPS detergent. To better mimic the lipid environment of the channel, lipid-protein nanodiscs were formed using solubilized membrane fraction and MSP2N2 protein. The rKCNQ1/nanodisc and rKCNQ1/CHAPS samples were purified using the Rho1D4 tag introduced at the C-terminus of the protein. Protein samples were examined using transmission electron microscopy with negative staining. In both cases, homogeneous rKCNQ1 samples were observed based on image analysis. Statistical analysis of the images of individual protein particles solubilized in the detergent revealed the presence of a tetrameric structure confirming intact subunit assembly. A three-dimensional channel structure reconstructed at 2.5-nm resolution represents a compact density with diameter of the membrane part of ~9 nm and height ~11 nm. Analysis of the images of rKCNQ1 in nanodiscs revealed additional electron density corresponding to the lipid bilayer fragment and the MSP2N2 protein. These results indicate that the nanodiscs facilitate protein isolation, purification, and stabilization in solution and can be used for further structural studies of human Kv7.1.


Assuntos
Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/ultraestrutura , Lipídeos/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Proteínas Recombinantes/biossíntese , Humanos , Canal de Potássio KCNQ1/biossíntese , Canal de Potássio KCNQ1/genética , Estrutura Secundária de Proteína , Subunidades Proteicas/biossíntese , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura
19.
World Neurosurg ; 114: 47-52, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29510284

RESUMO

BACKGROUND: Paragangliomas are generally benign, slow-growing tumors. However, approximately 10%-20% are malignant, characterized by distant metastasis. Recently, a germ line mutation in succinate dehydrogenase B subunit (SDHB) has been shown to be associated with malignant behavior in paraganglioma. Here we present a case of SDHB-negative malignant paraganglioma of the jugular foramen with a pseudohypoxic microenvironment and unique imaging features on [18F]-fluoro-2-deoxy-d-glucose positron emission tomography ([18F]-FDG PET), and discuss the significance of SDHB immunohistochemistry and the potential of [18F]-FDG PET for clinical management. CASE DESCRIPTION: A 55-year-old woman was diagnosed with jugular foramen paraganglioma. Initial surgical resection was performed; however, follow-up [18F]-FDG PET indicated multiple uptake regions throughout the body. Biopsies for multiple recurrent lesions revealed consistent pathological features, suggesting distant metastasis. Immunohistochemical analysis revealed a lack of SDHB immunostaining in all specimens. Pseudohypoxic markers, including hypoxia-inducible factor-1α and downstream glycolysis enzymes, were strongly expressed. [18F]-FDG PET demonstrated increased uptake in the lesions, and the patient died 3 years after initial metastasis. CONCLUSION: In patients with head and neck paraganglioma without SDHB expression, close follow-up should be considered because of the risk for metastasis. In such cases, [18F]-FDG PET might be useful for detecting metastasis due to atypical accumulation from pseudohypoxia-induced glycolysis.


Assuntos
Progressão da Doença , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Hipóxia Encefálica/diagnóstico por imagem , Paraganglioma/diagnóstico por imagem , Succinato Desidrogenase/biossíntese , Biomarcadores Tumorais/biossíntese , Diagnóstico Diferencial , Evolução Fatal , Feminino , Fluordesoxiglucose F18/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/cirurgia , Humanos , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/cirurgia , Pessoa de Meia-Idade , Paraganglioma/metabolismo , Paraganglioma/cirurgia , Subunidades Proteicas/biossíntese , Base do Crânio/diagnóstico por imagem , Base do Crânio/cirurgia
20.
Exp Neurol ; 305: 1-12, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29554474

RESUMO

The N-methyl-d-aspartate receptor (NMDAR) has been implicated in the pathophysiology of neurological diseases, such as schizophrenia, autism spectrum disorders (ASD), and Alzheimer's disease (AD), whose unique clinical hallmark is a constellation of impaired social and/or cognitive behaviors. GluN3A (NR3A) is a unique inhibitory subunit in the NMDAR complex. The role of GluN3A in social behavioral activities is obscure. In this study, we sought to evaluate altered social activities in adult GluN3A knockout (KO) mice. GluN3A KO mice spent less time in reciprocal social interaction in the social interaction test compared to wild-type (WT) mice. A social approach test using a three-chamber system confirmed that mice lacking GluN3A had lower sociability and did not exhibit a preference for social novelty. GluN3A KO mice displayed abnormal food preference in the social transmission of food preference task and low social interaction activity in the five-trial social memory test, but without social memory deficits. Using a home cage monitoring system, we observed reduced social grooming behavior in GluN3A KO mice. Signaling genes that might mediate the altered social behaviors were examined in the prefrontal cortex, hippocampus, and thalamus. Among nine genes examined, the expression of the oxytocin receptor was significantly lower in the prefrontal cortex of GluN3A KO mice than that in WT mice. Oxytocin treatment rescued social activity deficits in GluN3A KO mice. These findings support a novel idea that a chronic state of moderate increases in NMDAR activities may lead to downregulation of the oxytocin signaling and impaired behavioral activities that are seen in psychiatric/neurodegenerative disorders.


Assuntos
Asseio Animal/fisiologia , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de Ocitocina/biossíntese , Transdução de Sinais/fisiologia , Comportamento Social , Fatores Etários , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocitocina/biossíntese , Córtex Pré-Frontal/metabolismo , Subunidades Proteicas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA